
ibm.com/redbooks

C and C++
Application
Development on AIX

Richard Cutler
Francois Armingaud

Eduardo Conejo
Kumaravel Nagarajan

Create and use C and C++ shared
libraries

Understand shared memory and
C++ templates

Improve application
performance

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

C and C++ Application Development on AIX

September 2000

SG24-5674-00

International Technical Support Organization

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (September 2000)

This edition applies to VisualAge C++ Professional for AIX, Version 5, Program Number 5765-E26, and
IBM C for AIX, Program Number 5765-E32, for use with the AIX Operating System, Program Number
5765-C34.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix A, “Special notices” on page 241.

Take Note!

Contents

Figures .ix

Tables. .xi

Preface . xiii
The team that wrote this redbook. xiii
Comments welcome. xiv

Chapter 1. C and C++ compilers on AIX . 1
1.1 Compiler product similarities . 1

1.1.1 Multiple command line drivers . 1
1.1.2 Installation directory . 2

1.2 IBM C compilers . 2
1.2.1 IBM C for AIX, Version 3. 3
1.2.2 IBM C for AIX, Version 4.1 . 3
1.2.3 IBM C for AIX, Version 4.3 . 5
1.2.4 IBM C for AIX, Version 4.4 . 5
1.2.5 IBM C for AIX, Version 5.0 . 6
1.2.6 C compiler summary. 7

1.3 IBM C++ Compilers . 7
1.3.1 IBM C Set ++ for AIX, Version 3 . 7
1.3.2 IBM C and C++ Compilers, Version 3.6 . 8
1.3.3 IBM VisualAge C++ Professional for AIX, Version 4 9
1.3.4 IBM VisualAge C++ Professional for AIX, Version 5 10
1.3.5 C++ Compiler summary . 11

1.4 Installation of compiler products . 12
1.4.1 Install compiler filesets . 12

1.5 Activating the compilers . 16
1.5.1 What is LUM. 16
1.5.2 Configuring LUM. 17

1.6 Activating the LUM server . 20
1.7 Enrolling a product license . 20

1.7.1 Enrolling a concurrent license. 21
1.7.2 Enrolling a simple nodelock license . 22

1.8 Invoking the compilers . 23
1.8.1 Default compiler drivers . 23

1.9 Online documentation . 24
1.9.1 Viewing locally . 24
1.9.2 Viewing remotely . 25

1.10 Additional developer resources . 28
1.10.1 AIX operating system documentation . 28
© Copyright IBM Corp. 2000 iii

1.10.2 Compiler product information . 29
1.10.3 PartnerWorld for developers . 29

Chapter 2. Shared memory . 31
2.1 Program address space . 32

2.1.1 The physical address space of a 32-bit system. 33
2.1.2 Segment Register addressing. 34

2.2 Memory mapping mechanics . 34
2.2.1 The shmap interfaces . 35
2.2.2 The mmap functions . 40
2.2.3 Comparison of shmat and mmap . 42

2.3 Process private data. 43
2.3.1 Example . 45

Chapter 3. AIX shared libraries . 49
3.1 Terminology . 50

3.1.1 Static library . 50
3.1.2 Shared library . 50

3.2 Creating a shared library . 52
3.2.1 Traditional AIX shared object . 52
3.2.2 New style shared object . 58
3.2.3 Importing symbols from the main program 60
3.2.4 Initialization and termination routines . 60

3.3 Using a shared library . 61
3.3.1 On the compile line. 61
3.3.2 Searching at runtime . 64
3.3.3 Shared or non-shared. 65
3.3.4 Lazy loading . 66

3.4 Run-time linking . 66
3.4.1 Rebinding system defined symbols. 70

3.5 Developing shared libraries . 70
3.5.1 The genkld command . 71
3.5.2 The slibclean command . 72
3.5.3 The dump command. 72
3.5.4 Using a private shared object . 75

3.6 Programatic control of loading shared objects 78
3.6.1 The dlopen subroutine . 78
3.6.2 The dlsym subroutine . 79
3.6.3 The dlclose subroutine . 79
3.6.4 The dlerror subroutine . 79
3.6.5 Using dynamic loading subroutines . 80
3.6.6 Advantages of dynamic loading . 80
3.6.7 Previous dynamic loading interface . 80
iv C and C++ Application Development on AIX

3.7 Shared objects and C++ . 81
3.7.1 Creating a C++ shared object . 82
3.7.2 Generating an exports file. 83
3.7.3 The -qmkshrobj option . 83
3.7.4 Mixing C and C++ object files . 84

3.8 Order of initialization . 84
3.8.1 Priority values. 85

3.9 Troubleshooting . 89
3.9.1 Link failures . 89
3.9.2 Runtime tips . 90

Chapter 4. Using C++ templates . 91
4.1 AIX template implementations . 91

4.1.1 Generated function bodies . 93
4.2 Simple code layout method . 94

4.2.1 Disadvantages of the simple method . 94
4.3 Preferred template method . 96

4.3.1 The -qtempinc option . 97
4.3.2 Contents of the tempinc directory . 98
4.3.3 Forcing template instantiation . 99

4.4 Shared objects with templates . 100
4.4.1 Templates and makeC++SharedLib . 101
4.4.2 Templates and -qmkshrobj . 102

4.5 Virtual functions . 103

Chapter 5. POSIX threads . 105
5.1 Designing threaded application with pthreads. 105

5.1.1 Threads and UNIX processes . 105
5.1.2 Lightweight process -LWP . 109
5.1.3 Thread scheduling . 112
5.1.4 Synchronization . 116
5.1.5 Signals and threads . 126
5.1.6 Software models. 127
5.1.7 Performance considerations . 130

5.2 Implementing threaded applications on AIX 132
5.2.1 Compiling and linking . 132
5.2.2 Thread model and tuning . 134
5.2.3 Pthread creation and handling . 137

5.3 Examples . 146
5.3.1 Supported POSIX API . 150
5.3.2 Thread-safe and reentrant functions . 152
5.3.3 Inspecting a process and its kernel threads 155

5.4 Program parallelization with compiler directives 156
v

5.4.1 IBM directives. 156
5.4.2 OpenMP directives . 160

Chapter 6. Making our programs run faster . 163
6.1 Measuring tools . 163
6.2 About the examples . 165

6.2.1 What to expect from example timing . 166
6.2.2 Run the examples on your machine . 167

6.3 Timing a typical program . 168
6.4 Useful basic compiler options . 170
6.5 Profiling your programs . 171

6.5.1 Profiling with tprof. 171
6.5.2 Other profilers . 178

6.6 Optimizing with the -O option . 179
6.6.1 Optimizing at higher levels . 182
6.6.2 Optimizing further with -qipa . 186
6.6.3 Doing even better with -qinline . 188
6.6.4 Space/time trade-off for data . 189
6.6.5 Light adaptation to a machine with -qtune. 199
6.6.6 Heavy adaptation to a machine with -qarch 199
6.6.7 Combining -qarch and -qtune . 201
6.6.8 Removing redundant code from executables with -qfuncsect . . 201

6.7 Reworking a program to use multiple processors 206
6.7.1 Know your system . 206
6.7.2 Know your program . 208
6.7.3 The gentle art of threading . 208
6.7.4 Our final program . 213
6.7.5 A good example . 214
6.7.6 A bad example . 215
6.7.7 Deciding when to use threads. 215

6.8 Threads versus forks . 216
6.8.1 Putting it all together. 220
6.8.2 The effects of scope and M:N ratio . 221

6.9 Malloc multiheap . 225
6.9.1 Using malloc multiheap. 226
6.9.2 Parameters of malloc multiheap . 228

6.10 The stride effect . 233
6.10.1 An counterintuitive consequence . 236

6.11 A summary of our best results . 238

Appendix A. Special notices . 241

Appendix B. Related publications . 245
B.1 IBM Redbooks . 245
vi C and C++ Application Development on AIX

B.2 IBM Redbooks collections. 245
B.3 Other resources . 245
B.4 Referenced Web sites. 245

How to get IBM Redbooks . 247
IBM Redbooks fax order form . 248

Index . 249

IBM Redbooks review . 259
vii

viii C and C++ Application Development on AIX

Figures

1. IPC communication thorough kernel . 32
2. IPC communication through shared memory. 32
3. 32 bits segment register addressing . 33
4. 32 bit process-view of system virtual memory space. 34
5. Default process private data area . 44
6. Extended process private data area . 45
7. Executables created using static library and shared library. 51
8. Sample development directory structure . 63
9. Illustration of objects in fish.o and animals.o . 86
10. Stack template declaration. 92
11. Stack template member function definition . 93
12. Single-thread process . 106
13. Multi-threaded process . 106
14. M:1 thread model . 110
15. 1:1 thread model . 111
16. M:N thread model . 112
17. State transitions for a common multiplexed thread 114
18. Context switch example . 115
19. Master/slave print model . 129
20. Producer/consumer model. 130
21. Thread-specific data array . 141
22. Different versions of time command . 164
23. Sample timing functions. 165
24. What to expect from an optimization . 167
25. The matrix.c sequential matrix multiplication program. 169
26. Profiling a program with tprof . 172
27. Contents of __h.matrix.c . 173
28. The __t file shows execution time of instructions in the source program. 174
29. profil.c: Timing some typical C instructions . 176
30. The output of profil.c . 177
31. Using prof. 179
32. Using gprof. 179
33. Improvement with optimization . 179
34. Optimized profil.c . 181
35. A script to compare optimization options . 183
36. Comparison of compile times. 184
37. Comparison of execution times . 185
38. Example code for -qipa . 186
39. Effect of the -qipa option . 187
40. The -qinline option gives the best results here . 188
© Copyright IBM Corp. 2000 ix

41. A structure mixing char, int, and double. 190
42. A program to investigate how variables in a structure are aligned 191
43. The different layouts for a structure according to alignment options 192
44. Memory scattering according to alignment options.. 193
45. An inherently inefficient structure. 195
46. Rearranging the structure . 195
47. Initializing 10,000 structure elements. 197
48. Initializing 10 million elements . 197
49. Layout for the reworked structure . 198
50. The -qarch option used with matrix.c . 201
51. A typical C++ function using a stack template . 202
52. stack.cpp: A program calling all the functions.. 203
53. testfuncsect: A script to test the -qfuncsect option. 203
54. Not using the -qfuncsect option . 204
55. Using the -qfuncsect option . 205
56. Fast inquiry about the system with sysconf() . 207
57. The sysconf() results . 207
58. Computing the matrix with many threads. 209
59. Core computation. 210
60. Computing one line of the result matrix . 210
61. We have to wait for the completion of all threads 212
62. Testing the return code at thread creation time . 212
63. Testing the return code a thread completion time 213
64. A program to time fork() . 217
65. A program to time pthread_create(). 218
66. A script to explore the effect of SIZE . 219
67. Running the threadsforks script . 219
68. Creation times for threads versus forks . 220
69. Our progress so far . 221
70. A script to test various M:N ratios together with the scope 222
71. Effect of M:N ratio when running the matrix.c program 222
72. Influence of M:N ratio on mathread3.c. 223
73. Slow compute_line() . 223
74. M:N ratio influence on execution time for the modified program 224
75. Execution time against M:N ratio for the new program 225
76. A program making a lot of calls to malloc . 227
77. malloc.c: Execution time versus number of heaps. 229
78. malloc.c: Details from 3 to 16 heaps . 230
79. Better parallelism and better behavior with considersize. 231
80. The considersize option enhance data locality . 233
81. stride.c: accessing a matrix in row-wise order (row by row) 234
82. stride2.c: accessing a matrix column-wise order (column by column). . . 235
83. sieve1.c: The sieve of Eratosthenes . 236
x C and C++ Application Development on AIX

Tables

1. IBM C compilers for AIX. 7
2. Recommendation based on the code to be maintained. 11
3. C++ compiler products. 11
4. C for AIX, Version 5 packages. 13
5. VisualAge C++ Professional for AIX, Version 5 packages. 13
6. License certificate locations . 21
7. Compiler driver extensions . 23
8. Limitations of shmap on AIX . 35
9. The -G option . 67
10. Order of initialization of objects in prriolib.a . 88
11. AIX POSIX thread conformance . 132
12. AIX 4.3 C driver programs . 133
13. Attributes of pthread_attr_t type. 137
14. Functions for setting pthread_attr_t attributes . 138
15. Cancellation point functions . 144
16. Functions where cancellation can occur . 145
17. POSIX thread API functions supported on AIX 4.3 150
18. POSIX API functions not supported on AIX 4.3 . 152
19. Thread-safe functions in AIX 4.3 . 154
20. Non thread-safe functions in AIX 4.3 . 154
21. Regular expressions for countable loops. 157
22. IBM pragma supported by VA C++ compiler, Version 5.0 159
23. OpenMP pragmas supported by VA C++ compiler, Version 5.0 161
24. Trying some enhancements by hand. 175
25. Real execution tick count . 177
26. Some effects of the -O option . 181
27. Comparing optimization levels . 183
28. Important -qipa optional parameters . 187
29. Some inlining options. 189
30. Compilation time, size of code, execution times 189
31. Alignment options supported by the compiler . 190
32. Offsets of structure variables according to alignment options 192
33. Time measurements for our sample program according to alignment. . . 194
34. Comparing the size of each structure definition 195
35. Comparing the results for each structure definition 195
36. Advantages of using -qfuncsect. 205
37. Executing mathread3.c with different optimization options 220
38. Impact of the considersize option . 232
39. sieve1.c: Execution times . 237
40. sieve2.c: Execution times . 237
© Copyright IBM Corp. 2000 xi

41. The optimization how to . 238
xii C and C++ Application Development on AIX

Preface

This IBM Redbook is intended to help experienced UNIX application
developers who are new to the AIX operating system. The book explains, in
detail, the features of the AIX operating system and IBM compilers that are
most often misunderstood by developers, primarily C++ templates and the
creation and use of shared libraries and shared memory segments.

In addition to discussing the topics that can sometimes prove troublesome,
this book explores some of the features of AIX for measuring and improving
application performance, such as profiling and threading, along with memory
facilities.

This book contains a brief history of the different IBM C and C++ compiler
products that are available for AIX, along with installation, configuration, and
co-existence tips.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Austin, Center.

Richard Cutler is an AIX and RS/6000 Technical Specialist at the ITSO,
Austin Center. Before joining the ITSO, he worked in the RS/6000 Technical
Center in the UK where he assisted customers and independent software
vendors to port their applications to AIX.

Francois Armingaud is a consultant in IBM France. He entered IBM in 1978
after six years of teaching Computer Science in France (Ecole des Mines de
Nancy, Ecole des Mines de Paris) and abroad (Ecole Polytechnique of
Algiers). He has 12 years of experience in the AIX/Unix field since 1987. He
holds a degree in Engineering from Ecole des Mines de Nancy. His areas of
expertise include AIX, Linux, C/C++ programming, and system and network
administration.

Eduardo Conejo is an I/T Specialist in IBM Brazil. He as a degree in
Mechanical Engineering from Universidade Estadual de Campinas -
UNICAMP. He joined IBM in 1997, and has 10 years of industry experience.
His specialist subjects include real-time programming and multi-threaded
applications.

Kumaravel Nagarajan is an I/T Specialist in IBM India. He has over three
years experience in C and C++ development on UNIX systems. He has an
© Copyright IBM Corp. 2000 xiii

Engineering degree in Electrical and Electronics and a post-graduate degree
in Management (Systems). His areas of expertise include shared libraries,
threading concepts, and AIX system administration.

Thanks to the following people for their invaluable contributions to this project:

Mark Changfoot
IBM Toronto

Rene Matteau
IBM Toronto

Paul Pacholski
IBM Toronto

Derek Truong
IBM Toronto

John Owczarzak, Editor
ITSO Austin

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks review” on page 259 to
the fax number shown on the form.

• Use the online evaluation form found at ibm.com/redbooks

• Send your comments in an Internet note to redbook@us.ibm.com
xiv C and C++ Application Development on AIX

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. C and C++ compilers on AIX

Over the years, IBM has offered a variety of compiler products to perform the
compilation of C and C++ programs on AIX. These C and C++ compilers have
evolved over time and can be tracked by their different version numbers. The
C and C++ compilers introduced new compiler features to take advantage of
the functionality included in new releases of the AIX operating system.

1.1 Compiler product similarities

All of the IBM C and C++ compiler products for AIX Version 4 share some
similar characteristics, in particular, the way the products are installed on the
system and the configuration options available when using the products.

1.1.1 Multiple command line drivers
Each compiler product, with the exception of VisualAge C++ Version 4.0, has
multiple command line driver interfaces available, each causing a different set
of default arguments to be used. For example, the C compiler products
provide commands, such as cc, xlc, c89, cc_r, and so on. These commands
are all links to a single compiler core, which uses a specific set of options
depending on the name of the command used to invoke it.

In addition to the default invocation commands provided when the compiler is
installed, the system administrator can create new commands, which result in
the compiler being invoked with a customized set of default options. This
feature is controlled by the compiler configuration file, which lists the options
to be used for each invocation command. The exact name of the configuration
file differs between the compiler products, but generally has a name of the
form /etc/comp.cfg, where comp indicates the compiler product that uses the
configuration file.

1.1.1.1 Finding the compiler drivers
The earlier versions of the compiler products automatically created symbolic
links in /usr/bin for each invocation command supplied by the compiler. For
example, this means that if a user has the directory, /usr/bin, as part of their
PATH environment variable (which it is by default), they need only type cc on
the command line to invoke the /usr/bin/cc command.

The later versions of the compiler products are designed to co-exist with
earlier versions, and, as a consequence, they do not create the symbolic links
in /usr/bin when they are installed. This means that a user may have trouble
© Copyright IBM Corp. 2000 1

invoking the compiler on a system that only has a new version compiler
product installed. There are two solutions available in this instance:

• When logged in as the root user, invoke the replaceCSET command
supplied with the compiler. This will create appropriate symbolic links in
/usr/bin to the compiler driver programs.

• Alter the PATH environment variable to add the directory that contains the
compiler driver programs. For example:

PATH=/usr/vac/bin:$PATH; export PATH

The second solution should be used if two compilers are installed on a
system since it allows each user to choose which version of the compiler they
wish to use. If the system only has one compiler installed, it makes sense to
use the first solution. If required, the root user can reverse the action of the
replaceCSET command by using the restoreCSET command, which is also
supplied with the compiler. The exact location of the replaceCSET and
restoreCSET commands will depend on the version of the compiler you are
using.

1.1.2 Installation directory
The main components of the compiler product are installed on the system in
the /usr file system. The exact directory used depends on the compiler
product. Table 1 on page 7 shows the location of this directory for C compiler
products. Table 3 on page 11 shows the location of this directory for C++
compiler products.

1.2 IBM C compilers

This section describes the various IBM C compilers for AIX. The details
provided are limited to compatibility issues of the various compilers with the
different versions of the AIX operating system. This information can help in
deciding which version of a compiler product should be used in a given
situation, based on the version of AIX that will be used. The information can
also help avoid problems when upgrading a compiler product to a newer
version.

AIX Version 3.2 included a bundled C compiler as part of the operating
system. This compiler was known as XLC Version 1.3. When AIX Version 4.1
was introduced, the compiler product was unbundled from the operating
system and offered for sale as a separately orderable product. This redbook
covers the C and C++ compiler products for AIX Version 4.1 and later
versions.
2 C and C++ Application Development on AIX

1.2.1 IBM C for AIX, Version 3
The IBM C for AIX Version 3 product was the first C compiler product from
IBM for AIX Version 4.1. The Version 3 in the name of the product specifies
the version number of the compiler product rather than the version of the AIX
operating system the compiler is compatible with.

Initially released as Version 3.1.0, this compiler evolved over time with the
addition of Program Temporary Fixes (PTFs) to become C for AIX Version
3.1.4, which was supported on AIX Version 4.1 and AIX Version 4.2. This
compiler was not supported on AIX Version 3.2 and is not supported on AIX
Version 4.3.

C programs written using C Set ++ Version 2 and XL C Version 1.3 on AIX
Version 3.2 are source compatible with C for AIX Version 3, with some
exceptions to detect invalid programs or areas where results are undefined.
These exceptions are documented in the product README file.

The compiler product itself is installed in /usr/lpp/xlC, and symbolic links are
created in /usr/bin for the command line driver programs, for example,
/usr/bin/cc and /usr/bin/c89. The default PATH environment variable means
that most users need only type cc on the command line to invoke the
/usr/bin/cc driver program, which, in turn, is a symbolic link to the driver
/usr/lpp/xlC/bin/xlC. The compiler configuration file is /etc/xlC.cfg.

The C for AIX Version 3 compiler product uses the NetLS licensing system to
control usage of the product.

This product has been withdrawn from marketing and is no longer available
for purchase. Support for this product has also been discontinued. Current
users of this product are encouraged to upgrade to the IBM C for AIX Version
5.0 compiler product, described in Section 1.2.5, “IBM C for AIX, Version 5.0”
on page 6.

1.2.2 IBM C for AIX, Version 4.1
A new version of the C compiler product was introduced with AIX Version
4.3.0. The compiler product, IBM C for AIX Version 4.1, had a number of new
features, including new optimization routines for improved execution
performance, new inter-procedural analysis tools, precompiled headers for
improved compiler performance, improved memory management, and
improved prototyping of programs. This version of the compiler was
supported on AIX Version 4.1.4, AIX Version 4.2 and AIX Version 4.3.
Chapter 1. C and C++ compilers on AIX 3

C programs written using either Version 2 or 3 of IBM C Set ++ for AIX,
Version 3 of IBM C for AIX, or the XL C compiler component of AIX Version
3.2 are source compatible with C for AIX Version 4.1, with some exceptions to
detect invalid programs or areas where results are undefined.

Two important configuration differences introduced with this version of the
compiler are:

1. The compiler product is now installed under /usr/vac, rather than
/usr/lpp/xlC.

2. The installation process does not create symbolic links to the driver
programs from the /usr/bin directory. This is because the C compiler has
been designed to co-exist on a system that already has the previous
version of the C compiler or a version of the CSet++ compiler installed.

If the system does not have another version of the compiler installed, the
symbolic links in the /usr/bin directory can be created by invoking the
supplied command /usr/vac/bin/replaceCSET, which, as the name implies,
replaces the symbolic links to the CSet driver programs.

The compiler product also includes the /usr/vac/bin/restoreCSET command,
which can be used to reverse the actions of the replaceCSET command.

Alternatively, if multiple versions of the compiler exist, or if the user does not
want to create symbolic links in /usr/bin, the setting of the PATH environment
variable can be used to determine which compiler product is used.

For example, setting the PATH environment variable as follows:

PATH=/usr/vac/bin:$PATH; export PATH

will result in the C for AIX Version 4.1 compiler being used when the cc

command is invoked.

The compiler configuration file is /etc/vac.cfg.

The C for AIX Version 4.1 compiler uses the License Use Management (LUM)
licensing system to control usage of the product. Refer to Section 1.5,
“Activating the compilers” on page 16 for information on configuring the
licence system.

This product has been withdrawn from marketing and is no longer available
for purchase. Support for this product has also been discontinued. Current
users of this product are encouraged to upgrade to the IBM C for AIX Version
4 C and C++ Application Development on AIX

5.0 compiler product, described in Section 1.2.5, “IBM C for AIX, Version 5.0”
on page 6.

1.2.3 IBM C for AIX, Version 4.3
The IBM C for AIX Version 4.3 compiler product was introduced shortly after
the release of AIX Version 4.3.0 and the 64-bit hardware models of the
RS/6000 family. This version of the compiler was similar to the IBM C for AIX
Version 4.1 compiler, except that it added support for creating and debugging
64-bit application binaries for use on the 64-bit hardware. This version of the
compiler is installed under /usr/vac, and uses the /etc/vac.cfg configuration
file. If C for AIX Version 4.1 is already installed, installing C for AIX Version
4.3 will overwrite and upgrade the previous version.

The C for AIX Version 4.3 compiler uses the LUM licensing system to control
usage of the product. Refer to Section 1.5, “Activating the compilers” on page
16 for information on configuring the licence system.

This product has been withdrawn from marketing and is no longer available
for purchase. Support for this product has also been discontinued. Current
users of this product are encouraged to upgrade to the IBM C for AIX Version
5.0 compiler product, described in Section 1.2.5, “IBM C for AIX, Version 5.0”
on page 6.

1.2.4 IBM C for AIX, Version 4.4
The IBM C for AIX Version 4.4 compiler product is an improved version of the
previously released C for AIX Version 4.3. The main enhancement is that this
compiler was designed to exploit the RS/6000 Symmetric Multi-Processing
(SMP) architecture. It supports automatic parallellization of a C program as
well as explicit parallellization through a set of directives that enable the user
to parallelize selected sections of the application program. This version of the
C compiler is supported only by AIX Version 4.1.5 or later.

C programs written using either Version 2 or Version 3 of IBM C Set ++ for
AIX, the XL C compiler component of AIX Version 3.2, or previous versions of
the C for AIX Version 4.x compilers, are source compatible with C for AIX
Version 4.4, with some exceptions to detect invalid programs or areas where
results are undefined.

The compiler is installed under /usr/vac, and uses the /etc/vac.cfg
configuration file. If a previous version of C for AIX 4.x is installed, installing C
for AIX Version 4.4 will overwrite and upgrade the previous version.
Chapter 1. C and C++ compilers on AIX 5

The C for AIX Version 4.4 compiler uses the LUM licensing system to control
usage of the product. Refer to Section 1.5, “Activating the compilers” on page
16 for information on configuring the licence system.

This product will be withdrawn from marketing as of August 16th 2000, and
will not be available for purchase after that date. Support for this product will
be discontinued as of January 31st 2001. Current users of this product are
encouraged to upgrade to the IBM C for AIX Version 5.0 compiler product,
described in Section 1.2.5, “IBM C for AIX, Version 5.0” on page 6.

1.2.5 IBM C for AIX, Version 5.0
The C for AIX Version 5.0 compiler is the latest IBM C compiler product
available for AIX. It extends the existing symmetric multi-processing (SMP)
support available with C for AIX Version 4.4 by supporting the OpenMP
industry specification. OpenMP provides a model for parallel programming
that allows a program to be portable across shared memory architectures
from different vendors by using a common set of application program
interfaces. The compiler generates highly-optimized code for all RS/6000
processors and can provide run-time address checking to detect memory
errors.

This compiler is supported only by IBM AIX Version 4.2.1 or later. Also, note
that 64-bit applications will run only on AIX Version 4.3 and later when
running on 64-bit hardware.

C programs written using Version 3 or Version 4 of IBM C for AIX are source
compatible with IBM C for AIX, Version 5.0. C programs written using either
Version 2 or 3 of IBM Set ++ for AIX or the XL C compiler component of AIX
Version 3.2 are source compatible with IBM C for AIX, Version 5.0 with
exceptions to detect invalid programs or areas where results are undefined.

This version of the compiler is installed under /usr/vac and uses the
/etc/vac.cfg configuration file. If C for AIX Version 4.x is installed on a system,
installing C for AIX Version 5.0 will overwrite and upgrade the previous
version.

The C for AIX Version 5.0 compiler uses the LUM licensing system to control
usage of the product. Refer to Section 1.5, “Activating the compilers” on page
16 for information on configuring the licence system.
6 C and C++ Application Development on AIX

1.2.6 C compiler summary
Table 1 summarizes the various versions of IBM C compiler products for AIX.

Table 1. IBM C compilers for AIX

1.3 IBM C++ Compilers

This section describes the various IBM C++ Compilers for AIX. The details
provide here are, again, limited to compatibility issues of the various
compilers with the different versions of the AIX operating system. This
information can help decide which C++ Compiler product to use for a
particular project, based on the target version of AIX, and the nature of the
C++ source code being compiled.

1.3.1 IBM C Set ++ for AIX, Version 3
The IBM C Set ++ for AIX, Version 3 product was the first C++ compiler
product from IBM for AIX, Version 4.1. The Version 3 in the name of the
product specifies the version of the compiler product rather than the version
of the AIX operating system the compiler is compatible with. The C Set ++ for
AIX Version 3 product is, in effect, an extension of the C for AIX Version 3
compiler. An alternative view is that the C for AIX Version 3 compiler is a
subset of the C Set ++ for AIX compiler.

This compiler was initially released as Version 3.1.0, and evolved over time
with the addition of Program Temporary Fixes (PTFs) to become C Set ++ for
AIX Version 3.1.4, which was supported on AIX Version 4.1 and AIX Version
4.2. It was not supported on AIX Version 3.2 and is not supported on AIX
Version 4.3.

C++ programs written using C Set ++ Version 2 on AIX Version 3.2 are source
compatible with C Set ++ for AIX Version 3, with some exceptions to detect

Compiler Installation
directory

Configuration
file

Supported
AIX levels

Licensing
Method

Drivers in
/usr/bin

C for AIX, Version 3 /usr/lpp/xlC /etc/xlC.cfg 4.1, 4.2 NetLS Yes

C for AIX, Version 4.1 /usr/vac /etc/vac.cfg 4.1.4, 4.2,
4.3

LUM No

C for AIX, Version 4.3 /usr/vac /etc/vac.cfg 4.1.5, 4.2,
4.3

LUM No

C for AIX, Version 4.4 /usr/vac /etc/vac.cfg 4.2, 4.3 LUM No

C for AIX, Version 5.0 /usr/vac /etc/vac.cfg 4.2, 4.3 LUM No
Chapter 1. C and C++ compilers on AIX 7

invalid programs or areas where results are undefined. These exceptions are
documented in the product README file.

The compiler product itself is installed in /usr/lpp/xlC, and symbolic links are
created in /usr/bin for the command line driver programs, for example,
/usr/bin/xlC. The default PATH environment variable means that most users
need only type xlC on the command line to invoke the /usr/bin/xlC driver
program, which, in turn, is a symbolic link to the driver /usr/lpp/xlC/bin/xlC.
The compiler configuration file is /etc/xlC.cfg.

The C Set ++ for AIX Version 3 compiler product uses the NetLS licensing
system to control usage of the product.

This product has been withdrawn from marketing and is no longer available
for purchase. Support for this product has also been discontinued. Current
users of this product are encouraged to upgrade to IBM VisualAge C++
Professional for AIX Version 5.

1.3.2 IBM C and C++ Compilers, Version 3.6
The official name of this product is IBM C and C++ compilers for AIX, OS/2,
and Windows NT. The product is part of a family of related compilers, with
versions available for each of the mentioned platforms. The product is
sometimes referred to as the Portapak compiler, or more commonly, C Set ++
Version 3.6. The AIX Version of the product is the follow on to C Set ++
Version 3 for AIX.

The product offered a number of facilities to assist in the development of
cross-platform applications, where the same source code is used on multiple
platforms. The product includes a rich set of IBM class libraries, memory
management routines, graphical debuggers, and resource tools for creating
and compiling resources and converting between platform formats. The C
compiler component of the product can produce either 32-bit or 64-bit
executables when used on AIX, Version 4.3.

The product is supported on AIX, Version 4.1.4 or later.

C++ programs written using Version 3 of C Set ++ for AIX, and earlier, are
source compatible with the C++ compiler of C Set ++ for AIX, Version 3.6.

As with the other post Version 3.1 compiler products, the compiler command
drivers are not created in /usr/bin when the product is installed.

The installation directory is /usr/ibmcxx, and the configuration file is
/etc/ibmcxx.cfg.
8 C and C++ Application Development on AIX

The product uses the LUM license management system to control usage of
the product. Refer to Section 1.5, “Activating the compilers” on page 16 for
information on configuring the licence system.

This product has been withdrawn from marketing and is no longer available
for purchase. Support for this product has also been discontinued. Current
users of this product are encouraged to upgrade to IBM VisualAge C++
Professional for AIX Version 5.

1.3.3 IBM VisualAge C++ Professional for AIX, Version 4
VisualAge C++ Professional for AIX, Version 4 is a powerful rapid application
development (RAD) tool for building C and C++ applications. This
heterogeneous RAD environment provides:

• Tools, including a graphical debugger

• Visual Builder, Data Access Builder

• Incremental compiler and linker

• A rich set of class libraries

• Online help and a powerful full-text search engine

VisualAge C++ Professional provides a standards-compliant C++ compiler.
Its incremental development environment and visual programming tools
improve programmer productivity.

This product features an incremental compiler and linker and, as such, is not
ideally suited for use when working with existing application code that uses
Makefiles or for a development environment that maintains a single source
tree for multiple platforms and uses Makefiles. For this reason, the product
includes a copy of the IBM CSet ++, Version 3.6 compiler for use in a batch
compile environment.

This compiler product runs on IBM AIX, Version 4.1.5, or later, for RS/6000.

C++ programs written using Version 3.6 of IBM C and C++ compilers, and
earlier, are source compatible with the C++ compiler component of VisualAge
C++ Professional for AIX, Version 4.
Chapter 1. C and C++ compilers on AIX 9

This product is expected to be withdrawn from marketing in late 2000, and will
no longer be available for purchase. Support for this product will be
discontinued as of January 31st 2001. Current users of this product are
encouraged to upgrade to IBM VisualAge C++ Professional for AIX Version 5.

1.3.4 IBM VisualAge C++ Professional for AIX, Version 5
VisualAge C++ Version 5.0 features a fully incremental compiler and a new
batch compiler. The Integrated Development Environment (IDE) operates with
the incremental compiler when used in the AIX Common Desktop
Environment (CDE). The batch compiler is run from the command line and is
suitable for use in a development environment that uses Makefiles. Both
compilers support the latest ANSI/ISO C++ language standard and the latest
version (Version 5) of the IBM Open Class library.

The main differences between Version 4 and Version 5 of this product are:

• Version 5 supports multiple codestores in a single project.

• Version 5 is a single product featuring both batch and incremental
compilers.

The graphical interface of Version 5 has been redesigned with a host of
helpful features. Version 5 has improved optimization techniques and
provides the programmer with effective and efficient ways handling of C++
object code. Also, this product allows the developer to carry out performance
analysis to determine the applications usage of system resources.

This product is supported on IBM AIX Version 4.2.1 and later versions for
RS/6000 hardware.

As described above, this version of VisualAge features an incremental
compiler. The implications of this for productivity and the code are
impressive, but if the application is moving from a batch environment, do
spend time with the application to adapt to the VisualAge products. For
example, makefiles cannot be processed directly by the incremental
compiler.

But, once the migration is done, then the advantages of VisualAge products
are very impressive. This then would reduce the amount of time and
memory required to do each build as well as the time spent on rebuilding
when some changes are made to the source files.

Note
10 C and C++ Application Development on AIX

C++ programs written using Version 4 of IBM VisualAge Professional for AIX,
and IBM C and C++ compilers, Version 3.6, and earlier, are source
compatible with the VisualAge C++ Professional for AIX, Version 5.

Since the product features a batch compiler in addition to the incremental
compiler, there are situations where one is more suitable than the other. Table
2 offers advice on choosing between them.

Table 2. Recommendation based on the code to be maintained

The C compiler component of VisualAge C++ Professional, Version 5 is
provided by the IBM C for AIX, Version 5 compiler.

1.3.5 C++ Compiler summary
Table 3 summarizes the various IBM C++ compiler products for AIX.

Table 3. C++ compiler products

Type of project IBM recommends

Writing new code Incremental compiler

Maintaining projects developed with VisualAge C++
Version 4.0

Incremental compiler

Maintaining existing code from a batch environment Batch compiler

Porting existing code from another IBM platform Incremental compiler

Porting existing code from a non-IBM platform Batch compiler

Developing applications for deployment on multiple
flavors of UNIX

Batch compiler

Developing applications using C OpenMP support,
SMP explicit directives or automatic parallellization

Batch compiler

Compiler Installation
directory

Configuration
file

Supported
AIX levels

Licensing
Method

Drivers in
/usr/bin

C Set ++ for AIX
Version 3

/usr/lpp/xlC /etc/xlC.cfg 4.1, 4.2 NetLS Yes

IBM C and C ++
compilers
Version 3.6

/usr/ibmcxx /etc/ibmcxx.cfg 4.1.4, 4.2, 4.3 LUM No

VisualAge C++
Professional for
AIX, Version 4

/usr/vacpp /etc/vacpp.cfg 4.1.5, 4.2, 4.3 LUM No
Chapter 1. C and C++ compilers on AIX 11

1.4 Installation of compiler products

The installation of the latest compiler products (C for AIX, Version 5 and
VisualAge C++ Professional for AIX, Version 5) is a very simple task. There
are a number of steps that need to be performed to end up with correctly
installed and working compilers.

1.4.1 Install compiler filesets
The first step in the installation process is to install the compiler product
filesets onto the system. The filesets to be installed will vary, depending on
the compiler product and the desired configuration.

1.4.1.1 Selecting required filesets
The compiler products are delivered on CD-ROM media and are
accompanied with a licence certificate for the number of licences purchased.
The CD-ROM media includes the compiler filesets along with a number of
other filesets, some of which are optionally installable, and some of which are
co-requisites of the compiler filesets and are installed automatically. Table 4
on page 13 lists the main packages on the C for AIX, Version 5 CD-ROM

VisualAge C++
Professional for
AIX, Version 5

/usr/vacpp /etc/vacpp.cfg
/etc/vac.cfg

4.2.1, 4.3 LUM No

Compiler Installation
directory

Configuration
file

Supported
AIX levels

Licensing
Method

Drivers in
/usr/bin
12 C and C++ Application Development on AIX

media, and Table 5 lists the main packages on the VisualAge C++
Professional for AIX, Version 5 CD-ROM media.

Table 4. C for AIX, Version 5 packages

Table 5. VisualAge C++ Professional for AIX, Version 5 packages

Package name Description

IMNSearch Search engine for HTML documentation

idebug Debugger with graphical user interface

memdbg Memory debugging tools

vac C compiler

xlC C++ library (required by compiler executables)

xlsmp Parallelization runtime component

Package name Description

IMNSearch Search engine for HTML documentation

idebug Debugger with graphical user interface

ipfx Information Presentation tool (used for viewing manuals)

memdbg Memory debugging tools

vac C compiler

vacpp.Dt Desktop integration

vacpp.cmp.batch Batch (command line) C++ compiler

vacpp.cmp.incremental Incremental C++ compiler

vacpp.cmp.C C compiler integration

vacpp.dax Data access builder

vacpp.ioc IBM Open Class Library

vacpp.lic Licence files

vacpp.memdbg C++ memory debugging tools

vacpp.rescmp Resource compiler

vacpp.vb Visual Builder

vatools Additional C++ development tools

xlC.adt Additional C++ header files
Chapter 1. C and C++ compilers on AIX 13

In all cases, the target AIX system should already have the bos.adt.include
fileset installed, which contains the system provided header files. The other
filesets in the bos.adt package contain useful tools and utilities often used
during application development; so, it is a good idea to install the entire
package. Neither the bos.adt package or bos.adt.include fileset is installed by
default when installing AIX on a machine. If your system does not have the
filesets installed, you will need to locate your AIX installation media and
install them prior to installing the compilers since these filesets are AIX
version specific and are not supplied on the compiler CD-ROM product
media.

When installing the C for AIX, Version 5 product, installing the vac.C fileset
will automatically install the minimum of additional required filesets. The
additional filesets you may wish to install are the documentation filesets.

When installing the VisualAge C++ Professional for AIX, Version 5 product,
the choice of filesets will depend on whether you wish to install the batch
(command line) C++ compiler, incremental C++ compiler, C compiler, or a
combination of the three.

For simple C++ command line compiles, installing the vacpp.cmp.batch fileset
will automatically include the minimum required filesets. Additional filesets
can be selected, depending on the type of development work being done,
such as vacpp.vb for installing the components used for building applications
using the Visual Builder component. Regardless of whether you are using the
incremental of batch compiler, ensure that the vacpp.lic fileset is installed, as
this contains the licence files required when activating the compiler.

Regardless of the product or required configuration, the filesets can be
installed using one of two methods discussed in the following sections.

1.4.1.2 Install using Web-based System Manager
If your system has a graphical user interface, the filesets can be installed
using the wsm command. The procedure is as follows:

1. Log in as the root user.

2. Insert the product CD in the CD-ROM drive.

3. Start the software installation taskguide with the following command:

xlC.rte C++ libraries

xlsmp Parallelization runtime component

Package name Description
14 C and C++ Application Development on AIX

wsm install

4. From the Software drop-down menu, select New Software
(Install/Update) > Install Additional Software (Custom).

5. In the Install Additional Software dialog, select the CD-ROM device as the
software source. Then, select to install specific software available from the
software source.

6. Select the Browse button to generate a list of software on the media.

7. Select the desired filesets from the dialog. Press and hold down the
Control button while pressing the mouse button to select one or more
additional objects.

8. Select the OK button once you have selected the desired filesets to return
to the Software Install dialog.

9. Select the OK button to start the install.

10.Select the YES button to continue with the install. A popup window will
appear and show the output of the installation process.

11.Select the Close button once the installation has completed.

1.4.1.3 Install using SMIT
If your system does not have a graphical user interface, or you do not wish to
use a Web-based System Manger, you can install the required filesets using
the smit command as follows:

1. Log in as the root user.

2. Insert the product CD in the CD-ROM drive.

3. Start the SMIT dialog with the following command:

smit install_latest

4. Press the F4 key to generate a list of possible input devices.

5. Select the CD-ROM device.

6. Press the F4 key to generate a list of available filesets.

7. Select the required filesets by highlighting them and then pressing the F7
key.

8. Press the Enter key once the required filesets have been selected.

9. Press the Enter key to start the install.

10.Press the Enter key to continue the install.

11.Press the F10 key to exit once the installation has completed.
Chapter 1. C and C++ compilers on AIX 15

1.5 Activating the compilers

Once you have installed the desired compiler filesets onto the system, the
next step in the process is to enroll a licence for the product into the LUM
system. This section describes the process of configuring a LUM server and
enrolling a product licence. If you already have a LUM environment enabled,
you may go directly to Section 1.7, “Enrolling a product license” on page 20.

1.5.1 What is LUM
IBM License Use Management Runtime, referred to hereafter as License Use
Management (LUM), contains the tools needed in an end user environment to
manage product licenses and to get up-to-date information about license
usage.

LUM is the replacement for the iFOR/LS and Net/LS systems that were used
in previous versions of AIX and with previous versions of the IBM compilers.

The LUM runtime is included with AIX, Version 4.3 and higher and is
automatically installed. A comprehensive description of the functionality of
LUM can be found in the LUM online documentation supplied on the AIX 4.3
product media in the ifor_ls.html.en_US.base.cli fileset. The documentation
fileset is not automatically installed when installing AIX; so, you will have to
obtain your AIX installation media in order to install it.

For AIX, Version 4.1 and AIX, Version 4.2 systems, you must obtain the
runtime and documentation filesets and manually install them. These filesets
are available from several resources:

• On the Web at:

http://www.software.ibm.com/is/lum

• Anonymous FTP from the server ftp.software.ibm.com. Log in with the
userid anonymous and enter your e-mail address as the password.
Change directory to software/lum/aix. The LUM run-time installation
images (ARK) are contained in the sub-directory “ark”. The LUM
documentation is contained in the sub-directory “doc”.

The compiler products can not be used immediately after installation. Prior
to invoking the compiler, a product licence must be enrolled with the
License Use Management (LUN) system.

Note
16 C and C++ Application Development on AIX

1.5.2 Configuring LUM
After installing the LUM runtime images, normally one or more LUM license
servers need to be configured. No license server needs to be configured if
the licensed product supplies a simple nodelock license certificate. Both the
C for AIX, Version 5 and VisualAge C++ Professional for AIX, Version 5
compiler products supply a simple nodelock license certificate.

The simplest method of licensing the latest compiler products is to use the
simple nodelock license certificate. When this is done, there is no need to
configure a LUM server; however, the installation of the certificate in large
numbers of machines can be cumbersome.

If you wish to use the simple nodelock certificate, you can skip directly to
Section 1.7, “Enrolling a product license” on page 20. If you wish to use the
additional functionality available when using a license server, then the first
step is to decide which server type is best suited for your environment.

There are two types of license servers:

1. Concurrent nodelock license server

2. Concurrent network license server

A concurrent nodelock license server supports concurrent nodelock product
licenses. A concurrent nodelock license is local to the node where the LUM
enabled product has been installed. It allows a limited number of
simultaneous users to invoke the enabled licensed product on the local
system.

A concurrent network license server supports concurrent network product
licenses. A concurrent network license is a network license that can
temporarily grant a user on a client system the authority to run a LUM
enabled product.

Either or both of the above license servers may be configured on a single
system. The number of concurrent users for the product is specified during
the enrollment of the product license certificate described in Section 1.7,
“Enrolling a product license” on page 20.

The advantage of using a concurrent nodelock license server is that the
server is installed on the same machine as the compiler, and, therefore, users
can obtain compiler licenses even if the machine is temporarily disconnected
from the network. The disadvantage, however, is that installation of licenses
is cumbersome in environments with a large number of client machines.
Chapter 1. C and C++ compilers on AIX 17

The main advantage of using a central network license server is that the
administration of product licenses is very simple. The disadvantage is that
client machines must be able to contact the license server in order to use the
licensed products.

Configuring LUM requires answering several questions on how you would like
to set up the LUM environment. It is recommended that users read the LUM
documentation supplied with the AIX product media prior to configuring LUM.

A LUM server can be configured in several different ways. You can issue
commands on the command line with appropriate arguments to configure the
LUM server. You can issue a command that starts a dialog and asks a
number of questions to determine the appropriate configuration, or you can
configure the server using a graphical user interface.

1.5.2.1 Configuring a nodelock server
For small numbers of client machines (typically 10 or less), using a nodelock
license server on each machine is the simplest method of configuring LUM.

Log in as the root user and perform the following commands to configure a
machine as a nodelock license server:

/var/ifor/i4cfg -a n -S a
/var/ifor/i4cfg -start

The first command configures the local machine as a nodelock license server
and sets the option that the LUM daemons should be started automatically
when the system boots. The second command starts the LUM daemons.

1.5.2.2 Using the interactive configuration tool
As an alternative to using the above commands, you can use the
/var/ifor/i4config interactive configuration script to perform the same actions.

1. Log in as userid root on the system where the license server will be
installed.

2. Enter cd /var/ifor. If this directory does not exist, then LUM has not been
installed.

3. Invoke the LUM configuration tool by entering the command, ./i4config.
This is the command line version of the LUM configuration tool.

4. Answer the LUM configuration questions as appropriate. The answers to
the configuration questions are dependent on the LUM environment you
wish to create.
18 C and C++ Application Development on AIX

The following are typical answers to the configuration questions of LUM in
order to configure both concurrent nodelock and concurrent network license
servers on a single system. You may change the various answers accordingly
to suit your preferred system environment. For details on configuring LUM,
please read the documentation that comes with LUM.

• Select 4 “Central Registry (and/or Network and/or Nodelock) License
Server” on the first panel.

• Answer y to “Do you want this system be a Network License Server too?”

• Select 2 “Direct Binding only” as the mechanism to locate a license server.

• Answer n to “Do you want to change the Network License Server ip port
number?”

• Answer n to “Do you want to change the Central Registry License Server
ip port number?”

• Answer n to “Do you want to disable remote administration of this Network
License Server?”

• Answer y to “Do you want this system be a Nodelock License Server too?”

• Select 1 “Default” as the desired server(s) logging level.

• Enter blank to accept the default path for the default log file(s).

• Answer y to “Do you want to modify the list of remote License Servers this
system can connect to in direct binding mode (both for administration
purposes and for working as Network License Client)?”

• Select 3 “Create a new list” to the direct binding list menu.

• Enter the hostname, without the domain, of the system you are configuring
LUM when prompted for the “Server network name(s).”

• Answer n to “Do you want to change the default ip port number?”

• Answer y to “Do you want the License Server(s) automatically start on this
system at boot time?”

• Answer y to continue the configuration setup and write the updates to the
i4ls.ini file.

• Answer y to “Do you want the License Server(s) start now?”

Both concurrent nodelock and concurrent network license servers should now
be configured on your system.

For more information on configuring and using LUM, refer to the LUM
documentation supplied with AIX. As an alternative, the LUM manual, Using
Chapter 1. C and C++ compilers on AIX 19

License Use Management Runtime for AIX, SH19-4346, can be viewed online
in PDF format at the following URL:

ftp://ftp.software.ibm.com/software/lum/aix/doc/V4.5.5/lumusgaix.pdf

1.6 Activating the LUM server

After configuring and starting the LUM server, you can enroll product
licenses. Before attempting to enroll a license, you must first ensure that the
LUM daemons are active. This can be done with the following command:

/var/ifor/i4cfg -list

Depending on the type of LUM server configured, the output will be similar to
the following:

i4cfg Version 4.5 AIX -- LUM Configuration Tool
(c) Copyright 1995-1998, IBM Corporation, All Rights Reserved
US Government Users Restricted Rights - Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.
Subsystem Group PID Status
i4llmd iforls 22974 active

If no subsystem is listed as active, then start them with the following
command:

/var/ifor/i4cfg -start

The only daemon that must be active is the Nodelock License Server
Subsystem (i4llmd) daemon. The other daemons that may be active
depending on your configuration are as follows:

• License Sever Subsystem (i4lmd)

• Central Registry Subsystem (i4gdb)

• Global Location Broker Data Cleaner Subsystem (i4glbcd)

1.7 Enrolling a product license

After LUM has been installed and configured on your system, the product
license certificates can be enrolled with the LUM license server. Three LUM
product license certificates are provided with each of the latest compiler
products:

1. Concurrent nodelock license certificate

2. Concurrent network license certificate
20 C and C++ Application Development on AIX

3. Simple nodelock license certificate

You should enrol the appropriate license certificate for the type of LUM
environment you have configured.

The locations of the license certificates for the compiler products are detailed
in Table 6.

Table 6. License certificate locations

1.7.1 Enrolling a concurrent license
To enroll a Concurrent Network or Concurrent Nodelock license certificate,
perform the following steps:

1. Log in as root on the system where the license server is installed.

2. Invoke the LUM configuration tool by entering the LUM Basic License Tool
command as follows:

/var/ifor/i4blt

The i4blt tool contains both a graphical user interface and a command line
interface. Note that the LUM daemons must be running before starting the
i4blt tool. Refer to Section 1.6, “Activating the LUM server” on page 20 for
information on how to check the status of the LUM daemons.

If the X11 runtime (X11.base.rte fileset) has been installed on your system,
the GUI version of the tool will be invoked. Otherwise, the command line
version will be invoked, and an error will occur since the appropriate
command line parameters were not specified.

The following are the instructions for both interfaces using the i4blt tool:

• Enrolling using the graphical user interface:

- Select the Products pull-down and click on Enroll Product item.

Compiler License Certificate Type Location

C for AIX Version 5 Concurrent Network /usr/vac/cforaix_c.lic

Concurrent Nodelock /usr/vac/cforaix_cn.lic

Simple Nodelock /usr/vac/cforaix_n.lic

VisualAge C++
Professional for AIX
Version 5

Concurrent Network /usr/vacpp/vacpp_c.lic

Concurrent Nodelock /usr/vacpp/vacpp_cn.lic

Simple Nodelock /usr/vacpp/vacpp_n.lic
Chapter 1. C and C++ compilers on AIX 21

- Click on the Import button. The Import panel should be displayed.

- In the Filter entry prompt, enter /usr/vacpp/*.lic if you are enrolling a
license for VisualAge C++ or /usr/vac/*.lic if you are enrolling a license
for C for AIX, and press Enter. This will show the various product
license files in the Files panel. The three license files for the product,
as detailed in Table 6, should be displayed.

- Select either the prod_c.lic or prod_cn.lic (where prod is either vacpp or
cforaix) license by clicking on the entry.

- Click OK. The Enroll Product panel should be re-displayed with
information regarding the product indicated.

- Click on the OK button of the Enroll Product panel. The Enroll Licenses
panel should be displayed.

- Fill in the information on the Administrator Information portion of the
panel (optional.)

- Fill in the number of valid purchased licenses of the product under
Enrolled Licenses in the Product information portion of the panel.
(mandatory.)

- Click on the OK button of the Enroll Licenses panel. The product
should be successfully enrolled. You may terminate the i4blt tool.

• Enrolling using the command line:

- From the required product license file, as detailed in Table 6, extract the
i4blt command from the top of the file.

- Replace number_of_lics from the command with the number of valid
purchased licenses of the product (mandatory.)

- Replace admin_name with the name of the administrator (optional.)

- Invoke this command as root from /var/ifor. The product should be
successfully enrolled.

1.7.2 Enrolling a simple nodelock license
Read the instructions at the top of the simple nodelock license certificate file.
In general, this type of license will be installed when no LUM system has
been configured. This means enrolling the license is simply a case of placing
the indicated license information line into the /var/ifor/nodelock LUM nodelock
file.
22 C and C++ Application Development on AIX

1.8 Invoking the compilers

Once a compiler product license has been enrolled, you are now ready to use
the compilers. As mentioned in Section 1.1.1.1, “Finding the compiler drivers”
on page 1, the compiler drivers are not installed in a directory that is
searched with the default PATH environment variable. There are a number of
methods of resolving this issue:

• If you do not have a previous version of the compiler installed, as the root
user invoke the replaceCSET script supplied with the compiler.

• Add the directory containing the compiler drivers to the default PATH
environment variable set in the /etc/environment configuration file.

• Add the directory containing the compiler drivers to the PATH environment
variable in each users .profile shell configuration file.

• Change the Makefiles used in your development environment to configure
the compiler macro to use the absolute path. For example:

CC=/usr/vac/bin/cc

Using the replaceCSET script is the preferred option since it resolves the
problem for all users after a simple single action by the root user.

1.8.1 Default compiler drivers
The Version 5 compiler products include a number of default compiler
configurations in the /etc/vac.cfg compiler configuration file. The default C++
command line driver is /usr/vacpp/bin/xlC. The three main C compiler
command line drivers are as follows:

/usr/vac/bin/cc Extended mode C compiler.

/usr/vac/bin/xlc ANSI C compiler, using UNIX header files.

/usr/vac/bin/c89 ANSI C compiler, using ANSI C header files.

There are a number of additional command line drivers available, each one
based on the basic cc, xlc and xlC drivers described above. They are
described in Table 7.

Table 7. Compiler driver extensions

Command extension Meaning

_r Use the UNIX98 threads libraries

_r7 Use the POSIX Draft 7 threads libraries

_r4 Use the POSIX Draft 4 (DCE) threads libraries
Chapter 1. C and C++ compilers on AIX 23

For example, to compile an ANSI C program using Draft 7 of the POSIX
threads standard, use the xlc_r7 compiler driver. To compile a C++ program
that uses 128 bit floating point values, use the xlC128 compiler driver.

1.9 Online documentation

The Version 5 compilers come with online documentation that is written in
HTML format. The default configuration makes it very easy to view the online
documentation on the machine on which it is installed.

1.9.1 Viewing locally
The procedure for viewing the documentation installed on the local machine
depends on a number of factors, including which compiler product is installed
and whether you are using the AIX Common Desktop Environment.

1.9.1.1 C compiler documentation
The C for AIX Version 5 compiler documentation is written in HTML format.
The HTML files are located in the /usr/vac/html directory. To view the
documentation, start the Netscape browser supplied with the AIX Bonus Pack
and point it at the following file:

/usr/vac/html/en_US/doc/index.htm

Before starting Netscape, ensure that the environment variable, SOCKS_NS,
is not set. For the search facility to work correctly, the browser must not have
proxy handling enabled for the localhost port. To disable proxy handling for
the local host when using Netscape:

1. Start the browser, then select Edit->Preferences from the menu.

2. Double-click Advanced in the Category tree.

3. Click Proxies in the Advanced subtree.

128 Enable 128 bit double precision floating point values and use
appropriate libraries.

128_r Enable 128 bit double precision floating point values and use
the UNIX98 threads libraries.

128_r7 Enable 128 bit double precision floating point values and use
the POSIX Draft 7 threads libraries.

128_r4 Enable 128 bit double precision floating point values and use
the POSIX Draft 4 (DCE) threads libraries.

Command extension Meaning
24 C and C++ Application Development on AIX

4. Click View at the Manual Proxy Configuration selection.

5. Type the following in the “Do not use proxy servers for domains beginning
with:” box:

localhost:49213

If there are other entries in the box, separate the new entry with a comma.

6. Click OK, then click OK to exit the Preferences window.

1.9.1.2 C++ compiler documentation
The VisualAge C++ Professional for AIX, Version 5 compiler documentation is
written in HTML format. The HTML files are stored in a single file in ZIP
format. The files are viewed using an HTML browser, which uses a cgi-bin
script to extract and view the required files. There is no need to manually
unpack the ZIP file.

If you are using the AIX CDE interface, the C++ compiler documentation can
be started by double-clicking on the Help Homepage icon in the VisualAge
C++ Professional folder of the Application Manager.

If you are not using the AIX CDE interface, or are logged in remotely from
another X11 capable display, then use the following command:

/usr/vacpp/bin/vacpphelp

The command starts the default Netscape browser (which is supplied on the
AIX Bonus Pack media) with the correct URL.

1.9.2 Viewing remotely
By default, it is not possible to view the online documentation from a remote
machine. It can be done in a simple way by logging in to the machine that has
the documentation installed, set the DISPLAY environment variable to use a
remote X11 display, then view the documentation by invoking the same
command used to view locally.

A better solution, particularly in larger environments or where remote clients
do note have X11 capabilities, is to configure the machine to allow remote
viewing of the documentation. This can be performed as shown in the
following sections.

1.9.2.1 Configuring the HTTP server
Suppose the machine that has the documentation filesets installed has a fully
qualified domain name of docs.ibm.com. The following example demonstrates
Chapter 1. C and C++ compilers on AIX 25

the steps performed on that machine to allow remote clients to view the
compiler documentation using their HTML browser:

1. Log in as the root user.

2. Perform the following command:

cp /etc/IMNSearch/httpdlite/httpdlite.conf /etc/IMNSearch/httpdlite/vacpp.conf

3. Edit /etc/IMNSearch/httpdlite/vacpp.conf, and make the following changes:

a. Change the HostName line from:

HostName localhost

to:

HostName docs.ibm.com

If the HostName line is not present, or has a comment symbol (#) at the
start of the line, then simply add the following line to the file:

HostName docs.ibm.com

b. Change the Port line from:

Port 49213

to:

Port 49214

c. If the version of IMNSearch.rte.httpdlite installed on your machine is
greater than 2.0.0.0, you will need to add one or more Allow lines to
specify which hosts are permitted to access the Web server. The Allow
statement has the following syntax:

Allow network-ip network-mask

A client is only granted access if the following rule is met: (& is a
bitwise AND operation)

client-ip & network-mask == network-ip & network-mask

For example, if you wanted machines with an address, such as 9.x.x.x,
to be able to access the help server, you would add the following
statement to vacpp.conf:

Allow 9.0.0.0 255.0.0.0

d. Save the file and exit the editor.

4. Edit the file /etc/inittab. There is a line that executes the httpdlite

command with a filename argument. The line is as follows:

httpdlite:2:once:/usr/IMNSearch/httpdlite/httpdlite -r
/etc/IMNSearch/httpdlite/httpdlite.conf >/dev/console 2>&1
26 C and C++ Application Development on AIX

Make a copy of this line immediately below the original line. In the new
line:

a. Change the first field from httpdlite to httpdlite2.

b. Change the part of the line that reads httpdlite.conf to vacpp.conf

The result should be as follows:

httpdlite2:2:once:/usr/IMNSearch/httpdlite/httpdlite -r
/etc/IMNSearch/httpdlite/vacpp.conf >/dev/console 2>&1

Save the file and exit from the editor.

5. Reboot the system or run the following command to start the second copy
of the ICS lite server:

/usr/IMNSearch/httpdlite/httpdlite -r
/etc/IMNSearch/httpdlite/vacpp.conf >/dev/console 2>&1

The steps described above configure an instance of an HTTP server to
respond on a specific port number to requests to access compiler
documentation.

The following sections detail the additional steps required to configure the
documentation for each compiler product to be served by the HTTP server.

1.9.2.2 Configuring the C++ documentation
The following steps are required to enable the online documentation for the
VisualAge C++ Professional for AIX, Version 5 compiler to be served by the
HTTP server:

1. Log in as the root user.

2. Change directory to /var/vacpp/en_US

3. Edit the file hgssrch.htm, and change the line:

<form ACTION="http://localhost:49213/cgi-bin/vacsrch.exe" METHOD="POST">

to:

<form ACTION="http://docs.ibm.com:49214/cgi-bin/vacsrch.exe" METHOD="POST">

Then, save the file and exit the editor.

4. Issue the following command:

/usr/IMNSearch/cli/imndomap -u "VACENUS"
"http://docs.ibm.com:49214/cgi-bin/vahwebx.exe/en_US/vacpp/Extract/0/"
"VisualAge C++"

5. Users can point their browser at the following URL to browse and search
the documentation:
Chapter 1. C and C++ compilers on AIX 27

http://docs.ibm.com:49214/cgi-bin/vahwebx.exe/en_US/vacpp/Extract/0/ind
ex.htm

1.9.2.3 Configuring the C compiler documentation
The following steps are required to enable the online documentation for the C
for AIX, Version 5 compiler to be served by the HTTP server:

1. Log in as the root user.

2. Change directory to /usr/docsearch/html.

3. Perform the following command:

ln -s /usr/vac/html/en_US/doc vac_doc

4. Edit the file /usr/vac/html/en_US/doc/hgssrch.htm and change the line:

<form ACTION="http://localhost:49213/cgi-bin/caixsrch.exe" METHOD="POST">

to:

<form ACTION="http://docs.ibm.com:49214/cgi-bin/caixsrch.exe" METHOD="POST">

Then, save the file and exit the editor.

5. Issue the following command:

/usr/IMNSearch/cli/imndomap -u "CENUS"
"http://docs.ibm.com:49214/vac_doc/" "C for AIX"

6. Users can point their browser at the following URL to browse and search
the documentation:

http://docs.ibm.com:49214/vac_doc/index.htm

1.10 Additional developer resources

IBM maintains many Web sites that provide useful information for developers
using the AIX platform. The most important ones are described in the
following sections.

1.10.1 AIX operating system documentation
The online documentation for the AIX operating system can be viewed at the
following URL:

http://www.rs6000.ibm.com/library

The site contains up-to-date versions of the HTML documentation supplied
with the AIX product media.

As new releases of the AIX operating system become available, they
generally add new functionality. As a developer, you might wish to use some
28 C and C++ Application Development on AIX

of the new functionality, but the decision to do so may also be based on the
minimum level of AIX required to use a particular feature. The IBM Redbook,
AIX Version 4.3 Differences Guide, SG24-2104, is updated with each new
release of AIX, and contains information on when particular features were
introduced.

1.10.2 Compiler product information
The latest compiler products both have support Web sites that contain useful
hints, tips, frequently asked questions, and links to other useful Web sites.
The support page for the VisualAge C++ Professional for AIX, Version 5
compiler is:

http://www-4.ibm.com/software/ad/vacpp/support.html

The support page for the C for AIX, Version 5 compiler is:

http://www-4.ibm.com/software/ad/caix/support.html

Information on the availability of IBM products for the AIX operating system,
along with details of when support for products will be withdrawn, is available
on the following Web site:

http://www.ibm.com/servers/aix/products/ibmsw/list/

1.10.3 PartnerWorld for developers
PartnerWorld for Developers is a worldwide program supporting developers
who build solutions using IBM technologies. The program covers all IBM
platforms, not just AIX. Its Web site contains a lot of useful information for the
AIX developer, including white papers, sample code, and technology articles.
It can be located on the Web at the following URL:

http://www.developer.ibm.com
Chapter 1. C and C++ compilers on AIX 29

30 C and C++ Application Development on AIX

Chapter 2. Shared memory

The Inter-Process Communication (IPC) facilities in the UNIX operating
system are used by processes to communicate with each other and to
synchronize their activities. Semaphores, signals, and message queues are
common methods of inter-process communication.

A memory mapping mechanism, also provided by the UNIX system, allows
programs to exchange data and synchronization by accessing the same
memory address space. A beneficial side-effect is that this mechanism
provides a very fast channel for data exchange when compared with other
kinds of IPC methods that are kernel related, which means ultimately that
they trigger system call operations.

The memory mapping technique can be used for:

Mapping files
Memory mapped files provide a mechanism for a process to
access files by directly incorporating file data into the process
address space. The use of mapped files can significantly reduce
I/O data movement since the file data does not have to be copied
into process data buffers, as is done by the read and write
subroutines. When more than one process maps the same file, its
contents are shared among them, therefore, providing a
low-overhead mechanism by which processes can synchronize
and communicate.

Mapping regions of memory
Mapped memory regions, also called shared memory areas, can
serve as a large pool for exchanging data among processes. The
available mechanics do not provide locks or access control among
the processes. Therefore, processes using shared memory areas
must set up a signal or semaphore control method to prevent
access conflicts and to keep one process from changing data that
another is using. Shared memory areas can be most beneficial
when the amount of data to be exchanged between processes is
too large to transfer with messages or when many processes
maintain a common large database.

Figure 1 on page 32 shows two generic processes, where process B reads
the raw data from the input file, executes some transformations on this data,
and sends it to the process A through an IPC mechanism, such as a pipe or
message queue.
© Copyright IBM Corp. 2000 31

Figure 1. IPC communication thorough kernel

By comparison, Figure 2 shows a more efficient implementation, where both
processes exchange data through a shared memory region. Another great
improvement, regarding performance, in this implementation is mapping the
input file that incorporates raw data directly into the process data space.

Figure 2. IPC communication through shared memory

2.1 Program address space

The UNIX system employs a memory management scheme that uses
software to extend the capabilities of the physical hardware. Because the
address space does not correspond one-to-one with real memory, the

process A process B

process

kernel

input fileoutput

IPC mechanics
(FIFO, message
queue, pipe..)

process

kernel

process A process B

input file

output

shared
memory

file
mapped
32 C and C++ Application Development on AIX

address space (and the way the system makes it correspond to real memory)
is called virtual memory.

The subsystems of the kernel and the hardware that cooperate to translate
the virtual addresses to physical addresses make up the memory
management subsystem. The actions the kernel takes to ensure that
processes share main memory fairly comprise the memory management
policy.

2.1.1 The physical address space of a 32-bit system
The hardware provides a continuous range of virtual memory, 0x0000000000000
to 0xFFFFFFFFFFFFF, for accessing data, which gives a total addressable space
with more than 1,000 terabytes. This range of memory requires a 52 bit
representation. As the memory access instructions generate addresses of 32
bits, a segment::offset mechanism is implemented to provide the mapping of
virtual to physical addresses. Figure 3 shows this.

Figure 3. 32 bits segment register addressing

This addressing scheme provides access to 16 segments of up to 256 MB
each. Each segment register contains a 24-bit segment ID that becomes a
prefix to the 28-bit offset, which together form the virtual memory address.

The process space is a 32-bit address space; that is, programs use 32-bit
pointers. However, each process or interrupt handler can address only the
system-wide virtual memory space (segment) whose segment IDs are in the
segment register. A process can access more than 16 segments by changing
registers rapidly.

segment offset

segment offset

4 28

32 bits program
address

24 28

52 bits virtual
memory address

segment register
Chapter 2. Shared memory 33

2.1.2 Segment Register addressing
The system kernel loads some segment registers in the conventional way for
all processes, implicitly providing the memory addressability needed by most
processes. These registers include two kernel segments and a shared library
text segment that are shared by all processes and whose contents are
read-only to non-kernel programs. There is also a read-only segment for the
machine code instructions (text) of a process, which is shared with other
processes executing the same program. There is also a private shared library
data segment that contains read-write library data, and a read-write segment
that is private to the process and contains the processes stack, initialized
data, and memory heap. The remaining segment registers may be utilized
using memory mapping techniques to provide more memory, or through
memory access to files according to access permissions imposed by the
kernel. Figure 4 shows a schematic representation of the segment registers
used in addressing in a 32 bit environment.

Figure 4. 32 bit process-view of system virtual memory space

2.2 Memory mapping mechanics

AIX Version 4.3 supports the following two interfaces for memory mapping:

Kernel

Program text

Private Data (r/w)

Shared library text

Kernel

Shared Library Data
(r/w)

0

1

2

3

15

14

13

12

0

224

up 256
Mb

Segment Registers

Virtual Memory Space

MEMORY

MAPPING
34 C and C++ Application Development on AIX

• The shmap interfaces

• The mmap interfaces

Both mechanisms address the same kind of applications, but normally shmap
is used to create and use shared memory segments from within a program,
and the mmap model is mostly used for mapping existing files into the
process address space, although it can be used for creating shared memory
regions as well as mapping files.

2.2.1 The shmap interfaces
AIX, Version 4 supports the shmap implementation of memory mapping
through the following functions:

shmat Attaches a shared memory segment to a process.

shmctl Controls shared memory operations.

shmget Gets or creates a shared memory segment.

shmdt Detaches a shared memory segment from a process.

disclaim Removes a mapping from a specified address range within a
shared memory segment.

ftok Provides the key that the shmget subroutine uses to create the
shared segment.

The shmat subroutine attaches a shared memory segment or a mapped file
to the address space of the calling process.

Some limits apply to shared memory capacity according to the version of AIX
in use. The limits are shown in Table 8.

Table 8. Limitations of shmap on AIX

In versions of AIX up to Version 4.2.0, there was a limitation on the number of
memory segments that could be attached using the shmat subroutine. A
process could attach no more than 10 shared memory regions at any one

AIX 4.2.1 AIX 4.3.1 AIX 4.3.2

Maximum segment
size

256 MB 2 GB 2 GB

Maximum number
of shared IDs

4096 131072 131072

Maximum address
space for mapping

2.75 GB 2.75 GB 2.75 GB
Chapter 2. Shared memory 35

time since each attached region consumed a segment register, regardless of
the size of the memory region being attached. This limitation sometimes
caused problems for developers who were porting applications to AIX from
other platforms that allowed more than 10 shared memory regions at a time,
and the architecture of the application required this functionality. In the past,
significant modifications would be required to the application to re-engineer
the design to work correctly with 10 or fewer shared memory regions.

For processes on AIX, Version 4.2.1 and later releases, an extended shmat
capability is available. This capability allows a process to attach more than 11
shared memory regions at any one time. This capability is enabled by setting
an environment variable as follows:

EXTSHM=ON

The segments can be of size from 1 byte to 256 MB, and they are attached
into the address space for the size of the segment. No source code
modifications are required to use this functionality; so, developers porting
applications to AIX are no longer restricted by the number of simultaneously
attached shared memory regions.

When this functionality is enabled, the attached shared memory regions are
tracked using an extra level of indirection rather than consuming a segment
register for each attached region.

2.2.1.1 Mapped memory with shmat
In the following, we show a step-by-step process for creating and using
mapped memory, or shared memory, segments:

1. Create a key to uniquely identify the shared segment. Use the ftok
subroutine to create the key. For example, to create the key, mykey, using
a project ID in the variable proj (integer type) and a file name of null_file,
use a statement, such as:

mykey = ftok(null_file, proj);

2. Either:

If a single shared memory region larger than 256 MB is used, the system
automatically works as if the EXTSHM environment variable is set, even if it
was not defined.

Note
36 C and C++ Application Development on AIX

a. Create a shared memory segment with the shmget subroutine. For
example, to create a shared segment that contains 4096 bytes and
assign its ID to an integer variable, mem_id, use a statement, such as:

mem_id = shmget(mykey, 4096, IPC_CREAT | o666);

b. Get a previously created shared segment with the shmget subroutine.
For example, to get a shared segment that is already associated with
the key, mykey, and assign the ID to an integer variable, mem_id, use a
statement, such as:

mem_id = shmget(mykey, 4096, IPC_ACCESS);

3. Attach the shared segment to the process with the shmat subroutine. For
example, to attach a previously created segment, use a statement, such
as:

ptr = shmat(mem_id);

In this example, the variable ptr is a pointer to a structure that defines the
fields in the shared segment. Use this template structure to store and
retrieve data in the shared segment. This template should be the same for
all processes using the segment.

4. Work with the data in the segment.

5. Detach from the segment using the shmdt subroutine:

shmdt(ptr);

6. If the shared segment is no longer needed, remove it from the system with
the shmctl subroutine:

shmctl(mem_id, IPC_RMID, ptr);

Next, we show a very simple example where one program, crshmen.c,
creates and sets some data in a shared memory segment, and a second
program, rdshmen.c, reads it.

The crshmen.c code is as follows:

#include <sys/shm.h> /* include the proper headers */
#include <stdio.h>

/* defines the struct type for*/
/* using in shared memory */

typedef struct idex_t{
char name[80];
char version[10];
int year;

} idex;
main()
{

Chapter 2. Shared memory 37

key_t mykey; /* key identifier variable */
idex *ptr; /* pointer to the struct */
int mem_id; /* memory ID */
int seg_id = 1; /* project identifier */

/* creates the key */
mykey = ftok(null_file, seg_id);

/* creates the shared segment */
mem_id = shmget(mykey, sizeof(idex), IPC_CREAT | S_IROT | S_IWOTH);

/* attach it to the process */
ptr = shmat(mem_id, NULL, 0);

/* handle the data as need */
strcpy(ptr->name, "C&C++ Application Development on AIX");
strcpy(ptr->version, "1.0");
ptr->year = 2000;

/* dettach from the segment */
shmdt(ptr);

}

And, next the rdshmen.c code:

#include <sys/shm.h> /* include the proper headers */
#include <stdio.h>

/* defines the struct type for*/
/* using in shared memory */
/* it must be the same as when*/
/* segment was created */

typedef struct idex_t{
char name[80];
char version[10];
int year;

} idex;
main()
{
key_t mykey; /* key identifier variable */
idex *ptr; /* pointer to the struct */
int mem_id; /* memory ID */
int seg_id = 1; /* project identifier */

/* creates the key that matchs*/
/* to the original segment */

mykey = ftok(null_file, seg_id);

/* gets access to the segment */
38 C and C++ Application Development on AIX

mem_id = shmget(mykey, sizeof(idex), IPC_ACCESS);

/* attach it to the process */
ptr = shmat(mem_id, NULL, 0);

/* handle the data as need */
printf(" Book name: %s\n", ptr->name);
printf(" version: %s\n", ptr->version);
printf(" year: %d\n", ptr->year);

/* dettach from the segment */
shmdt(ptr);

}

2.2.1.2 Mapped files with shmat
The creation of a mapped data file is a two-step process. First, you create the
mapped file. Then, because the shmat subroutine does not provide for it, you
must program a method for detecting the end of the mapped file.

1. To create the mapped data file:

a. Open (or create) the file and save the file descriptor:

if((fildes = open(filename , 2)) < 0)
{

printf("cannot open file\n");
exit(1);

}

b. Map the file to a segment with the shmat subroutine:

file_ptr=shmat (fildes, 0, SHM_MAP);

The SHM_MAP constant is defined in the /usr/include/sys/shm.h file.
This constant indicates that the file is a mapped file. Include this file
and the other shared memory header files in a program with the
following directives:

#include <sys/shm.h>

2. To detect the end of the mapped file:

a. Use the lseek subroutine to go to the end of file:

eof = file_ptr + lseek(fildes, 0, 2);

This example sets the value of eof to an address that is 1 byte beyond
the end of file. Use this value as the end-of-file marker in the program.

b. Use file_ptr as a pointer to the start of the data file, and access the
data as if it were in memory:

while (file_ptr < eof)
Chapter 2. Shared memory 39

{
.
.
.
(references to file using file_ptr)

}

c. Close the file when the program is finished working with it:

close (fildes);

2.2.2 The mmap functions
AIX Verions 4 supports the mmap version of memory mapping through the
following functions:

mmap Maps an object file into virtual memory.

madvise Advises the system of a process' expected paging behavior.

mincore Determines residency of memory pages.

mprotect Modifies the access protections of memory mapping.

msync Synchronizes a mapped file with its underlying storage device.

munmap Unmaps a mapped memory region.

The mmap subroutines map a file or anonymous memory region by
establishing a mapping between a process-address space and a file system
object. This implies that in the mmap model there is always a file object
associated on the file system, even if it is only mapping a memory segment.

2.2.2.1 Mapped memory with mmap
In the following we show the three step process for creating and using
mapped memory, or shared memory, segments:

1. As, in fact, there is no file to attach when we just want to map an amount
of memory, just create a shared memory segment with the mmap
subroutine. For example, to create a shared starting at address addr,
using len bytes of size, with the access permissions defined by prot and 0
bytes of offset, use a statement, such as:

ptr = mmap(addr, len, prot, MAP_ANONYMOUS, -1, 0)

This memory region pointed by ptr can be shared only with the
descendants of the current process.

2. Work with the data in the segment.

3. Detach the segment from the address space using the munmap
subroutine:
40 C and C++ Application Development on AIX

munmap(addr, len);

2.2.2.2 Mapped files with mmap
When we are, in fact, mapping files, there are three more steps in the process
compared with mapping memory. The steps are as follows:

1. Create a file descriptor for a file system object using:

fp = open(pathname, permissions);

2. Determine the file length by using the lseek system call. For example:

len = lseek(fildes, 0, 2)

3. Map the file into the process address space with the mmap subroutine. For
example, to map the file for the file descriptor fp, starting at address addr,
using len bytes of size, with the access permissions defined by prot and 0
bytes of offset, use a statement, such as:

ptr = mmap(addr, len, prot, MAP_FILE, fp, 0)

This specifies the creation of a new mapped file region by mapping the file
associated with the fp file descriptor. The mapped region can extend
beyond the end of the file, both at the time when the mmap subroutine is
called and while the mapping persists. This situation could occur if a file
with no contents was created just before the call to the mmap subroutine,
or if a file was later truncated.

4. The file descriptor can be closed by using:

close(fp);

5. Work with the data in the segment.

6. Detach from the segment using the munmap subroutine:

munmap(addr, len);

The mmap services are specified by various standards and commonly used
as the file-mapping interface of choice in other operating system
implementations. However, the system's implementation of the mmap
subroutine may differ from other implementations. The mmap subroutine
incorporates the following modifications:

• Mapping into the process private area is not supported.

• Mappings are not implicitly unmapped. An mmap operation that specifies
MAP_FIXED will fail if a mapping already exists within the range specified.

• For private mappings, the copy-on-write semantic makes a copy of a page
on the first write reference.

• Mapping of I/O or device memory is not supported.
Chapter 2. Shared memory 41

• Mapping of character devices or use of an mmap region as a buffer for a
read-write operation to a character device is not supported.

• The madvise subroutine is provided for compatibility only. The system
takes no action on the advice specified.

• The mprotect subroutine allows the specified region to contain unmapped
pages. In operation, the unmapped pages are simply skipped over.

• The OSF/AES-specific options for default exact mapping and for the
MAP_INHERIT, MAP_HASSEMAPHORE, and MAP_UNALIGNED flags
are not supported.

2.2.3 Comparison of shmat and mmap
Both the mmap and shmat services provide the capability for multiple
processes to map the same region of an object such that they share
addressability to that object. However, the mmap subroutine extends this
capability beyond that provided by the shmat subroutine by allowing a
relatively unlimited number of such mappings to be established. While this
capability increases the number of mappings supported per file object or
memory segment, it can prove inefficient for applications in which many
processes map the same file data into their address space.

The mmap subroutine provides a unique object address for each process that
maps to an object. The software accomplishes this by providing each process
with a unique virtual address, known as an alias. The shmat subroutine
allows processes to share the addresses of the mapped objects.

Because only one of the existing aliases for a given page in an object has a
real address translation at any given time, only one of the mmap mappings
can make a reference to that page without incurring a page fault. Any
reference to the page by a different mapping (and thus a different alias)
results in a page fault that causes the existing real-address translation for the
page to be invalidated. As a result, a new translation must be established for
it under a different alias. Processes share pages by moving them between
these different translations.

For applications in which many processes map the same file data into their
address space, this toggling process may have an adverse affect on

A file system object should not be simultaneously mapped using both the
mmap and shmat subroutines. Unexpected results may occur when
references are made beyond the end of the object.

Note
42 C and C++ Application Development on AIX

performance. In these cases, the shmat subroutine may provide more
efficient file-mapping capabilities.

The overall indications for using shmat are:

• For 32-bit applications, eleven or fewer files are mapped simultaneously,
and each is smaller than 256 MB.

• When mapping files larger than 256 MB.

• When mapping shared memory regions that need to be shared among
unrelated processes (no parent-child relationship).

• When mapping entire files.

And, the indications for using mmap are as follows:

• Portability of the application is a concern.

• Many files are mapped simultaneously.

• Only a portion of a file needs to be mapped.

• Page-level protection needs to be set on the mapping.

• Private mapping is required.

2.3 Process private data

As we discussed in early sections, the system kernel loads some segment
registers for all processes. Here, we are especially interested on the process
private data segment. It is the third segment register and is next to the text of
the process as shown in Figure 4 on page 34.

As a segment, its size can reach up to 256 MB and it holds the heap, stack
and initialized data area for the application as shown in Figure 5 on page 44.
Chapter 2. Shared memory 43

Figure 5. Default process private data area

There are three general situations where increasing the size of this area can
be necessary:

• When the application has a huge initialized data area.

• When the processes memory heap grows very large due to large use of
the malloc subroutine

• The stack grows very large, for example, when using recursive functions.

The AIX linker can be used to change the segment limit by using the following
argument at link time:

-bMAXDATA:number

where number indicates how many extra segments to use for the R/W private
data during the program load. By default, its value is 0, which means to use
only one data segment (256 MB). Using numbers that are multiples of
0x10000000 (0x10000000, 0x20000000.....,0x80000000) reserves segment
number 2 for the stack, and segment 3, and following segments, for the data
and heap.

For example, using in a compilation an argument such as:

-bMAXDATA:0x10000000

gives us a 256 MB segment for the stack plus a 256 MB segment shared
between the heap and static data. This situation is shown in Figure 6 on page
45.

Kernel

EXEC (txt)

Private Data (r/w)

0

1

2

Segment Registers

heap

256 Mb

Virtual System Memory

data

stack

0000000

FFFFFFF
44 C and C++ Application Development on AIX

Figure 6. Extended process private data area

2.3.1 Example
The following example program contains very simple code that displays the
positioning of different data types within the private data segment:

#include <stdio.h>

#define num_vector 3
#define size_vector 1024

/* creates static data */
char static_vector1[size_vector];
char static_vector2[size_vector];
char static_vector3[size_vector];

void function(int data1, int data2, int data3)
{
printf(" Stack Data\n");
printf(" data 3 address: %p \n", &data3);
printf(" data 2 address: %p \n", &data2);
printf(" data 1 address: %p \n", &data1);

}

Kernel

Process text

Private Data (r/w)

0

1

2

Segment Registers

256 MB

Virtual System Memory

stack

heap

data

256 MB

segment #33

FFFFFFF

FFFFFFF

0000000

0000000
Chapter 2. Shared memory 45

main()
{
int i;
char * heap_vector[num_vector];

/* creates dynamica data */
for(i = 0; i < num_vector; i++)

heap_vector[i] = (char *)malloc(size_vector);

/* display stack data */
function(1, 2, 3);

/* display dynamica data */
printf(" Heap Data\n");
for(i = 1; i <= num_vector; i++)

printf(" data %d address: %p\n", (num_vector - i + 1),
&heap_vector[num_vector - i][0]);

/* display static data */
printf(" Static Data\n");
printf(" data 3 address: %p\n", &static_vector3);
printf(" data 2 address: %p\n", &static_vector2);
printf(" data 1 address: %p\n", &static_vector1);

}

Here, its output is shown for a default compilation, where the second segment
contains the heap, stack, and data. When a 32-bit virtual address is displayed
in hexadecimal format, the first digit indicates the segment number. The
addresses in the default output all start with 0x2, indicating they are in
segment number 2:

Stack Data
data 3 address: 2ff22bc0
data 2 address: 2ff22bbc
data 1 address: 2ff22bb8

Heap Data
data 3 address: 200096e8
data 2 address: 200092d8
data 1 address: 20008ec8

Static Data
data 3 address: 20000b18
data 2 address: 20000f18
data 1 address: 20001318

When the same program is compiled with the -bmaxdata:0x10000000 option,
the output is as follows:
46 C and C++ Application Development on AIX

Stack Data
data 3 address: 2ff22bc0
data 2 address: 2ff22bbc
data 1 address: 2ff22bb8

Heap Data
data 3 address: 300096e8
data 2 address: 300092d8
data 1 address: 30008ec8

Static Data
data 3 address: 30000b18
data 2 address: 30000f18
data 1 address: 30001318

From the addresses printed, it can be seen that the stack is still in segment 2;
whereas, the data and heap are now in segment 3. Note that, in both cases,
the static data are queued in the reverse order as they are declared.

Debugging programs with large data is similar to debugging other programs.
The dbx command can debug these large programs actively or from a core
dump. A full core dump should not be performed because programs with large
data areas produce large core dumps, which consume large amounts of file
system space.

The following shell commands can patch programs to use large data
without relinking them. This can be useful when the source code of the
program is not available to relink:

/usr/bin/echo '\0200\0\0\0'|dd of=executable_file_name bs=4 count=1
seek=19 conv=notrunc

The echo string generates the binary value 0x80000000. The dd command
seeks to the proper offset in the executable file and modifies the
o_maxdata field.

Note
Chapter 2. Shared memory 47

48 C and C++ Application Development on AIX

Chapter 3. AIX shared libraries

Facilities for the creation and use of shared libraries are found on many
operating systems. The AIX operating system is no exception and provides a
large number of useful tools to aid in the creation, development, testing, and
debugging of shared libraries and applications that use them.

Developers porting code to the AIX operating system from other platforms
may, at first, be troubled by the different implementation methods that are
available. AIX, Version 4.3 contains shared library features that are broadly
compatible with other UNIX operating systems. Previous versions of AIX did
not contain all of these features; so, the method you choose will be based on
the exact version of AIX in use.

The AIX operating system provides facilities for the creation and use of
dynamically bound shared libraries. Dynamic binding allows external symbols
referenced in user code and defined in a shared library to be resolved by the
loader at run time.

The shared library code is not present in the executable image on disk.
Shared code is loaded into memory once in the system shared library
segment and shared by all processes that reference it. The advantages of
shared libraries are:

• Less disk space is used because the shared library code is not included in
the executable programs.

• Less memory is used because the shared library code is only loaded
once.

• The time taken to start an application may be reduced because the shared
library code may already be in memory.

• Performance may be improved because fewer page faults will be
generated when the shared library code is already in memory. However,
there is a performance cost in calls to shared library routines of one to
eight instructions.

This chapter introduces the developer to shared libraries and their
implementation in AIX.
© Copyright IBM Corp. 2000 49

3.1 Terminology

When discussing shared libraries, it is very important to understand the
terminology used since there are many terms with similar names but different
meanings.

3.1.1 Static library
A static library is a collection of object files in a single ar format archive. The
library can be used during the linking phase of creating an executable. The
object files in the library that contain symbols referenced by the main
application are extracted from the library and incorporated into the resulting
executable file. The library is used only during the linking phase and is not
relevant at runtime. The executable file that is created is sufficient to run the
program.

3.1.2 Shared library
Shared libraries and shared objects, (normally called Dynamically Loaded
Libraries, or DLLs in Windows terminology) are terms used to refer to object
code components that are handled in a special way.

Shared libraries are used in two stages when creating an executable. At link
time, the link editor (the ld command) searches the specified library to
resolve all undefined symbols that are referenced in the main application
code. If a shared library contains the referenced symbols, the loader section
of the XCOFF header of the created executable contains a reference to the
shared library. Unlike using the static library, the object files containing the
referenced symbols are not incorporated into the executable. Refer to Figure
7 on page 51 for a graphical representation. At runtime, the system loader
(the kernel component that starts new processes) reads the header
information of the executable and attempts to locate and load any referenced
shared libraries. Assuming all the referenced shared libraries are found, the
executable can be started. This process is known as dynamic linking.
50 C and C++ Application Development on AIX

Figure 7. Executables created using static library and shared library

Figure 7 shows the difference between two executables created using the
same main application code. One is created using a static version of the
library, the other with a shared object version of the same library.

The object code for shared libraries that get loaded into system memory
when starting an executable can then be shared by all subsequent
executables that use the library. The benefit of this is that only one copy of the
object code of a shared library is stored in system memory at any given time,
with all the executing programs sharing the same copy. Thus, dynamic linking
uses far less memory to run programs. Additionally, the executable files are
much smaller, thus potentially also saving disk space.

The AIX operating system supports dynamic linking. Developers moving code
to AIX often have problems, however, as the implementation specifics are
slightly different from other platforms.

In the UNIX world, the terms shared library and shared object are generally
used interchangeably. On the AIX system, there is a distinct difference
between the two terms.

a.out using static library a.out using shared library

Header information

Program code

Library code

Program data

Library data

Header information

Program code

Program data

Shared object information
Chapter 3. AIX shared libraries 51

shared object A shared object is a single object file that has the SRE
(Shared REusable) bit set in the XCOFF header. A shared
object normally has a name of the form, filename.o. In other
words, it is a regular file with a .o (lower case O) extension
to indicate it is an object file. The SRE bit indicates that the
file is handled in a special way by the linker.

shared library A shared library refers to an ar format archive library, where
one or more of the members is a shared object. Note that
the library can also contain normal, non-shared object files,
which are handled in the normal way by the linker. A shared
library normally has a name of the form, libname.a. This
allows the linker to search for libraries specified with the
-lname option on the command line.

AIX Version 4.2.1 introduced support for a new type of shared object,
commonly found on other UNIX systems, such as Solaris and HP-UX. Shared
files of the new format generally have a name of the form, libname.so.
Although the name incorporates the term lib, the file is, in fact, a shared
object (as indicated by the .so filename extension) rather than a shared
library, since it is a single object file rather than an ar format archive. The
benefit of this type of shared object is that, in common with a true shared
library, it can be specified on the compiler or linker command line with the
-lname option and searched for with the -L directory option when the -brtl
option is being used.

In addition to the use of shared libraries and shared objects with the compile
and link commands, a program may choose to explicitly control their use with
the dlopen() family of subroutines.

3.2 Creating a shared library

The method used to create a shared library depends on the type you wish to
create.

3.2.1 Traditional AIX shared object
A traditional AIX shared object is a single object file created by a call to the
linker (ld) command. Normally, the shared object is created from multiple
object files that are linked together; however, it is also possible to create a
shared object from a single object file. Although the linker is the component
that actually does the work, it is normal to create the shared object using the
compiler command line since the compiler, in turn, calls the linker once it has
performed any processing it is capable of. The benefit of using this method to
52 C and C++ Application Development on AIX

create the shared object is that default linker options are automatically used
and do not need to be specified on the command line.

Creating a traditional AIX shared object normally involves the use of an
export file. An export file is a text file containing a list of symbols. It is used to
control which symbols are visible outside the shared object. The symbols not
specified in the export file are only visible to other routines within the shared
object. The use of export files allows a developer to create a shared object
that has a well defined interface. Only the symbols listed in the export file can
be referenced by executables and other shared objects that are linked with
the object. In addition, creating a shared object may involve the use of an
import file. An import file is a text file that lists the names of symbols that the
shared object may reference. It allows the object to be created without the
source of those symbols being available. This may be required in the situation
where two shared objects have dependencies on each others symbols.
Export files are normally identified by using a .exp extension to the filename.
When the run-time linker (discussed in Section 3.4, “Run-time linking” on
page 66) is not used, all symbols must be accounted for when the module is
linked. The undefined symbols must be listed in the module’s import list or be
deferred. Symbols are deferred if they are listed as being defined by #! in the
import list.

If you are creating a shared object and want all symbols to be exported, then
you do not need to use an export file. You can use the -bexpall linker option,
which will automatically export all global symbols (except imported symbols,
unreferenced symbols defined in archive members, and symbols beginning
with an underscore). Additional symbols may be exported by listing them in
an export list. Any symbol with a leading underscore will not be exported by
this option. These symbols must be listed in an exports list to be exported.

If the shared object supplies symbols that are used by another shared object,
then you still have to create an exports file, as this is used as an import file
when creating the dependent shared object.

3.2.1.1 Single shared object
The scenario described in this section for creating a shared object uses the
following source code files:

The file source1.c is as follows:

/* source1.c : First shared library source */
void private(void)
{
printf(“private\n”);
}

Chapter 3. AIX shared libraries 53

int addtot(int a , int b)
{
int c;
c = a+b;
return c;
}

The file source2.c is as follows:

/* source2.c : Second shared library source */
#include <stdio.h>
int disptot(int a)
{
printf(“The total is : %d \n”,a);
}

The process of creating the shared object is as follows:

1. Create the object files that will be combined together to create the shared
object. This is achieved using the -c option of the compiler. For example:

cc -c source1.c
cc -c source2.c

2. Create an export file that lists the symbol names that should be visible
outside the shared object. In this example, the symbols addtotal and
displaytotal are the names of the functions that will be called by the main
application. The symbol names can also include variable names in
addition to function names. The libadd.exp export file is as follows:

#!
addtot
disptot

3. Create the shared object with the following command:

cc -o shrobj.o source1.o source2.o -bE:libadd.exp -bM:SRE -bnoentry

The -bE:libadd.exp option uses the file libadd.exp as an export file that
lists the names of the symbols that should be exported. The -bM:SRE flag
marks the resultant object file, shrobj.o, as a shared reusable object. The
-bnoentry flag indicates that there is no entry point (main function) in the
object file.

The dump command can be used to list the symbols that are exported (and
imported) by the shared object. For example:

dump -Tv shrobj.o

shrobj.o:
54 C and C++ Application Development on AIX

Loader Section

Loader Symbol Table Information
[Index] Value Scn IMEX Sclass Type IMPid Name

[0] 0x00000000 undef IMP DS EXTref libc.a(shr.o) printf
[1] 0x2000020c .data EXP DS SECdef [noIMid] addtot
[2] 0x20000218 .data EXP DS SECdef [noIMid] disptot

The important fields to examine are the IMEX, IMPid, and Name entries. A
value of EXP in the IMEX field indicates that this symbol is being exported
from the object. In this case, the Name field gives the name of the symbol
being exported, and the IMPid field is not used.

A value of IMP in the IMEX field means that the symbol listed in the Name
field is being imported into the object. In this case, the IMPid indicates the
target shared object that the symbol will be imported from. In the case of a
shared object that is contained in an ar format library, both the library name
and object name will be displayed. In the example shown above, the symbol
printf is being imported from the shared object shr.o, which is contained in the
libc.a archive library.

3.2.1.2 Interdependent shared objects
The process for creating interdependent shared objects is similar to the
process of creating a single shared object but requires the use of an import
file. Suppose there are two shared objects, shr1.o and shr2.o, and each
references symbols in the other. When creating the first shared object
(shr1.o), the second shared object may not exist. This means that when the
command to create the first shared object is executed, there will be
unresolved symbols since, at this point, the second shared object does not
exist. This problem is overcome with the use of an import file. An import file is
similar to the export file used when creating a shared object. In fact, in most
cases, it is possible to use the same file for both purposes.

Consider the following files for use in this example scenario:

The file source1.c is as follows:

/* source1.c : First shared library source */
int function1(int a)
{
int c;
c = a + function2(a);
return c;
}

Chapter 3. AIX shared libraries 55

int function3(int a)
{
int c;
c = a / 2;
return c;
}

The file source2.c is as follows:

/* source2.c : Second shared library source */
int function2(int a)
{
int c;
c = function3(a + 5);
return c;
}

In this example, each source file needs to be made into a separate, shared
object. Note that the resulting shared objects are interdependent, since:

• Subroutine function1 in source1.c calls function2 in source2.c.

• Subroutine function2 in source2.c calls function3 in source1.c.

As with the simple example, each shared object requires an export file to
define which symbols will be exported. With a slight modification, the export
file for each shared object can also be used as the import file for other shared
objects that use the exported symbols. The slight change does not effect the
file when used as an export file. The modification is to add the name of the
library and shared object that contains the symbols. In the example, the
export file (libone.exp) for the first shared object is:

#!libone.a(shr1.o)
function1
function3

The export file (libtwo.exp) for the second shared object is:

#!libtwo.a(shr2.o)
function2

When used as an export file, the line starting with the #! symbol sequence is
ignored. When used as an import file, the information following the #!
sequence details the location of the symbols contained in the file. The format
of the entry is libraryname(membername). The libraryname component can
be just the name of the library (as it is in the example), or it may include a
relative or absolute pathname component, for example:

#!/data/lib/libone.a(shr1.o)
56 C and C++ Application Development on AIX

Any pathname component listed is used when attempting to load the shared
object at runtime to resolve the symbols.

The commands used to create the shared objects and create the libraries are
as follows:

cc -c source1.c
cc -o shr1.o source1.o -bE:libone.exp -bI:libtwo.exp -bM:SRE -bnoentry
ar rv libone.a shr1.o
cc -c source2.c
cc -o shr2.o source2.o -bE:libtwo.exp -bI:libone.exp -bM:SRE -bnoentry
ar rv libtwo.a shr2.o

Note the use of the file libone.exp as an export file when creating the first
shared library and as an import file when creating the second. If the file is not
used when creating the second shared library, the creation of the shared
object will fail with an error message complaining of unresolved symbols:

cc -o shr2.o source2.o -bE:libtwo.exp -bM:SRE -bnoentry
ld: 0711-317 ERROR: Undefined symbol: .function3
ld: 0711-345 Use the -bloadmap or -bnoquiet option to obtain more
information.

A single import file can be used to list symbols that are imported from
different modules. The import file is just a concatenation of the individual
export files for each of the shared objects. Using the example import files
shown above, suppose that a new shared object, libthree.a, was to be
created, and it imports symbols from both libone.a and libtwo.a. The import
file used to create the new shared object might be as follows:

#!libone.a(shr1.o)
function1
function3
* a comment line starts with the asterix symbol
* blank lines are ignored

#!libtwo.a(shr2.o)
function2

As the example illustrates, although it is possible to create interdependent
shared objects, from a design and implementation point of view, it is much
simpler to create shared objects that are as self-contained as possible.
Chapter 3. AIX shared libraries 57

3.2.2 New style shared object
Creating a new style shared object (libname.so) does not require the use of
export files; however, by default, all symbols are visible to executables that
are linked with the object.

3.2.2.1 Single shared object
Using the same source code as used in Section 3.2.1.1, “Single shared
object” on page 53, the following command is used to create a new style
shared object:

cc -G -o libsimple.so source1.o source2.o

Note that the -G option implicitly enables a number of other default linker
options, including one that exports all symbols. This makes things simple
when creating the shared object since you do not need to maintain a file
listing the symbols you want to be exported. The effect of this can be seen in
the output of the dump command when used on the resulting shared object:

dump -Tv libsimple.so

libsimple.so:

Loader Section

Loader Symbol Table Information
[Index] Value Scn IMEX Sclass Type IMPid Name

[0] 0x00000000 undef IMP DS EXTref libc.a(shr.o) printf
[1] 0x20000204 .data EXP DS SECdef [noIMid] addtot
[2] 0x20000210 .data EXP DS SECdef [noIMid] privatefn
[3] 0x2000021c .data EXP DS SECdef [noIMid] disptot

Although the manual pages for the compilers state that the -G option is
passed directly to the linker, the compiler itself does, in fact, perform
additional processing. This can be detected since replacing cc with ld in the
example shown above results in an error:

ld -G -o libsimple.so source1.o source2.o
ld: 0711-327 WARNING: Entry point not found: __start
ld: 0711-244 ERROR: No csects or exported symbols have been saved.

Even resolving the warning message about the entry point by using the
-bnoentry linker option does not solve the problem. There is still a warning
that no exported symbols have been saved. Essentially, this means the
shared object has not exported any symbols.
58 C and C++ Application Development on AIX

The reason the command works when the compiler is invoked with the -G
option can be seen when we additionally use the -v option to get more
information about what the compiler is actually doing:

cc -v -G -o libsimple.so source1.o source2.o
exec: /usr/vac/bin/CreateExportList(/usr/vac/bin/CreateExportList,
/tmp/xlcSEMY4Qie,-f,/tmp/xlcSFMY4Qid,NULL)
exec: /bin/ld(ld,-bM:SRE,-bnoentry,-bpT:0x10000000,-bpD:0x20000000,
-olibsimple.so,source1.o,source2.o,-lc,-bE:/tmp/xlcSEMY4Qie,NULL)
unlink: /tmp/xlcW0MY4Qia
unlink: /tmp/xlcW1MY4Qib
unlink: /tmp/xlcW2MY4Qic
unlink: /tmp/xlcSEMY4Qie
unlink: /tmp/xlcSFMY4Qid

The important thing to notice is that the compiler is using a shell script called
CreateExportList to create an export list file on the fly for the specified input
files.

3.2.2.2 Creating an export list
You can use the /usr/vac/bin/CreateExportList shell script supplied with the C
for AIX, Version 5 compiler to automatically generate the symbols that should
be included in an export list. It can save a considerable amount of time if you
want to use the traditional AIX method for creating shared objects as
described in Section 3.2.1, “Traditional AIX shared object” on page 52, or if
you want to use an export list in conjunction with the -G option to create a
new style shared object that does not export all symbols.

The simplest way to use the command is as follows:

1. Compile all of the source files that will be included in the shared object.

2. Create a single file that lists the names of all of the object files that will be
included in the shared object. For example, create a file called objectlist
that contains the following lines:

source1.o
source2.o

3. Invoke the CreateExportList command as follows:

/usr/vac/bin/CreateExportList exportfile -f objectlist

where exportfile is the name of the export file you want to create, and
objectlist is the file that contains the list of object file names.

4. Edit the resulting export file to include the #!pathname(member) line at the
start.
Chapter 3. AIX shared libraries 59

5. Edit the resulting export file to remove the symbol names you wish to keep
private within the shared object.

3.2.2.3 Interdependent shared objects
The creation of interdependent shared objects using the libname.so style
requires the use of import files so that the linker can resolve the externally
referenced symbols.

If using an export file for a new style shared object as an import file when
creating another shared object, the location specified does not need the
(member) entry since the file itself is the shared object. Using the example
described in Section 3.2.2.1, “Single shared object” on page 58, the export
file produced would have the following line inserted as the first line in the file:

#!libsimple.so

3.2.3 Importing symbols from the main program
When creating either traditional or new style shared objects, it is possible for
the object to resolve a symbol that is provided in the main program rather
than a shared object. There are two steps required to ensure that this works
correctly.

The first step is to use an import file when creating the shared object that lists
the symbols to be imported from the main routine. The symbols should be
listed under the module name as follows:

#!.

The special module name of “.” (dot) indicates that the symbols will be
imported from the main program. The status of the symbols in the shared
object can be checked using the dump -Tv command as described in Section
3.5.3.2, “The dump -Tv command” on page 75.

Link the application using the shared objects as normal. The linker will
automatically detect that the shared objects import symbols from the main
routine and will automatically export them if they exist. If a shared object tries
to import a symbol that does not exist in the main routine, then the link stage
will fail.

3.2.4 Initialization and termination routines
Optional shared object initialization and termination routines can be specified
when creating the shared object. You can use one or the other, or both. The
routines may be useful for initializing dynamic data structures or reading
configuration information. The initialization routines are called by the program
60 C and C++ Application Development on AIX

startup code and are performed before the application main routine is started.
Termination routines are called when the program makes a graceful exit. They
will not be called if the program exits due to receipt of a signal.

The -binitfini linker option is used to specify the names of the routines along
with a priority number. The priority is used to indicate the order that the
routines should be called in when multiple shared objects with initialization or
termination routines are used.

3.3 Using a shared library

Once you have created the required shared libraries, you can then proceed to
use them when linking applications. There are a number of linker options that
effect the way in which the shared libraries are used.

The most important point to remember about using shared libraries is that the
way the application is linked will determine how the shared libraries will be
searched for at runtime.

3.3.1 On the compile line
When using shared libraries to create an executable, there are a number of
methods that can be used to specify the library on the command line. The
method used will depend on the type of shared object being used.

As far as the linker is concerned, there are three types of shared objects that
it can handle:

• An archive library that contains object files with the SRE bit set.

• A new style shared object of the form libname.so.

• An individual object file with the SRE bit set, for example, shr1.o.

In all cases, the shared object can be specified directly on the command line
using either an absolute or relative pathname. If the shared object is in the
same directory as the current working directory, then no path component
needs to be specified since the current directory is searched by default.

If the shared object is a single object file, then the absolute or relative
pathname is the only way to include it on the command line.

If the shared object is part of an archive library, then the -l and -L linker
options can be used to search for the library. If the shared object is a new
style shared object, then the -brtl linker option must be used. This enables the
runtime linker, described in Section 3.4, “Run-time linking” on page 66, and
Chapter 3. AIX shared libraries 61

also allows these shared objects to be specified on the command line using
the -l and -L options. If you want to use the new style shared object naming
conventions, but do not want to use run-time linking, then specify the -brtl and
-bnortllib options when linking the main application. This will mean that you
must build the new style shared objects using export and import files, if
required. You should use the compiler with the -G option to create the shared
objects, not the ld -G method described in Section 3.4, “Run-time linking” on
page 66.

The -l option is used to specify the name of the library without the .a or .so
extension and without the lib prefix. For example, the shared objects libone.a
and libtwo.so, would be specified on the command line as -lone -ltwo.

The -L option is used to specify a directory that should be searched for the
libraries specified with the -l option. The /usr/lib and /lib directories are
automatically added to the end of the list of directories to be searched. The
list of directories specified with the -L option (along with the default /usr/lib
and /lib entries) is included in the header section of the resulting executable.
This path is used to search for the directories at runtime. Refer to Section
3.5.3.1, “The dump -H command” on page 72 for details on how the use of
pathnames, and the -L option can have an impact on how the system loader
searches for the shared objects at runtime.

If your application development directory structure does not match the
directory structure used when your application is installed in a production
environment, then, potentially, you need to adjust the arguments used with
the linker to ensure that the resulting executables have the desired library
search path.

For example, consider an application that has a development source code
tree as shown in Figure 8 on page 63.
62 C and C++ Application Development on AIX

Figure 8. Sample development directory structure

Consider the application file, main.c, being compiled and linked in the
directory, /development/version1.0b/src, and using shared libraries stored in
the directory, /development/version1.0b/lib. There are a number of options
that can be used to specify the libraries, depending on how the resulting
executable will be deployed.

When the application is installed in a production environment, for example,
after being installed on a customer machine, the directory structure may be
different. The method to use when compiling the executables will depend on
the degree of freedom the customer is permitted when installing the
application. For example, some products specify that the executables and
libraries must be installed in a specific directory, such as /opt/productname.
Some products allow the binaries and libraries to be installed in any directory
structure.

If the libraries for the product will be installed in a specific directory, then you
can either:

• Create the shared libraries and then copy them to the same directory
structure to be used when the product is installed in a production
environment. In this case, you use the -L option to find the shared
libraries. For example:

cc -o ../bin/app1 main.c -llibone -L/product/lib

• Create the shared libraries, but leave them in the development directory
structure. When compiling the applications, use absolute pathnames to
specify the shared libraries along with the -bnoipath linker option to
prevent the pathname being included in the header section of the final

/development

version1.0a

bin srclibhdr

version1.0b

bin srclibhdr
Chapter 3. AIX shared libraries 63

executable. At the same time, use the -L option to specify the directory
where the libraries will exist on a production system. For example:

cc -o ../bin/app1 main.c -bnoipath ../lib/libone.a -L/product/lib

If your product allows the executables and libraries to be installed in any
directory structure, then you need to use the LIBPATH environment variable
to search for shared objects. Some other UNIX platforms use the
LD_LIBRARY_PATH variable for a similar purpose.

The order of libraries and objects specified on the command line is not
important unless run-time linking is being used. See Section 3.4, “Run-time
linking” on page 66 for more information.

3.3.2 Searching at runtime
The LIBPATH environment variable is only needed when shared libraries exist
in a different directory to that specified in the header section of the
executable. The variable is a colon separated list of directory names. If it is
set, the directories specified in the LIBPATH environment variable are
searched for the required shared objects before the list of directories
specified in the header section of the executable. The exception to this case
is when a user other than root is attempting to run a setuid or setgid
executable. In this case, only the directories listed in the header section of the
executable are searched; the LIBPATH variable is ignored, even if set.

If a relative or absolute pathname is used to specify a shared object when the
application is compiled, and the -bnoipath option is not specified, then the
system loader will only look for the shared object using the exact pathname
specified at link time for that object. Even if a shared object with the same
name exists in a directory searched as part of the LIBPATH or INDEX 0 path
included in the header section, it will be ignored.

If a shared object can not be found by the system loader when trying to start
an executable, an error message similar to the following will be seen:

exec(): 0509-036 Cannot load program ex1 because of the following errors:
0509-022 Cannot load library libone.so.
0509-026 System error: A file or directory in the path name does not

exist.

The missing objects will be listed with 0509-022 error messages. Use the find

command to search the system for the missing shared objects. If the object is
found, try setting the LIBPATH environment variable to include the directory
that contains the shared object and restart the application. Also, ensure that
64 C and C++ Application Development on AIX

the object or library has read permission for the user trying to start the
application.

A similar error message is produced when the system loader finds the
specified shared objects, but not all of the required symbols can be resolved.
This can happen when an incompatible version of a shared object is used
with an executable. The error message is similar to the following:

exec(): 0509-036 Cannot load program ./ex1 because of the following errors:
0509-023 Symbol func1 in ex1 is not defined.
0509-026 System error: Cannot run a file that does not have a valid

format.

The unresolved symbols are listed in the 0509-023 message lines. Note the
name of the symbol, and use the dump -Tv command to determine which
shared object the executable expects to resolve the symbol from. For
example:

dump -Tv ex1 | grep function1
[4] 0x00000000 undef IMP DS EXTref libone.a(shr1.o) func1

This indicates that the executable is expecting to resolve the symbol func1
from the shared object shr1.o which is an archive member of libone.a. This
information can help you start the problem determination process.

3.3.3 Shared or non-shared
AIX, Version 4.3 supports the use of the -bdynamic and -bstatic linker options
to determine how a shared object should be treated by the linker.

These options are toggles and can be used repeatedly in the same link line.
When -bdynamic is in effect, shared objects are used in the usual way. If you
use the -bstatic option, remember to specify -bdynamic as the last option on
the link line to ensure that the system libraries are treated as shared objects
by the linker. If this is not done, and the system libraries are treated as normal
archive libraries, the executable produced will be larger than normal. In
addition, it will have the disadvantage that it may not work on future versions
of AIX since it is hardcoded with a specific version of system libraries.

When the -bstatic option is in effect, shared objects are treated as regular
files. Additionally, when -brtl is specified, and -bdynamic is in effect, the -l flag
will search for files ending in ‘.so’ as well as those ending in ‘.a’. Do refer to
the following examples:

cc -o main.o -bstatic -lx -Lnewpath -bdynamic
Chapter 3. AIX shared libraries 65

In this example, libx.a is treated as a regular archive file, even if it contains
shared objects. The -bdynamic ensures that the system libraries, such as
libc.a, are processed as shared objects.

cc -o main main.o -brtl -lx -Lpath1 -Lpath2

Search for the object specified by -lx in the following order:

1. path1/libx.so

2. path1/libx.a

3. path2/libx.so

4. path2/libx.a

3.3.4 Lazy loading
AIX, Version 4.3 supports the use of the -blazy option to implement lazy
loading. Lazy loading is a mechanism for deferring the loading of modules
until one of its functions is required to be executed. By default, the system
loader automatically loads all of the module’s dependants at the same time.
By linking a module with the -blazy option, the module is loaded only when a
function within it is called for the first time. Note that lazy loading works only if
the run-time linker is not enabled. Also, only the modules referenced for their
function can be lazy loaded.

3.4 Run-time linking

As shown in the examples above, generally, references to the symbols in the
shared objects are bound at link time. That is, the output module associates
an imported symbol with its definition in a specific object. The source of the
definition can be seen by using the dump -Tv command on the executable or
shared object. Refer to Section 3.5.3, “The dump command” on page 72 for
more details.

At load time, the definition in the specified shared object is used even if other
shared objects export the same symbol.

Programs can be modified to use the run-time linker, therefore, allowing some
symbols to be rebound at load time. To create a program that uses the
run-time linker, link the program with the -brtl option. The way that shared
modules are linked affects the rebinding of symbols.

To build shared objects enabled for run-time linking, use the -G flag and build
the shared object with the ld command rather than the compiler cc, xlc, or xlC
66 C and C++ Application Development on AIX

commands. The -G linker option enables the combination of options
described in Table 9.

Table 9. The -G option

The function of the -G option to the compiler command is very similar in
function to the -G option to the linker (ld) command, but there is a very subtle,
yet important, difference when it comes to creating shared objects for use
with runtime linking.

The important difference is the way the two options impact the handling of
unresolved symbols. The following source code files will be used to
demonstrate the difference.

File source1.c is used to make libone.so. The source code is as follows:

/* source1.c - demo of difference between cc -G and ld -G */
#include <stdio.h>
void function1(int a)
{

printf(“In function1\n”);
function2(a);

}

File source2.c is used to make libtwo.so. The source code is as follows:

/* source2.c - demo of difference between cc -G and ld -G */

Option Description

-berok Enables creation of the object file, even if there are unresolved
references

-brtl Enables runtime linking. All shared objects listed on the command line
(those that are not part of an archive member) are listed in the output
file. The system loader loads all such shared modules when the
program runs, and the symbols exported by these shared objects may
be used by the runtime linker.

-bsymbolic Assigns this attribute to most symbols exported without an explicit
attribute.

-bnortllib Removes a reference to the runtime linker libraries. This means that
the module built with -G option (which contains the -bnortllib option)
will be enabled for runtime linking, but the reference to the runtime
linker libraries will be removed. Note that the runtime libraries should
be referenced to link the main executable only.

-bnoautoexp Prevent automatic exportation of any symbol.

-bM:SRE Build this module to be shared and reusable.
Chapter 3. AIX shared libraries 67

#include <stdio.h>
void function2(int a)
{

printf(“In function2\n”);
}

If the compiler command is used to create libone.so, initially it fails with an
error message complaining about the unresolved symbol function2:

cc -G -o libone.so source1.c
ld: 0711-317 ERROR: Undefined symbol: .function2
ld: 0711-345 Use the -bloadmap or -bnoquiet option to obtain more
information.

We can solve this immediate problem in one of two ways. We can supply an
import file that resolves the symbol function2 to the shared object libtwo.so.
However, if we do this, the shared object, libone.so, will be created with a
reference to libtwo.so in the header section. This means we have resolved the
symbol function2 at link time, which is not what we want. Alternatively, we can
add the -berok option to the command line, which allows errors in the output
file. If we do this, then the symbol function2 is unresolved at link time, which
is what we want. We can then create libtwo.so, and then link both libraries
with the following main.c program:

/* main.c - demonstrate how cc -G differs from ld -G */
int main(int argc, char ** argv)
{

function1(45);
}

using the following command:

cc -o example main.c -brtl -L‘pwd‘ libone.so libtwo.so

Note the use of the -brtl option, which is required to enable the run-time
linker. If we try and run the example program, an error message is produced:

./example
in function 1
Segmentation fault(coredump)

It can be seen from the output that the program has managed to start and get
as far as the printf statement in function1. It then experiences a fatal error
when trying to call function2. If we look at the header information for libone.so
with the dump -Tv command, we can check the status of the symbols:

dump -Tv libone.so

libone.so:
68 C and C++ Application Development on AIX

Loader Section

Loader Symbol Table Information
[Index] Value Scn IMEX Sclass Type IMPid Name

[0] 0x00000000 undef IMP DS EXTref libc.a(shr.o) printf
[1] 0x200001e8 .data EXP DS SECdef [noIMid] function1
[2] 0x00000000 undef IMP DS EXTref [noIMid] function2

It can be seen that the symbol function2 is marked as undef, which is what we
expect. However, the problem is that the IMPid is marked as [noIMid], which
means that the shared object does not know where to resolve the symbol
function2. If we use the ld command to create the shared object, instead of
the compiler, then the result is slightly different. Create the shared object with
the following commands:

cc -c source1.c
ld -G -o libone.so source1.o -bnoentry -bexapall -lc

The -bnoentry and -bexpall options are described previously. The -lc option is
required to link the C library to resolve the printf function. If we look at the
symbol information in the header section with the dump -Tv command:

dump -Tv libone.so

libone.so:

Loader Section

Loader Symbol Table Information
[Index] Value Scn IMEX Sclass Type IMPid Name

[0] 0x00000000 undef IMP DS EXTref libc.a(shr.o) printf
[1] 0x00000008 .data EXP DS SECdef [noIMid] function1
[2] 0x00000000 undef IMP DS EXTref .. function2

the difference is the IMPid for the symbol function2. The shared object now
thinks it will resolve the symbol from the special module called “..” (dot dot).
This indicates that the symbol will be resolved by the run-time linker. If we
create libtwo.so using the same method, then the example program works
correctly.

The run-time linker is called by the program startup code before entering the
application’s main routine.
Chapter 3. AIX shared libraries 69

When using run-time linking, the order of specifying libraries and objects on
the command line is important. This is because the list of libraries and objects
will be searched in sequence to resolve symbols that are imported from the
special “..” module. In addition, all of the shared objects specified on the
command line will be included in the header section of the resulting
executable. Using the example described above, the main program only calls
the routine function1, which is in libone.so. Using the traditional style AIX link
time symbol resolution, this would mean that the resulting executable would
only reference libone.so in the header section. If this were the case, when the
run-time linker is called, the shared object, libtwo.so, would not be present,
and so the symbol resolution of function2, which is called from function1,
would fail.

Another advantage of using run-time linking is that developers do not need to
maintain a list of module interdependencies and import/export lists. By using
the -bexpall option, all shared objects can export all symbols, and the
run-time linker can be used to resolve the inter-module dependencies.

3.4.1 Rebinding system defined symbols
The shared libraries shipped with the AIX operating system are not enabled
for run-time linking, but they can be enabled by using the rtl_enable

command. For example, if a program defines its own version of the malloc
routine, and wants to run in such a way that the routines in the libc.a shared
objects also use the user defined version of malloc, then a new instance of
libc.a must be first created. This can be done as follows:

rtl_enable -o /usr/local/lib/libc.a /lib/libc.a

Then, the program must be relinked:

cc mymalloc.o -L /usr/local/lib -brtl -bE:myexports

In this example, mymalloc.o defines malloc and the export file myexports
causes the symbol malloc to be exported from the main program. Calls to
malloc from within libc.a will now go to the malloc routine defined in
mymalloc.o.

3.5 Developing shared libraries

The way a shared library is used in a development environment is somewhat
different to that in a production environment. In a development environment,
the library may be constantly changed and altered so that new versions can
be tested. On large systems, multiple users may be working with their own
70 C and C++ Application Development on AIX

version of the shared library. There are a number of things to be aware of to
make the development environment for shared libraries easier to use.

If the system has multiple versions of a shared library, then you need to be
careful that your program uses the version of the library that you want. This
can be achieved with the use of the -L option on the command line and the
use of the LIBPATH environment variable.

When an application is started, the system loader reads the loader section of
the header of the executable file. It reads the dependency information for any
shared objects the executable requires and attempts to load the code for
those shared objects into the system shared library segment if they are not
already loaded. Shared objects that are loaded into the system shared library
segment have an attribute called the use count. Each time an application
program that uses the shared object is started, the use count is incremented.
When an application terminates, the use count for any shared objects it was
using is decreased by one. When the use count for a shared object in the
system shared library segment reaches zero, the shared object is not
unloaded, but instead, remains in memory. This is done to reduce the
overhead of starting any more applications that use the shared object since
they will not have to load the object into the system shared segment.

3.5.1 The genkld command
The genkld command is used to list the shared objects that are loaded in the
system shared library segment. The output of the command can contain
multiple duplicate entries and be quite lengthy; so, it is best to filter the output
using the sort command or by performing a grep for the shared object you are
investigating. For example:

genkld | sort -u

d00005c0 19f26f /usr/lib/libc.a/shr.o
d01a00f8 87a /usr/lib/libcrypt.a/shr.o
d01a7100 78b4 /usr/lib/libi18n.a/shr.o
d01af100 137fe /usr/lib/libiconv.a/shr4.o
d01c3100 124f1 /usr/lib/libodm.a/shr.o
d01d6100 bc4c /usr/lib/libcfg.a/shr.o
d01e2880 19583 /usr/lib/libsm.a/shr.o
d01fc100 262fc /usr/lib/liblvm.a/shr.o
d02230f8 1624 /usr/lib/libpthreads_compat.a/shr.o

The command can only be executed by the root user or a user in the system
group. The three columns show the virtual address of the object within the
Chapter 3. AIX shared libraries 71

system segment, the size of the object, and the name of the file that was
loaded.

3.5.2 The slibclean command
The slibclean command can be used by the root user to unload all shared
objects with a use count value of zero from the system shared library
segment. This command is useful in an environment when shared libraries
are under development. You can run the slibclean command followed by the
genkld command to ensure that the shared objects under development are not
loaded in the system shared library segment. This means that any application
started after this will automatically use the latest version of the shared objects
since the system loader will search for and load them. It also prevents
multiple versions of the same objects existing in the system segment.

During the development of shared objects, you may sometimes see an error
message similar to the following when creating a new version of an existing
shared object:

make libone.so
cc -O -c source1.c
cc -berok -G -o libone.so source1.o

ld: 0711-851 SEVERE ERROR: Output file: libone.so
The file is in use and cannot be overwritten.

make: 1254-004 The error code from the last command is 12.

The error message means that the shared object in question has been loaded
into the system shared library segment. The file is marked as in use, even if
the use count is zero. Running the slibclean command will unload all of the
unused shared objects from the system. An alternative (and simpler) method
of avoiding this problem is to use the rm -f command to remove the shared
object before creating it.

3.5.3 The dump command
The dump command is used to examine the header information of executable
files and shared objects. The main options that are useful when working with
shared libraries are the -H option and the -Tv options.

3.5.3.1 The dump -H command
The dump -H command is used to determine which shared objects an
executable or shared object depends on for symbol resolution at runtime. The
interesting information is in the last section of output and has the title,
Import File Strings. Sample output is as follows:

dump -H example
72 C and C++ Application Development on AIX

example:

Loader Section
Loader Header Information

VERSION# #SYMtableENT #RELOCent LENidSTR
0x00000001 0x00000006 0x0000000e 0x00000047

#IMPfilID OFFidSTR LENstrTBL OFFstrTBL
0x00000003 0x00000158 0x00000019 0x0000019f

Import File Strings
INDEX PATH BASE MEMBER
0 /tmp/addlib/old/complex:/usr/lib:/lib
1 libc.a shr.o
2 libone.a shr1.o

The number of INDEX entries will depend on how many shared objects the
target depends on for symbol resolution. The INDEX 0 entry is a colon
separated list of directories. If the LIBPATH environment variable is not set
when the executable is started, the directories listed in the INDEX 0 entry are
searched for by the shared objects mentioned in subsequent entries. The
directories in the entry are those used with the -L option when the object was
linked. The /usr/lib and /lib entries are always present. If you want these
directories to be searched first, you need to add them explicitly to the linker
command line and ensure that they appear before any other -L options. Using
the example shown above, altering the -L options on the link command line
to be -L/usr/lib -L/lib -L/tmp/addlib/old/complex would result in an INDEX 0
entry of:

0 /usr/lib:/lib:/tmp/addlib/old/complex:/usr/lib:/lib

The format of the other entries is as follows:

Index The index number of the entry in the Import File Strings section.

Path Optional pathname component of the shared object. A
pathname will be present if a pathname was used when the
shared object was specified on the link command line. The
-bnoipath linker option can be used to prevent the pathname
used on the command line from appearing in this portion of the
entry. The -bipath option is the default. The option effects all
shared objects listed on the command line.
Chapter 3. AIX shared libraries 73

Base The name of the archive library containing the shared object, or
the name of the shared object itself if it is a new style shared
object.

Member The name of the shared object if it is contained in an archive
library.

Some examples of different link commands are appended below, along with
the Import File Strings section of the output of the dump -H command on the
resulting executables. This demonstrates the relationship between the way
the shared objects are specified on the command line and the entries in the
Import File Strings section of the executable header.

This sample shows the use of the absolute pathname on the link line. The
following command:

cc -o example main.c /tmp/addlib/old/complex/libone.a

results in an Import File Strings section of:

Import File Strings
INDEX PATH BASE MEMBER
0 /usr/lib:/lib
1 libc.a shr.o
2 /tmp/addlib/old/complex libone.a shr1.o

This sample shows how to suppress the absolute pathname used on the link
line. The following command:

cc -o example main.c -bnoipath /tmp/addlib/old/complex/libone.a

results in an Import File Strings section of:

Import File Strings
INDEX PATH BASE MEMBER
0 /usr/lib:/lib
1 libc.a shr.o
2 libone.a shr1.o

When using a new style shared object, there is no member entry in the
output, only a base entry. The following command:

cc -brtl -o example main.c -L/tmp/addlib/new/complex -lone

results in an Import File Strings section of:

Import File Strings
INDEX PATH BASE MEMBER
0 /tmp/addlib/new/complex:/usr/lib:/lib
1 libone.so
74 C and C++ Application Development on AIX

2 libc.a shr.o
3 librtl.a shr.o

3.5.3.2 The dump -Tv command
The dump -Tv command is used to examine the symbol information of a
shared object or executable. It lists information on the symbols the object is
exporting. It also lists the symbols the object or executable will try and import
at load time and, if known, the name of the shared object that contains those
symbols. The main columns to examine in the output are headed IMEX,
IMPid, and Name.

The IMEX column indicates if the symbol is being imported (IMP) or exported
(EXP). The IMPid field contains information on the shared object that the
symbol will be imported from. The Name field lists the name of the symbol.
For example:

dump -Tv libone.so

libone.so:

Loader Section

Loader Symbol Table Information
[Index] Value Scn IMEX Sclass Type IMPid Name

[0] 0x00000000 undef IMP DS EXTref libc.a(shr.o) printf
[1] 0x00000000 undef IMP DS EXTref libtwo.so function2
[2] 0x20000264 .data EXP DS SECdef [noIMid] function3
[3] 0x20000270 .data EXP DS SECdef [noIMid] function1

The output shown above for the libone.so new style shared object indicates
that the symbols function1 and function3 are being exported from this object.
The object also has two imported symbols on which it depends. The symbol,
printf, is being imported from the shared object, shr.o, which is a member of
the libc.a archive library. It also imports the symbol function2 from the new
style shared object, libtwo.so.

3.5.4 Using a private shared object
When used under normal circumstances, a shared object is loaded into the
system global shared object segment. Subsequent executables that use the
shared object benefit from the fact that it is already loaded.

In a development environment, particularly on a system with multiple
developers, it may be preferable to use a private copy of a shared object. This
may be useful when developing and testing new functionality in a shared
Chapter 3. AIX shared libraries 75

object that is specific to a particular version of the application that a single
developer is working on.

If the shared object or container has the access permissions modified as
detailed below, then when the system loader starts an application that uses
this shared object, the shared object text will be loaded into the process
private segment rather than the system shared object segment. The shared
object data will also be loaded into the process private segment instead of its
normal location of the process shared object data segment. This means every
application will have its own private copy of the shared object text and data.
Applications normally have their own copy of the shared object data and
share the text with other applications.

To use a private version of the shared object text and data, modify the access
permissions as follows:

• If the shared object is contained in an archive library, remove read-other
permission from the archive library.

• If the shared object is a new style shared object, for example libname.so,
or a standalone shared object, for example, shrobj.o, then remove
read-other permission from the shared object.

The effect of this change can be demonstrated using the following sample
code.

The file source1.c is used to make a simple shared object. It contains the
following code:

struct funcdesc {
int codeaddr;
int TOCentry;
int env;
} * shlibfdesc;

void function1(int a)
{

shlibfdesc = (struct funcdesc *) function1;
printf("address of function1 is 0x%p\n",shlibfdesc->codeaddr);
printf("address of shlibfdesc is 0x%p\n",&shlibfdesc);

}

The shared object is linked with a small main application, which contains the
following code:

struct funcdesc {
int codeaddr;
int TOCentry;
76 C and C++ Application Development on AIX

int env;
} * mainfdesc;
int main(int argc, char ** argv)

{
mainfdesc = (struct funcdesc *) main;
printf("address of main is 0x%p\n",mainfdesc->codeaddr);
printf("address of mainfdesc struct is 0x%p\n",&mainfdesc);
function1();

}

A function pointer in the C language is implemented as a pointer to a
structure that contains three entries. The first entry is a pointer to the address
of the code, and the second is a pointer to the table of contents entry for the
module containing the function. The third entry is a pointer to environment
information and is used by certain other languages, such as Pascal.

The shared object is created with the following commands:

cc -c source1.c
ld -G -o libone.so source1.o -bexpall -bnoentry -lc
chmod o-r libone.so

Note that read-other permission is removed from the shared object. The main
routine is then created with the following command:

cc -brtl -o example main.c -lone -L.

The output from running the program is as follows:

./example
address of main is 0x100002f0
address of mainfdesc struct is 0x200027d4
address of function1 is 0x20000150
address of shlibfdesc is 0x2000127c

Note that the address of the code for the main routine is in segment 1 as
expected, and the data structure mainfdesc is in segment 2. Since the shared
object had read-other permission removed, it was loaded into segment 2 by
the system loader. This can be seen with the address of function1 and
shlibfdesc starting with 0x2.

If read-other permission is restored to the shared object, and the program is
invoked again, the result is as follows:

chmod o+r libone.so
./example
address of main is 0x100002f0
Chapter 3. AIX shared libraries 77

address of mainfdesc struct is 0x200007d4
address of function1 is 0xd040f150
address of shlibfdesc is 0xf001f27c

The address of the main routine and the mainfdesc structure have not
changed. The address of function1 now starts with 0xd. This indicates the
code is in segment 13, the system shared object segment. The address of the
data object shlibfdesc now starts with 0xf, which indicates it is in segment 15,
the process private shared object data segment.

Refer to Section 2.1.2, “Segment Register addressing” on page 34 for a
description of the segment registers and the normal use for each segment.

3.6 Programatic control of loading shared objects

The dlopen() family of subroutines is supported on the AIX operating system.
The functions include:

• dlopen

• dlclose

• dlsym

• dlerror

When used appropriately they allow a program to dynamically load shared
objects into the address space, use functions in the shared object and then
unload the shared object when it is no longer required.

3.6.1 The dlopen subroutine
The dlopen function is used to open a shared object, and dynamically map it
into the running programs address space. The specification of the function is
as follows:

#include <dlfcn.h>

void *dlopen (FilePath, Flags);
const char *FilePath;
int Flags;

The FilePath parameter is the full path to a shared object, for example
shrobj.o, or libname.so. It can also be a pathname to an archive library that
includes the required shared object member name in parenthesis, for
example /lib/libc.a(shr1.o).
78 C and C++ Application Development on AIX

The Flags parameter specifies how the named shared object should be
loaded. The Flags parameter must be set to RTLD_NOW or RTLD_LAZY. If
the object is a member of an archive library, the Flags parameter must be
OR’ed with RTLD_MEMBER.

The subroutine returns a handle to the shared library that gets loaded. This
handle is then used to with the dlsym subroutine to reference the symbols in
the shared object. On failure, the subroutine returns NULL. If this is the case,
the dlerror subroutine can be used to print an error message.

3.6.2 The dlsym subroutine
The dlopen subroutine is used to load the library. If successful, it returns a
handle for use with the dlsym routine to search for symbols in the loaded
shared object. Once the handle is available, the symbols (including functions
and variables) in the shared object can be found easily. For example:

lib_func=dlsym(lib_handle, "locatefn");
error=dlerror();
if (error)
{

fprintf(stderr, "Error:%s \n",error);
exit(1);

}

The dlsym subroutine accepts two parameters. The first is the handle to the
shared object returned from the dlopen subroutine. The other is a string
representing the symbol to be searched for.

If successful, the dlsym subroutine returns a pointer that holds the address of
the symbol that is referenced. On failure, the dlsym subroutine returns NULL.
This, again, can be used with the dlerror subroutine to print an error message
as shown above.

3.6.3 The dlclose subroutine
The dlclose subroutine is used to remove access to a shared object that was
loaded into the processes’ address space with the dlopen subroutine. The
subroutine takes as its argument the handle returned by dlopen.

3.6.4 The dlerror subroutine
The dlerror subroutine is used to obtain information about the last error that
occurred in a dynamic loading routine (that is, dlopen, dlsym, or dlclose). The
returned value is a pointer to a null-terminated string without a final newline.
Chapter 3. AIX shared libraries 79

Once a call is made to this subroutine, subsequent calls without any
intervening dynamic loading errors will return NULL.

Applications can avoid calling the dlerror subroutine, in many cases, by
examining errno after a failed call to a dynamic loading routine. If errno is
ENOEXEC, the dlerror subroutine will return additional information. In all
other cases, dlerror will return the string corresponding to the value of errno.

3.6.5 Using dynamic loading subroutines
In order to use the dynamic loading subroutines, an application must be
linked with the libdl.a library. The shared objects used with the dynamic
loading subroutines can be traditional AIX shared objects or shared objects
that have been enabled for run-time linking with the -G linker option.

When the dlopen subroutine is used to open a shared object, any initialization
routines specified with the -binitfini option, as described in Section 3.2.4,
“Initialization and termination routines” on page 60, will be called before
dlopen returns. Similarly, any termination routines will be called by the dlclose
subroutine.

3.6.6 Advantages of dynamic loading
Use of dynamic linking allows several benefits for application developers:

1. The ability to share commonly-used code across many applications,
leading to disk and memory savings.

2. It allows the implementation of services to be hidden from applications.

3. It allows the re-implementation of services, for example, to permit bug and
performance fixes or to allow multiple implementations selectable at
runtime.

3.6.7 Previous dynamic loading interface
AIX, Version 4.1 did not support the dlopen family of dynamic loading
subroutines as standard. Instead, it supported the load, loadbind, and unload
subroutines, which could be used to perform similar tasks.

The main difference between the load and dlopen interfaces is that the load
interface is normally used to load a shared object to resolve deferred

The dlerror() subroutine is not thread-safe since the string may reside in a
static area that is overwritten when an error occurs.

Note
80 C and C++ Application Development on AIX

symbols. That is symbols included as part of an import file that has a blank
filename specifier (#!). The symbols are referenced throughout the code, but
not resolved (and, therefore, can not be used) until the shared object
containing the symbols is loaded into the process address space with the
load subroutine and the deferred symbols resolved by calling the loadbind
routine. The use of deferred imports like this has essentially been taken care
of with the introduction of the run-time linker. Use of the run-time linker is
much simpler, as there is no need for the program code itself to perform the
actions that cause the shared object to be loaded and the symbols resolved.

Programs written in C++ had to use the loadAndInit and terminateAndUnload
subroutines instead of the load and unload subroutines to ensure that
constructors and destructors for classes in the shared object being loaded or
unloaded were called correctly. The loadAndInit and terminateAndUnload
routines are part of the C++ runtime library (libC.a), unlike the load, loadbind,
and unload routines, which are part of the C runtime library (libc.a).

The load, loadbind, loadAndInit, unload, and terminateAndUnload
subroutines are still available and supported in AIX, Version 4.3. For
application code portability reasons, however, the dlopen subroutine family
should be used in preference.

Constructors for static classes are called when C++ shared objects are
loaded using either the loadAndInit or dlopen routines. Similarly, destructors
for static classes are called when C++ shared objects are unloaded using
either the terminateAndUnload or dlclose routines. Refer to Section 3.8,
“Order of initialization” on page 84 for information on specifying the relative
order of initialization between shared objects and between modules within a
single shared object. Note that the use of dlopen in C++ applications is
complicated by the fact that the C++ symbol names are mangled to support
function overloading. The symbol name used as the argument to the dlsym
routine must be the mangled symbol name.

3.7 Shared objects and C++

The C++ language, although similar in some respects to the C language,
offers many additional facilities. One of these is known as function
overloading, which makes it possible to have multiple functions with the same
name but different parameter lists. This feature means it is not possible to use
the function name alone as a unique identifier in the symbol table of an object
file. For this reason, function names in C++ are mangled to produce the
symbol name. The mangling uses a code to indicate the number, type, and
ordering of parameters to the function.
Chapter 3. AIX shared libraries 81

It is the name mangling feature of C++ that means the process of creating a
shared object, that includes object code created by the C++ compiler, is
slightly more complicated than when using code produced by the C compiler.

Although it would be possible to create import and export files manually, the
process is time consuming since a unique symbol name is required for each
instance of an overloaded function.

3.7.1 Creating a C++ shared object
The good news is that the C++ compiler comes with a makeC++SharedLib

command that performs most of the dirty work behind the scenes. If you are
creating a shared object that uses template functions, you should use the
-qmkshrobj option. Refer to Section 3.7.3, “The -qmkshrobj option” on page
83 for more information. The interface to the makeC++SharedLib command is
similar to the linker interface used to create a shared object based on C
language code. For example:

cc -c source1.c
ld -G -o libone.so source1.o

The process of creating a shared object from C++ code is very similar. The
first step is to use the C++ compiler to create the individual object modules
that will be placed in the shared object, for example:

xlC -c cplussource1.C

The second step is to use the makeC++SharedLib command to create the
shared object. The command has many optional arguments, but in its
simplest form, can be used as follows:

/usr/vacpp/bin/makeC++SharedLib -o shr1.o cplussource1.o

The full path name to the command is not required; however, to avoid this,
you will have to add the directory in which it is located to your PATH
environment variable. The command is located in the /usr/vacpp/bin directory
with the VisualAge C++ Professional for AIX, Version 5 compiler. The
command is installed in /usr/ibmcxx/bin with the CSet++ 3.6 compiler and in
/usr/lpp/xlC/bin with the CSet++ 3.1 compiler.

Use the -G option to the command when you want to create a shared object
enabled for use with run-time linking, or one that uses the libname.so format.
For example:

/usr/vac/bin/makeC++SharedLib -G -o libone.so source.o
82 C and C++ Application Development on AIX

If the makeC++SharedLib script is used to build the C++ shared libraries and
export symbols, make sure that any system libraries required by the shared
object are always specified with the -l option (for example, -lX11) and never
by name (for example, /usr/lib/libX11.a) on the command line. This allows the
system libraries to be simply referenced by the shared object being created
and not go through the special C++ related processing.

3.7.2 Generating an exports file
Another very useful option to the makeC++SharedLib command is the ability to
save the export file that is generated behind the scenes and normally
discarded after use. If saved, this export file can then be used as an import
file when creating another shared object. The -e expfile option is used to save
the export file. Note that the export file produced does not have an object file
name field (#!) on the first line; so, one will have to be manually added, if
required.

3.7.3 The -qmkshrobj option
VisualAge C++ Professional, Version 5 for AIX supplies the
makeC++SharedLib shell script, as do the previous IBM C++ compiler
products for AIX. VisualAge, Version 5, however, also allows the use of a new
option to the compiler. The new -qmkshrobj option is used to instruct the
compiler to create a shared object from previously created object files and
archive libraries. It provides similar functionality to the makeC++SharedLib

command and, in addition, makes it much easier to create shared objects that
use template functions. Refer to Section 4.4, “Shared objects with templates”
on page 100 for more information.

For example, to create a shared object shr1.o from the files source1.o and
source2.o, use the following command:

xlC -qmkshrobj -o shr1.o source1.o source2.o

The -G option can also be used in conjunction with the -qmkshrobj option to
create an object that uses the new style naming convention and is enabled for
run-time linking. For example:

xlC -G -qmkshrobj -o libshr1.so source1.o source2.o

To specify the priority of the shared object, which determines the initialization
order of the shared objects used in an application, append the priority number
to the -qmkshrobj option. For example, to create the shared object shr1.o,
which has an initialization priority of -100, use the following command:

xlC -qmkshrobj=-100 -o shr1.o source1.o source2.o
Chapter 3. AIX shared libraries 83

If none of the -bexpall, -bE:, -bexport:, or -bnoexpall options are specified,
then using the -qmkshrobj option will force the compiler to generate an
exports file that exports all symbols. This file can be saved for use as an
import file when creating other shared objects, if desired. This is done using
the -qexpfile=filename option. For example:

xlC -qmkshrobj -qexpfile=shr1.exp -o shr1.o source1.o source2.o

3.7.4 Mixing C and C++ object files
In addition to the mangling of symbol names, the C++ language differs from
the C language in the way function arguments are passed on the calling
stack. The C language pushes arguments onto the stack right to left, which
means the left-most argument is top-most on the stack. For various reasons,
the C++ language uses right to left instead. This is termed as linkage, and
one can speak of a function having C or C++ linkage.

When mixing C and C++ code together, it is necessary to use a linkage block
to call a C routine from a C++ routine. This is to prevent the compiler from
mangling the name of the C routine, which would result in a symbol name that
could not be resolved. For example, to call the C function, foo, from C++
code, the declaration of foo must be in an external linkage block:

extern “C” {
void foo(void);
}
class1::class1(int a)
{

foo();
}

If the declaration of foo was not contained in the extern “C” block, the C++
compiler would mangle the symbol name to foo__Fv.

When mixing C and C++ objects within a single shared object, either the
makeC++SharedLib command (which uses the C++ compiler) or the -qmkshrobj
option of the C++ compiler should be used to create the shared object. Do not
use the C compiler or the linker since they may not produce the correct result
as they are not aware of C++ constructors, destructors, templates, and other
C++ language features.

3.8 Order of initialization

There are situations where the order of initialization of data objects within a
program is important to the correct operation of the application. A priority can
84 C and C++ Application Development on AIX

be assigned to an individual object file when it is compiled. This is done using
the -qpriority option. For example:

xlC -c zoo.C -qpriority=-50

The C++ compiler and the makeC++SharedLib command also support options
that can be used to indicate the relative order of initialization of shared
objects. There is a slight difference in the way the priority is specified when
using each command. When using the C++ compiler, the priority is specified
as an additional value with the -qmkshrobj option. For example:

xlC -qmkshrobj=-100 -o shr1.o source1.o

When using the makeC++SharedLib command, the priority is specified with the
-p option. For example:

makeC++SharedLib -p -100 -o shr1.o source1.o

Priority values can also be indicated within C++ code by using the priority
compiler directive as follows:

#pragma priority(value)

These values alter the order of initialization of data objects within the object
module.

3.8.1 Priority values
Priority values may be any number from -214782623 to 214783647. A priority
value of -214782623 is the highest priority. Data objects with this priority are
initialized first. A priority value of 214783647 is the lowest priority. Data
objects with this priority are initialized last. Priority values from -214783648 to
-214782624 are reserved for system use. If no priority is specified, the default
priority of 0 is used.

The explanation of priority values uses the example data objects and files
shown in Figure 9 on page 86.
Chapter 3. AIX shared libraries 85

Figure 9. Illustration of objects in fish.o and animals.o

This example shows how to specify priorities when creating shared objects to
guarantee the order of initialization. The user should first of all determine the
order in which they want the objects to be initialized, both within each file and
between shared objects:

1. Develop an initialization order for the objects in house.C, farm.C, and
zoo.C:

a. To ensure that the object lion L in zoo.C is initialized before any other
objects in either of the other two files in the shared object animals.o,
compile zoo.C using a -qpriority=nn option with nn less than zero so

myprogram.C fish.o

fresh.C salt.C

house.C farm.C zoo.C

animals.o

....................

main () {

.............

class Cage CAGE

..............

#pragma priority(-80)
........

class trout A
.......

#pragma priority(500)

........

class bass B

..........

#pragma priority(-200)
..........

class shark S
..........

#pragma priority(10)
..........

class tuna T

...........

#pragma priority(20)

class dog D

#pragma priority(100)

class cat C

...........

...........

...........

class horse H

...........

#pragma priority(500)

...........

class cow W

............

class lion L
............

#pragma priority(50)

............

class zebra Z
............
86 C and C++ Application Development on AIX

that data objects have a priority number less than any other objects in
farm.C and house.C:

xlC zoo.C -c -qpriority=-50

b. Compile the house.C and farm.C files without specifying the
-qpriority=nn option. This means the priority will default to zero. This
means data objects within the files retain the priority numbers specified
by their #pragma priority(nn) directives:

xlC house.C farm.C -c

c. Combine these three files into a shared library. Use the
makeC++SharedLib command to construct the shared object animals.o
with a priority of 40:

makeC++SharedLib -o animals.o -p 40 house.o farm.o zoo.o

2. Develop an initialization order for the objects in fresh.C and salt.C, and
use the #pragma priority(value) directive to implement it:

a. Compile the fresh.C and salt.C files

xlC -c fresh.C salt.C

b. To assure that all the objects in fresh.C and salt.C are initialized before
any other objects, including those in other shared objects and the main
application, use makeC++SharedLib to construct a shared object fish.o
with a priority of -100:

makeC++SharedLib -o fish.o -p -100 fresh.o salt.o

Because the shared object fish.o has a lower priority number (-100)
than animals.o (40), when the files are placed in an archive file with the
ar command, the objects are initialized first.

3. To create a library that contains the two shared objects, so that the objects
are initialized in the order you have specified, use the ar command. To
produce an archive file, libprio.a, enter the command:

ar rv libprio.a animals.o fish.o

where:

libprio.a is the name of the archive file that will contain the shared library
files, and animals.o and fish.o are the two shared files created with
makeC++SharedLib.

4. Compile the main program, myprogram.C, that contains the function main
to produce an object file, myprogram.o. By not specifying a priority, this file
is compiled with a default priority of zero, and the objects in main have a
priority of zero:

xlC -c myprogram.C
Chapter 3. AIX shared libraries 87

5. Produce an executable file, animal_time, so that the objects are initialized
in the required order, enter:

xlC -o animal_time main.o -lprio -L.

When the animal_time executable is run, the order of initialization of objects
is as shown in Table 10.

Table 10. Order of initialization of objects in prriolib.a

Object Priority
value

Comment

fish.o -100 All objects in fish.o are initialized first
because they are in a library prepared
with makeC++SharedLib -p -100
(lowest priority number, -p -100
specified for any files in this
compilation).

shark S -100(-200) Initialized first in fish.o because within
file, #pragma priority(-200).

trout A -100(-80) #pragma priority(-80)

tuna T -100(10) #pragma priority(10)

bass B -100(500) #pragma priority(500)

myprog.o 0 File generated with no priority
specifications; default is 0.

CAGE 0(0) Object generated in main with no
priority specifications; default is 0.

animals.o 40 File generated with
makeC++SharedLib with -p 40.

lion L 40(-50) Initialized first in file animals.o
compiled with -qpriority=-50.

horse H 40(0) Follows with priority of 0 (since
-qpriority=nn not specified at
compilation and no #pragma
priority(nn) directive).

dog D 40(20) Next priority number (specified by
#pragma priority(20)).

zebra N 40(50) Next priority number from #pragma
priority(50).
88 C and C++ Application Development on AIX

3.9 Troubleshooting

The following tips and hints can be used to help linking and loading of C and
C++ programs on AIX, Version 4.3.

3.9.1 Link failures
When linking large applications with many libraries, the linker may exit with
some strange errors referring to BUMP or indicating that the binder was
killed. This may be because of low paging space or because of low resource
limits for the user invoking the command. The AIX linker offers a great deal
more functionality than traditional UNIX linkers, but it does require a
reasonable amount of virtual memory, particularly when linking large
applications with many libraries.

If this type of error is encountered, check the paging space available on the
machine. In addition, check the resource limits for the user invoking the linker.
This can be done with the ulimit command.

3.9.1.1 Unresolved symbols
When linking your application with many libraries, particularly those supplied
by a third party product, such as a database, it is not unusual during the
development cycle to see a linker error warning of unresolved symbols.

The linker supports options that can be used to generate linker log files.
These log files can then be analyzed to determine the library or object file that
references the unresolved symbol. This can help in tracking interdependent
or redundant libraries being used in error.

The -bmap:filename option is used to generate an address map. Unresolved
symbols are listed at the top of the file, followed by imported symbols.

The -bloadmap:filename option is used to generate the linker log file. It
includes information on all of the arguments passed to the linker along with
the shared objects being read and the number of symbols being imported. If
an unresolved symbol is found, the log file produced by the -bloadmap option

cat C 40(100) Next priority number from #pragma
priority(100).

cow W 40(500) Next priority number from #pragma
priority(500).

Object Priority
value

Comment
Chapter 3. AIX shared libraries 89

lists the object file or shared object that references the symbol. In the case of
using libraries supplied by a third party product, you can then search the
other libraries supplied by the product in an effort to determine which one
defines the unresolved symbol. This is particularly useful when dealing with
database products that supply many tens of libraries for use in application
development.

3.9.2 Runtime tips
If large parts of the shared libraries are paged in all at once because of C++
calls or many references between libraries, it may be faster to read the library
rather than demand-page it into memory. Remove read-other permission from
the applications shared libraries and see if the loading performance improves.
If it does, then reset the original permissions and set the following
environment variable:

LDR_CNTRL = PREREAD_SHLIB

By using this environment variable, the libraries are read very quickly into the
shared memory segment.
90 C and C++ Application Development on AIX

Chapter 4. Using C++ templates

Templates are an area of the C++ language that provide a great deal of
flexibility for developers. The recent ANSI C++ standard defines the language
facilities and features for templates. Unfortunately, the standard does not
specify how a compiler should implement templates. This means that there
are sometimes significant differences between the methods used to
implement templates in compiler products from different vendors.

Developers porting C++ code that uses templates to the AIX platform
sometimes have problems with the implementation model. The main
problems experienced are:

• Long compile and link times

• Linker warnings of duplicate symbols

• Increase in code and executable size

All of the above problems are generally caused by inefficient use of the AIX
implementation of templates. The number of problems experienced will
depend on the platform the code is being ported from and the template
implementation method used on that platform. Sometimes, the problems can
be fixed on AIX by simply adding a few compiler options. In other instances,
the code layout needs to be changed in order to utilize the most efficient
implementation method on AIX. In most of these rare cases, the code
changes are backwards compatible with the original platform the code is
being ported from. This is very important for developers who maintain a
single source tree that must compile correctly on multiple platforms.

4.1 AIX template implementations

The template mechanism provides a way of defining general container types,
such as list, vector, and stack, where the specific type of the elements is left
as a parameter. Two types of templates can be defined:

Class templates Specify how individual classes can be constructed.

Function templates Specify how individual functions can be constructed.

Regardless of the type of template being used, the code is essentially split
into three parts:

Template declaration This is the part of the source code that declares the
template class or function. It does not necessarily
contain the definition of the class or function, although
© Copyright IBM Corp. 2000 91

it may optionally do so. For example, a template
declaration may describe a Stack template class as
shown in Figure 10.

Template definition This portion of code is the definition of the template
function itself or the template class member functions.
For example, using the Stack class template, this
portion of code would define the member functions
used to manipulate the stack as shown in Figure 11 on
page 93.

Template instance The template instance code is generated by the
compiler for each instance of the template. For
example, this would be the code to handle a specific
instance of the stack template class, such as a stack
of integer values.

The difference between the components is that the template declaration must
be visible in every compilation unit that uses the template. The template
definition and code for each instance of the template need only be visible
once in each group of compilation units that are linked together to make a
single executable.

Figure 10. Stack template declaration

template <class T> class stack
{
private:

T* v;
T* p;
int sz;

public:
stack(int);
~stack();
void push(T);
T pop();

};
92 C and C++ Application Development on AIX

Figure 11. Stack template member function definition

4.1.1 Generated function bodies
When you use class templates and function templates in your program, the
compiler automatically generates function bodies for all template functions
that are instantiated. The compiler follows four basic rules to determine when
to generate template functions. The compiler applies the rules in the following
order:

1. If a template declares a function to have internal linkage, the function must
be defined within the same compilation unit. The compiler generates the
function with internal linkage, and it is not shared with other compilation
units. This is the case if the template class has inline member functions.

2. If a template function is instantiated in a compilation unit, but it is not
declared to have internal linkage, the compiler looks for a definition of the
function in the same compilation unit. If a definition is found, the compiler
generates a function body in the same compilation unit.

3. If a template function is instantiated in a compilation unit, and the function
is not defined in the same compilation unit, but certain other conditions are
met, the compiler generates the necessary function definitions during a

template <class T> stack<T>::stack(int s)
{

v = p = new T[sz=s];
}

template <class T> stack<T>::~stack()
{

delete [] v;
}

template <class T> void stack<T>::push(T a)
{

*p++ = a;
}

template <class T> T stack<T>::pop()
{

T ret = *p;
p--;
return ret;

}

Chapter 4. Using C++ templates 93

special prelink phase of the compilation. This is the case when the
-qtempinc option is in use.

4. If none of the preceding rules applies, the compiler does not generate the
definition of the template function. It must be defined in another
compilation unit.

4.2 Simple code layout method

The simplest method of using template code is to include both the declaration
and definition of the template in every compilation unit that uses instances of
the template. From a code layout point of view, this is very easy since the
template declaration and definition can be kept in a single header file. Using
the stack example, the code in Figure 10 on page 92 and Figure 11 on page
93, would be combined into a single header file, for example, stack.h, which is
then included by every compilation unit that wishes to use the template.
Alternatively, the header file for a template declaration can include the source
file that contains the template definition. Using the stack template example,
the header file, stack.h, would #include the source file, stack.C.

There are a number of disadvantages to using this method. Some of them
can be overcome; others can not.

4.2.1 Disadvantages of the simple method
The first disadvantage is that using the header files can become complicated,
particularly when other header files need to declare an instance of the
template. In order to do this, they must #include the stack.h file, which
potentially leads to multiple #include’s of the file, resulting in multiple
definitions of the member functions. This problem can be fixed with the
addition of preprocessor macros in the header file to protect against multiple
#include operations. For example:

#ifndef stack_h
#define stack_h
....
....declaration and definition of stack template
....
#endif

Using the macros shown above, the contents of the header file will only
appear once in the compilation unit, regardless of the number of times the file
is included. This resolves the problems of multiple definitions within a
compilation unit.
94 C and C++ Application Development on AIX

4.2.1.1 Template code bloat
The second disadvantage is that the code for each template instance will
potentially appear multiple times in the final executable, resulting in the twin
problems of large executable size and multiple symbol definition warnings
from the linker.

As an example, consider an executable made up of two compilation units,
main.C and functions.C. If both compilation units include the stack.h header
file, and declare variables of the type stack<int>, then after the first stage of
compilation, both object files, main.o and functions.o, will contain the code for
the member functions of the stack<int> class. When the system linker parses
the object files to create the final executable, it can not remove the duplicate
symbols since, by default, each compilation unit is treated as an atomic object
by the linker. This results in duplicate symbol linker warnings and a final
executable that contains redundant code.

The size of the final executable can be reduced by using the compiler option,
-qfuncsect, when compiling all of the source code modules. This option
causes the compiler to slightly change the format of the output object files.
Instead of creating an object file, which contains a single code section
(CSECT) and must be treated by the system linker as an atomic unit, the
compiler creates an object file where each function is contained in its own
CSECT. This means that the object files created are slightly larger than their
default counterparts since they contain extra format information in addition to
the executable code. This option does not remove the linker warnings since at
link time, there are still multiple symbol definitions. The benefit of this option
is that the linker can discard multiple, identical function definitions by
discarding the redundant CSECTs, resulting in a smaller final executable.
When the -qfuncsect option is not used, the compiler can not discard the
redundant function definitions if there are other symbols in the same CSECT
that are required in the final executable.

Refer to Section 4.5, “Virtual functions” on page 103 for information on
another potential cause of C++ code bloat.

4.2.1.2 Template compile time
The use of the -qfuncsect option reduces the code size of the final
executable. It does not resolve the other disadvantage of using this method -
that of longer than required compile times. The reason for this is that each
compilation unit contains the member functions for the templates that it
instantiates. Using an extreme example with the stack class, consider the
situation where an application is built from 50 source files, and each source
file instantiates a stack<int> template. This means the member functions for
Chapter 4. Using C++ templates 95

the class are generated and compiled 50 times, yet the result of 49 of those
compiles are discarded by the linker since they are not needed. In the
example used here, the code for the stack class is trivial; so, in absolute
terms, the time saved would be minimal. In real life situations, where the
template code is complex, the time savings that can be made when compiling
a large application are considerable.

Because of the fact that not all of the disadvantages of the simple template
method can be overcome, it is only recommended for use when
experimenting with templates. An alternative method can be used, which
solves all of the problems of the simple method and scales very well for large
applications.

4.3 Preferred template method

The preferred method of template instantiation on AIX basically means letting
the compiler decide which template code to instantiate as a final step in the
compile and link process. This solves the long compile time disadvantage of
the simple template method because the compiler need only compile each
template instance once.

This method requires that the declaration and definition of the template are
kept in separate files. This is because only the template declaration must be
included in every compilation unit that uses the template. If the definition of
the template were also in the header file, it would also be included in the
source file, and thus compiled, resulting in a situation similar to that in the
simple method.

The preferred template model can also benefit from the use of the -qfuncsect
compiler option since it means the linker can discard code sections that are
not referenced in the final executable.

The template declaration should be left in the header file, as in the simple
template method. The definition of the template member functions needs to
be in a file with the same basename as the header file but with a .c (lower
case C) filename extension.
96 C and C++ Application Development on AIX

Using the stack template example introduced earlier, the template declaration
shown in Figure 10 on page 92 would be in the file stack.h, while the template
definition code shown in Figure 11 on page 93 would be in the file stack.c in
the same directory. If the template definition code file was named stack.cxx or
stack_code.c, then the compiler will not associate the file with the template
declaration in the stack.h header file.

The name of the template definition file can be changed, if desired, using the
implementation pragma directive as follows:

#pragma implementation(string-literal)

where string-literal is the path name for the template definition file
enclosed in double quotes. For example, if the stack template definition code
were to be stored in the file, stack_code.cxx, then the stack.h header file
would have the following directive:

#pragma implementation(“stack_code.cxx”)

Once the structure of the source code has been altered to conform to the
required layout, the templates can be used in the preferred way.

4.3.1 The -qtempinc option
The -qtempinc option is used when compiling source code that instantiates
templates. When no directory is specified with the option, the compiler will
create a directory called tempinc in the current directory. For example:

xlC main.C -qtempinc

The user may optionally specify the name of a directory to use for storing the
information on the templates to be generated. This allows the same tempinc
directory to be used when creating an executable that consists of object files
that are compiled in different directories. For example:

By default, the file containing the template definition code must have the
same name as the template declaration header file, but with a filename
extension of .c (lowercase c), even though this extension normally
indicates a C language source file. It must also exist in the same directory
as the template declaration header file. If the template definition file is not
in the same directory, has a different basename, or has a different filename
extension (such as .C, .cxx, or .cpp, which are normally used for C++
source files), then the compiler will not detect the presence of the template
code to be used with the template declaration header file.

Note
Chapter 4. Using C++ templates 97

xlC -c file1.C file2.C -qtempinc=../app1/templates
cd ../app1
xlC -o app1 main.C ../src/file1.o ../src/file2.o -qtempinc=./templates

The tempinc directory is used to store information about the templates that
are required to be generated. When invoked with the -qtempinc option, the
compiler collects information about template instantiations and stores the
information in the tempinc directory. As the last step of the compilation before
linking, the compiler generates the code for the required template
instantiations. It then compiles the code and includes it with the other object
files and libraries that are passed to the linker to create the final executable.

If the compiler detects a code layout structure that enables the preferred
template method to be used, it will automatically enable the -qtempinc option,
even if it was not specified on the command line. This causes the template
instantiation information to be stored in the tempinc directory. If you want to
specify a different directory, you should explicitly use the -qtempinc=dirname
option on the command line. If you want to prevent the compiler from
automatically generating the template information, which may be the case
when creating a shared object, then use the -qnotempinc option. Refer to
Section 4.4, “Shared objects with templates” on page 100 for more
information on the use of the -qnotempinc option when creating shared
objects.

One important point to note about the -qtempinc option is that you should use
the same value when compiling all compilation units that will be linked
together. In other words, do not compile half of the application with -qtempinc,
and the other half with -qtempinc=dirname. Only one tempinc directory can
be specified on the final C++ compile line that is used to link the application,
which means that half of the template instance information will be missing. If
more than one tempinc option is specified on the command line, the last one
encountered will prevail.

4.3.2 Contents of the tempinc directory
The compiler generates a file in the tempinc directory for each template
header file that has templates instantiated. The file has the same name as the
header file, but with a .C (uppercase C) filename extension. The compiler
generates the file when it detects the first instantiation of a template that is
declared in the header file with the same name. Information on the
subsequent instances of the template is added to the file.
98 C and C++ Application Development on AIX

As the final step of the compilation before linking, the compiler compiles all of
the files in the tempinc directory and passes the object files to the linker along
with the user specified files.

The contents of a template information file are as follows:

/*0965095125*/#include "/redbooks/examples/C++/stack.h" 1
/*0000000000*/#include "/redbooks/examples/C++/stack_code.cxx" 2
template stack<int>::stack(int); 3
template stack<int>::~stack(); 4
template void stack<int>::push(int); 5
template int stack<int>::pop(); 6

The line numbers at the end of each line have been added for reference
purposes. The code on line 1 includes the header file that declares the
template. The comment at the start of the line is a timestamp and is used by
the compiler to determine if the header file has changed, which would require
the template instance information file to be recompiled.

The code on line 2 includes the template implementation file that corresponds
to the header file in line 1. A timestamp consisting of all zeros indicates that
the compiler should ignore the timestamp. The file may include other header
files that define the classes that are used in template instantiations. For
example, if there was a user defined class Box, and the compiler detected
and instantiation of stack<Box>, then the header file that defines the class
Box would be included in the instance information file.

The subsequent lines in the example shown above cause the individual
member functions to be instantiated.

4.3.3 Forcing template instantiation
You can, if you wish, structure your program so that it does not use automatic
template instantiation. In order to do this, you must know which template
classes and functions need to be instantiated.

The #pragma define directive is used to force the instantiation of a template,
even if no reference is made to an instance of the generated template. For
example:

#pragma define(stack<double>);

This, however, means that the template implementation file needs to be
included in the compilation units that have the #pragma define directives,
which results in the same disadvantages of the simple template method
described in Section 4.2, “Simple code layout method” on page 94.
Chapter 4. Using C++ templates 99

An alternative to this is to manually emulate the process used by the compiler
to automatically create the appropriate template instances. Using the stack
class as an example, the following compilation unit could be used to force the
creation of the desired stack template classes, even though no objects of
those types are referenced in the source code:

#include "/redbooks/examples/C++/stack.h" 1
#include "/redbooks/examples/C++/stack_code.cxx" 2
#include “/redbooks/examples/C++/Box.h” // definition of class Box 3
#pragma define(stack<int>); 4
#pragma define(stack<Box>); 5
#pragma define(stack<char>); 6
#pragma define(stack<short>); 7

This type of method will be useful when creating shared objects with the
makeC++SharedLib command. Users of the VisualAge C++ Professional for AIX,
Version 5 compiler should use the -qmkshrobj option instead. Refer to
Section 4.4, “Shared objects with templates” on page 100 for more
information.

4.4 Shared objects with templates

Templates are usually declared in a header file. Each time a template is used,
code is generated to instantiate the template with the desired parameters.
Most C++ compilers work with a ‘template repository’. No template code is
generated at compile time; the compiler just remembers where the template
code came from. Then, at link time, as the compiler/linker puts all parts
together, it notices which templates actually need to be generated. The code
is then produced, compiled, and linked into the application.

This becomes a problem when using templates with shared libraries, where
no actual linking takes place. So, one must make sure that the template code
is generated when producing the shared library.

Therefore, one should keep track of compilation and inclusion of template
instantiations.This would mean that one has to manually keep track of all the
template instantiation and address them during the linking phase.

It is here that the VisualAge C++ Professional for AIX, Version 5 compiler has
a noticeable improvement over previous versions of C++ compilers for AIX.
The compiler, like the makeC++SharedLib command, can be used to create a
shared object from object files using the -qmkshrobj option.

This option, together with the -qtempinc option, should be used in preference
to the makeC++SharedLib command when creating a shared object that uses
100 C and C++ Application Development on AIX

templates. The advantage of using these options instead of makeC++SharedLib
is that the compiler will automatically include and compile the template
instantiations in the tempinc directory.

4.4.1 Templates and makeC++SharedLib
The makeC++SharedLib command is supplied with all IBM C++ command line
compilers for the AIX platform. The command is a shell script that gathers the
supplied input and then calls the linker to create the shared object.

When creating a shared object that uses templates, the makeC++SharedLib

command needs to somehow find information on the templates that are to be
instantiated. Because the script calls the linker, and not the compiler, it does
not look at the contents of the tempinc directory. This means the method of
creating a shared object that uses templates relies on either using the simple
template method code layout, as described in Section 4.2, “Simple code
layout method” on page 94, or forcing templates to be instantiated, as
described in Section 4.3.3, “Forcing template instantiation” on page 99.

The best method to use will depend on the circumstances. Using the simple
code layout method means that all the required templates are generated
automatically. However, it also comes with the disadvantages of slower
compile times and larger code size. Forcing the templates to be instantiated
is better from both the code size and compile time aspect, but it does mean
that the user needs to maintain files that instantiate the required templates.

Suppose you want to create a shared object from the following two source
files, which use the preferred code layout method.

File source1.C contains the following code:

#include “stack.h”
stack<int> counter1;
void function1(int a)
{

counter1.push(a);
}

The file source2.C contains the following code:

include “stack.h”
stack<int> counter2;
void function2(int a)
{

counter2.push(a);

}

Chapter 4. Using C++ templates 101

Using the makeC++SharedLib command, an attempt is made to create a shared
object as follows:

xlC -c source1.C source2.C
/usr/vacpp/bin/makeC++SharedLib -o shr1.o -p0 source1.o source2.o
ld: 0711-317 ERROR: Undefined symbol: .stack<int>::stack(int)
ld: 0711-317 ERROR: Undefined symbol: .stack<int>::~stack()
ld: 0711-317 ERROR: Undefined symbol: .stack<int>::push(int)
ld: 0711-345 Use the -bloadmap or -bnoquiet option to obtain more
information.

The command failed, and based on the output, it is easy to see that the
required template functions have not been instantiated. At this point, note that
because the code uses the preferred code layout method, the compiler has, in
fact, automatically created the file tempinc/stack.C, which, if compiled, would
supply the required template definitions. You can, if you wish, copy this file
and make it an explicit compilation unit as part of your source code. In this
case, that would mean adding the following command to the sequence:

xlC -c tempinc/stack.C -o stack.o

The object, file stack.o, would then be passed to the makeC++SharedLib

command along with source1.o and source2.o.

4.4.2 Templates and -qmkshrobj
Users of the VisualAge C++ Professional for AIX, Version 5 compiler should
use the -qmkshrobj option in preference to the makeC++SharedLib command
when creating a shared object. Because the option is a compiler option, it will
automatically look in the tempinc directory (or the directory specified with the
-qtempinc=dirname option) for the automatically generated template instance
information. Using the same source files as described in the section above,
the following commands can be used to create the shared object:

xlC -c source1.C source2.C
xlC -qmkshrobj -o shr1.o source1.o source2.o

This time the command works correctly since the compiler looks in the
tempinc directory. Remember to use the same -qtempinc option (if any) that
was used when compiling the modules being used to create the shared
object.

This option solves the problems associated with creating shared objects that
use template classes and functions. If you want to create a shared object that
contains pre-instantiated template classes and functions for use by other
developers, then you can create an additional compilation unit that explicitly
defines the required templates using the #pragma define directive.
102 C and C++ Application Development on AIX

4.5 Virtual functions

In general, when writing C++ code, you should try and avoid the use of virtual
functions. They are normally encoded as indirect function calls, which are
slower than direct function calls.

Usually, you should not declare virtual functions inline. In most cases,
declaring virtual functions inline does not produce any performance
advantages. Consider the following code sample:

class Base {
public:

virtual void foo() { /* do something */ }
};

class Derived: public Base {
public:

virtual void foo() { /* do something else */ }
};

int main() {
Base* b = new Derived();
b->foo(); // not inlined

}

In this example, b->foo() is not inlined because it is not known until runtime
which version of foo() must be called. This is by far the most common case.

There are cases, however, where you might actually benefit from inlining
virtuals; for example, if Base::foo() was a really hot function it would get
inlined in the following code:

int main() {
Base b;
b.foo();

}

If there is a non-inline virtual function in the class, the compiler generates the
virtual function table in the first file that provides an implementation for a
virtual function; however, if all virtual functions in a class are inline, the virtual
table and virtual function bodies will be replicated in each compilation unit
that uses the class. The disadvantage to this is that the virtual function table
and function bodies are created with internal linkage in each compilation unit.
This means that even if the -qfuncsect option is used, the linker can not
remove the duplicated table and function bodies from the final executable.
This can result in very bloated executable size.
Chapter 4. Using C++ templates 103

104 C and C++ Application Development on AIX

Chapter 5. POSIX threads

This chapter is divided into two main topics. The first one covers the design of
multi-threaded applications using POSIX threads in the UNIX system. The
second main topic covers the user implementation point of view on AIX
systems.

5.1 Designing threaded application with pthreads

As a multi-tasking operating system, UNIX can execute several process
simultaneously in a safe environment, where each process has its own
address space, resources, and execution flow. This computational model
guarantees complete independence among the processes and their data that
ultimately gives a stable environment.

In some cases, this traditional UNIX process model is not suitable, especially
when the best computational model or the only feasible implementation
requires several tasks working on the same data simultaneously. The
communication effort among the processes and its control can be very
difficult to code or very heavy in computing time. Performance is also a very
important reason for using parallel pieces of code, especially in
multi-processor systems.

To address this kind of implementation and to ensure a portable code, the
Portable Operating System Interface (POSIX) standardized an application
programming interface (API) for thread implementation that is called
pthreads. This API is supported in a wide range of platforms in several levels
of evolution. Draft 10 of POSIX pthreads was implemented as the final
standard. This standard was, in turn, incorporated into the UNIX98
specification. AIX 4.3.3 supports both Draft 7 of the POSIX pthreads standard
and the UNIX98 pthreads standard (which is a superset of the POSIX
pthreads standard).

5.1.1 Threads and UNIX processes
A single threaded process can be represented schematically, as shown in
Figure 12 on page 106, where a process consists of an address space,
resources, and a single flow of control.
© Copyright IBM Corp. 2000 105

Figure 12. Single-thread process

In Figure 13, we can see a representation of a multi-threaded process. In a
multi-threaded process, all threads share the same address space and
resources.

Figure 13. Multi-threaded process

In traditional, non-threaded, process-based systems, a process has a set of
properties. In multi-threaded systems, these properties are divided between
processes and threads.

A process in a multi-threaded system is the changeable entity. It must be
considered as an execution frame. It has all the traditional process attributes,
such as:

• Process ID

• Process group ID

address
space resources control flow

single process space

address
space resources control flow 1

control flow 2

control flow n

multi-threaded process space
106 C and C++ Application Development on AIX

• User ID

• Group ID

• Environment, such as current working directory and file descriptors

A process also provides a common address space and common system
resources:

• File descriptors

• Signal actions

• Shared libraries

• Inter-process communication tools (such as message queues, pipes,
semaphores, and shared memory)

A thread is the schedulable entity. It has only those properties that are
required to ensure its independent flow of control. These include the following
properties:

• Stack

• Scheduling properties (such as policy or priority)

• Set of pending and blocked signals

• Some thread-specific data

5.1.1.1 Process duplication and threads
On a traditional, single-threaded UNIX system forking a process, calling the
fork function creates a new process, known as the child, that is a copy of the
calling process, known as the parent.

On a multi-threaded environment, each process has at least one thread.
Therefore, duplicating a process ultimately means duplicating a thread.

There are two reasons why AIX programmers may need to fork a program:

• To create a new flow of control within the same program

• To create a new process running a different program

In a multi-threaded program, creating a new flow of control within the same
program is provided by the pthreads API. The fork subroutine should, as
such, be used only to run new programs.

The fork subroutine duplicates the parent process but duplicates only the
calling thread; the child process is a single-threaded process, even if the
parent process is multi-threaded. The calling thread of the parent process
Chapter 5. POSIX threads 107

becomes the initial thread of the child process; it may not be the initial thread
of the parent process. If the initial thread of the child process returns from its
entry-point routine, which is equivalent to a single threaded process returning
from main, then the child process terminates.

When duplicating the parent process, the fork subroutine also duplicates all
the synchronization variables, including their state. Thus, for example,
mutexes may be held by threads that no longer exist in the child process, and
any associated resources may be inconsistent.

Unfortunately, the rule explained above does not address the needs of
multi-threaded libraries. Application programs may not be aware that a
multi-threaded library is in use and will feel free to call any number of library
routines between the fork and the exec subroutines. Occasionally, this
situation will result in a dead-lock situation.

To address this problem, the pthreads’ API provides a function,
pthread_atfork, that can be used to set three fork handler functions as follow:

Prepare The prepare fork handler is called just before the processing of the
fork subroutine begins.

Parent The parent fork handler is called in the parent process just after
the processing of the fork subroutine is completed.

Child The child fork handler is called in the child process just after the
processing of the fork subroutine is completed.

The pthread_atfork subroutine provides a way for multi-threaded libraries to
protect themselves from innocent application programs that call the fork
subroutine. It also provides multi-threaded application programs with a

It is strongly recommended to use the fork subroutine only to run new
programs and to call one of the exec subroutines as soon as possible after
the call to the fork subroutine in the child process.

For new flow of control creation, the pthread_create function should be
used.

If an application must consist of multiple processes, it is recommended to
call the fork subroutine to create the desired child processes before calling
any pthreads routines in the parent process.

Note
108 C and C++ Application Development on AIX

standard mechanism for protecting themselves from calls to the fork
subroutine in a library routine or the application itself.

The fork handlers specified by the program can be used to release mutexes
and perform general tidy-up duties before and after the fork call.

5.1.2 Lightweight process -LWP
A thread can be implemented in a kernel-level or in a user-level of
abstraction. In the kernel-level, each thread is a kernel entity, which, like
processes and interrupt handlers, owns its kernel data structure and can be
handled by the system scheduler. A kernel thread is also known as a
lightweight processes, or LWP.

On the other hand, the user-level threads are represented by data structures
in the process address space. They are mapped to kernel-level threads in
order to be executed. The way this mapping is done is called the thread
model. There are three possible thread models, corresponding to three
different ways to map user threads to kernel threads.

• M:1 model

• 1:1 model

• M:N model

The mapping of user threads to kernel threads is done using virtual
processors. A virtual processor (VP) is a pthreads library entity that is usually
implicit. For a user thread, the virtual processor behaves as a CPU for a
kernel thread. In the library, the virtual processor is a kernel thread or a
structure bound to a kernel thread.

In the M:1 model, all user threads are mapped to one kernel thread; all user
threads run on one VP. The mapping is handled by a library scheduler. All
user threads programming facilities are completely handled by the library.
This model can be used on any system, especially on traditional
single-threaded systems. Figure 14 on page 110 illustrates this model.
Chapter 5. POSIX threads 109

Figure 14. M:1 thread model

In the 1:1 model, each user thread is mapped to one kernel thread; each user
thread runs on one VP. Most of the user threads programming facilities are
directly handled by the kernel threads. The 1:1 threads model is shown in
Figure 15 on page 111.

Kernel Scheduler

CPUCPU

User
Pthreads

Kernel
Threads

Kernel
Scheduler

Pthreads
Library

User Scheduler

VP

K

L L L

Process
110 C and C++ Application Development on AIX

Figure 15. 1:1 thread model

In the M:N model, all user threads are mapped to a pool of kernel threads; all
user threads run on a pool of virtual processors. A user thread may be bound
to a specific VP, as in the 1:1 model. All multiplexed user threads share the
VPs on the pool. This is the most efficient thread model, although it is also the
most complex from a library implementation point of view. In this model, the
user threads programming facilities are shared between the threads library
and the kernel threads. This is shown in Figure 16 on page 112.

VP

Kernel Scheduler

CPU

K

G

CPU

Process

User
Pthreads

Kernel
Threads

Kernel
Scheduler

Pthreads
Library

VP

K

G

VP

K

G

Chapter 5. POSIX threads 111

Figure 16. M:N thread model

5.1.3 Thread scheduling
Depending upon the thread model in use, we can determine the contention
scope for the threads. In the 1:1 Model, it is called System Contention Scope
scheduling, or SCS, which means that all scheduling of the thread is handled
by the kernel, and the thread competes with all other threads on the system
for CPU time. With both the M:1 and M:N models, the contention scope is
known as the Process Contention Scope, or PCS, where the scheduling of a
thread is handled on the process level by the thread library, and the threads
compete with other threads in the same process for CPU time.

The pthreads library allows the programmer to control the execution
scheduling of the threads. The control can be performed in two different ways:

• By setting scheduling attributes when creating a thread.
• By dynamically changing the scheduling attributes of a created thread.

User Scheduler

VP VP VP

Kernel Scheduler

CPU

KKK

G L L L

CPU

Process

User
Pthreads

Kernel
Threads

Kernel
Scheduler

Pthreads
Library
112 C and C++ Application Development on AIX

A thread has three scheduling parameters:

Scope The contention scope of a thread is defined by the thread model
used in the threads library.

Policy The scheduling policy of a thread defines how the scheduler treats
the thread once it gains control of the CPU.

Priority The scheduling priority of a thread defines the relative importance
of the work being done by each thread.

The scheduling parameters can be set before the thread's creation or during
the thread's execution. In general, controlling the scheduling parameters of
threads is important only for threads that are compute-intensive. Thus, the
threads library provides default values that are sufficient for most cases.

Controlling the scheduling of a thread is often a complicated task. Because
the scheduler can handle all threads system or process-wide, depending on
the scope context, the scheduling parameters of a thread can interact with
those of all other threads in the process and in the other processes on the
system.

On AIX, the threads library provides three scheduling policies:

FIFO First-in first-out (FIFO) scheduling. Each thread has a fixed
priority; when multiple threads have the same priority level, they
run to completion in FIFO order.

RR Round-robin (RR) scheduling. Each thread has a fixed priority;
when multiple threads have the same priority level, they run for a
fixed time slice in FIFO order.

Default Default AIX scheduling. Each thread has an initial priority that is
dynamically modified by the scheduler according to the thread's
activity; thread execution is time-sliced. On other systems, this
scheduling policy may be different.

Normally, applications should use the default scheduling policy unless a
specific application requires the use of a fixed-priority scheduling policy.

Using the RR policy ensures that all threads having the same priority level will
be scheduled equally, regardless of their activity. This can be useful in
programs where threads have to read sensors or write actuators.

Using the FIFO policy should be done with great care. A thread running with
FIFO policy runs to completion unless it is blocked by some calls, such as
performing input and output operations. A high-priority FIFO thread may not
be preempted and can affect the global performance of the system. For
Chapter 5. POSIX threads 113

example, threads doing intensive calculations, such as inverting a large
matrix, should never run with FIFO policy.

Figure 17. State transitions for a common multiplexed thread

The multiplexed threads run over a state machine as shown in Figure 17. The
state transitions are described as follows:

1. At creation time, the system initializes the thread in the RUNNABLE state.
2. When it is mapped to a kernel LWP from the pool, it transitions from

RUNNABLE to PROCESSING state when the kernel dispatches the LWP
for execution. While in the PROCESSING state, the thread issues kernel
calls and remains mapped to the LWP. In the same way, if the kernel call
blocks the multiplexed thread, then the LWP will also block. In the next
piece of code, the multiplexed thread and its associated LWP will block
until the read request completes:

read (file_description, buffer, size);

3. If during the processing time the thread blocks waiting for a
synchronization event, described in the next section, it goes to the
SLEEPING state. In the SLEEPING state, it is no longer mapped to a LWP.

4. When a signal wakes up the thread it then transitions from SLEEPING to
the RUNNABLE state again.

5. It is also possible for a thread, to transition to the SUSPENDED state and
remain there until another thread from the user level resumes it.

1

2

3

4

5

6

7

START

RUNNABLE

SLEEPING

PROCESSING

DEAD

SUSPENDED
114 C and C++ Application Development on AIX

6. At the finalization time, the thread transitions from PROCESSING to the
DEAD state when it releases its resources. The system will remove the
threads data on DEAD state from the process data space.

5.1.3.1 Context switch example
A context switch is not a very easy concept, and it is applied in the same
sense for both processes and threads. Essentially, it means that one thread
that is in PROCESSING state, which is currently bound to a LWP, must be
unbounded to leave room for some other thread. It becomes much more clear
when we use an example.

Figure 18. Context switch example

Based on the diagram in Figure 18, suppose there are three threads: T1, T2,
and T3 within a single process and only two lightweight process LWP1 and
LWP2. This is a typical M:N model.

At the elapsed time, t1 and t2, both threads T1 and T2 are bound respectively
to LWP1 and LWP2 and in the PROCESSING state. At the same period of
time, T3 is in the RUNNABLE state waiting in a queue for a LWP that can hold
it. At that instant, t3, suppose that T1 acquires the rights for a synchronization
primitive called L.

As time goes on both threads in the PROCESSING state execute their code
flow. At the moment, t4, the thread T2 requests the rights for the L
synchronization primitive, the same one that T1 owns. At this moment, the
thread T2 will go to the SLEEPING state. As T2 transitions to the SLEEPING
state and sleeping queue, it is no longer bound to LWP2. The thread that is
topmost in the runnable queue, T3 at this point in time, is bound to LWP2.
Here we have a context switch between T2 and T3. During this elapsed time

t2 t3 t4t5 t6 t7 t8 t9

LWP1

LWP2

Runnable
Queue

Sleeping
Queue

t1

T1

T2

T2

T3

T3

T2

T2

T3

time
Chapter 5. POSIX threads 115

(t4-t5), the thread library takes care of a lot of local data exchanging in such a
way to guarantee that all necessary information for resuming the execution of
T2 in the future is safe, and it also restores all T3 information to get it running
on the LWP2. We call this context switch-voluntary because T2 goes to
SLEEPING state as a result of its own code.

Now, suppose that at this time,instant t6, thread T1 releases the
synchronization primitive L. As part of the thread library API, this operation
moves T2 from the SLEEPING state to the RUNNABLE state and also moves
it to the runnable queue. Then, the thread scheduler interrupts the execution
of thread T3, thus moving it to the RUNNABLE state and back to the runnable
queue, positioned according its original priority. As LWP2 is unbounded, and
as T2 is the topmost thread in the runnable queue, it will be rebound to LWP2
and resumes its execution. This was an involuntary context switch because
T3 was just notified that it should leave the LWP2.

5.1.4 Synchronization
Synchronization is a programming method that allows multiple threads to
coordinate their data accesses, therefore, avoiding the situation where one
thread can change a piece of data at the same time another one is reading or
writing the same piece of data. This situation is commonly called a race
condition.

Consider, for example, a single counter, X, that is incremented by two
threads, A and B. If X is originally 1, then by the time threads A and B
increment the counter, X should be 3. Both threads are independent entities
and have no synchronization between them. Although the C statement X++
looks simple enough to be atomic, the generated assembly code may not be
as shown in the following pseudo-assembler code:

move X, REG /* put the value of X on register */
inc REG /* increment register */
move REG, X /* store register value at X */

If both threads are executed concurrently on two CPUs, or if the scheduling
makes the threads alternatively execute on each instruction, the following
steps may occur:

1. Thread A executes the first instruction and puts X, which is 1, into the
thread A register. Then, thread B executes and puts X, which is 1, into the
thread B register.

2. Next, thread A executes the second instruction and increments the content
of its register to 2. Then, thread B increments its register to 2. Nothing is
moved to memory X; so, memory X stays the same.
116 C and C++ Application Development on AIX

3. Last, thread A moves the content of its register, which is now 2, into
memory X. Then, thread B moves the content of its register, which is also
2, into memory X, overwriting thread A's value.

Note that, in most cases, thread A and thread B will execute the three
instructions one after the other, and the result would be 3, as expected. Race
conditions are usually difficult to discover because they occur intermittently.

To avoid this race condition, each thread should lock the data before
accessing the counter and updating memory X. For example, if thread A
takes a lock and updates the counter, it leaves memory X with a value of 2.
Once thread A releases the lock, thread B takes the lock and updates the
counter, taking 2 as its initial value for X and incrementing it to 3, the
expected result.

Basically, there are two ways for implementing how a thread can deal with the
situation where it is trying to lock some data that is, in fact, already locked by
another thread:

busy/wait This approach is based on the hope that the lock data will be
available in a very short period of time. Basically, the thread
enters a loop and continuously attempts to get the lock for the
data. This model, despite its simplicity normally runs well on
multiple CPU machines; otherwise, on a single CPU machine,
the thread keeps occupying the CPU, and there is no chance for
the other thread, that actually has the lock, to resume execution
and free the locked data. This type of lock is also known as a
spin lock.

sleep/wait This model is a bit more elaborate but still simple and well
understandable. The idea is to put the thread in a SLEEPING
state while the required lock is not available. The operating
system will reactivate the thread whenever the desired locked
data is ready. On SLEEPING state, the thread is not mapped to
any LWP and is not consuming CPU, which gives the
opportunity for the other threads to run.

We can not say that one implementation approach is better than the other.
The decision is very dependent on the problem, and on the machine where it
will run, and must be carefully considered at design time.

Another very important issue when dealing with multi-threaded programs is
the deadlock condition. This is a condition where a thread, for example,
locked a data and then attempts to re-lock it before unlocking. Another well
known condition of deadlock is when a thread, called th_a for example, locks
Chapter 5. POSIX threads 117

a data called A and then attempts to lock the data B; but at the same time,
another thread, th_b, locked the data B and then starts trying to lock the A
data. It is a recursive interaction and results in an infinite deadlock.

The pthread library provides a set of synchronization primitives and its proper
API. Respecting the formalism of those primitives is a very good way to avoid
conflicts when using shared resources. The following section describes, in
detail, the most common synchronization methods.

5.1.4.1 Mutex
The mutual exclusion lock (mutex) is the simplest synchronization primitive
provided by the pthread library, and many of the other synchronization
primitives are built upon it.

It is based on the concept of a resource that only one person can use in a
period of time, for example, a chair or a pencil. If one person sits in a chair, no
one can sit on it until the first person stands-up. This kind of primitive is quite
useful for creating critical sections. A critical section is a portion of code that
must run atomically because they normally are handling resources, such as
file descriptors, I/O devices, or shared data. A critical section is a portion of
code delimited by the instructions that lock and unlock a mutex variable.
Ensuring that all threads acting on the same resource or shared data obey
this rule is a very good practice to avoid trouble when programming with
threads. The following program shows a very simple example that complies
with this rule:

#include <pthread.h> /* include file for pthreads */
#include <stdio.h> /* include file for printf() */
#define num_threads 10; /* define the number of threads */
main() /* the main thread */
{
pthread_t th[num_threads]; /* creates an array for threads */
pthread_mutex_t mutex; /* defines a mutex variable */
int i;
... /* do other stuff */
pthread_mutex_init(&mutex, NULL); /* creates the mutex */
for (i = 0; i < num_thrads; i++) /* loop to create threads */

pthread_create(th + i, NULL, thread_func, NULL);

The file descriptors in a process are shared by all of its threads. This can
potentially generate data inconsistency when two or more threads are
accessing the same file. In this kind of application, a lock mechanizm must
be implemented, and the file pointer should be tracked by each thread.

Note
118 C and C++ Application Development on AIX

... /* do other stuff */
pthread_mutex_destroy(&mutex); /* destroys the mutex */
}

void * thread_func(void *) /* the request handling thread */
{
pthread_mutex_lock(&mutex); /* locks the mutex */
... /* do all the work */
pthread_mutex_unlock(&mutex); /* unlocks the mutex */
pthread_exit(NULL); /* finishes the thread */
}

In AIX, mutexes cannot be relocked by the same thread. This may not be the
case on other systems. To enhance portability of your programs, assume that
the following code fragment will result in a deadlock situation:

pthread_mutex_lock(&mutex);
pthread_mutex_lock(&mutex);

This kind of deadlock may occur when locking a mutex and then calling a
routine that will, itself, attempt to lock the same mutex. For example:

pthread_mutex_t mutex;
struct {

int a;
int b;
int c;

} A;
f()
{

pthread_mutex_lock(&mutex); /* call 1 */
A.a++;
g();
A.c = 0;
pthread_mutex_unlock(&mutex);

}

g()
{

pthread_mutex_lock(&mutex); /* call 2 */
A.b += A.a;
pthread_mutex_unlock(&mutex);

}

To avoid this kind of deadlock or data inconsistency, you should use either
one of the following locking schemes:
Chapter 5. POSIX threads 119

Fine granularity locking Each data atom should be protected by a mutex,
locked only by low-level functions. For example,
this would result in locking each record of a
database. Benefits: High-level functions do not
need to care about locking data. Drawbacks: It
increases the number of mutexes and great care
should be taken to avoid deadlocks.

High-level locking Data should be organized into areas, with each
area protected by a mutex; low-level functions do
not need to care about locking. For example, this
would result in locking a whole database before
accessing it. Benefits: There are few mutexes, and
thus few risks of deadlocks. Drawbacks:
Performance may be degraded, especially if many
threads want access to the same data.

5.1.4.2 Condition variables
A condition variable synchronization primitive is provided through a pthreads
API. Basically, it permits a thread to suspend its execution waiting for a
condition or event to be satisfied by the actions of another thread. Once the
condition has been met, the thread will be notified and then resume its
execution.

A condition variable is also associated with a shared variable protected by a
mutex. Normally, there will be:

• A boolean shared variable representing the condition state.

• A mutex to protect the shared variable.

• The condition variable itself.

The same mutex must be used for the same condition variable, even for
different threads. It is possible to bundle the condition, the mutex, and the
condition variable in a structure as shown in the following code fragment:

struct condition_bundle_t {
int condition_predicate;
pthread_mutex_t condition_lock;
pthread_cond_t condition_variable;

};

When waiting for a condition, the subroutines provided by the pthreads API
atomically unlock the mutex and block the calling thread. When the condition
is signaled, the mutex is relocked, and the condition wait subroutine returns.
120 C and C++ Application Development on AIX

Its possible, through a proper API, to define a period of time that the thread is
blocked waiting for the condition, and it can resume either by the condition
becoming TRUE or by the expiry of the time-out value.

It is important to note that when the subroutine returns without error, the
condition may still be false. The reason is that more than one thread may be
awoken. The first thread locking the mutex will block all other awoken threads
in the condition wait subroutine until the mutex is unlocked. Thus, the
predicate may have changed when the second thread gets the mutex and
returns from the condition wait subroutine.

In general, whenever a condition wait returns, the thread should reevaluate
the condition to determine whether it can safely proceed, should wait again,
or should declare a time-out. A return from the condition wait subroutine does
not imply that the predicate is either true or false.

It is recommended that a condition wait be enclosed in a while-loop that
checks the predicate. The following code fragment provides a basic
implementation of a condition wait:

pthread_mutex_lock(&condition_lock);
while (condition_predicate == 0)

pthread_cond_wait(&condition_variable, &condition_lock);
...
pthread_mutex_unlock(&condition_lock);

5.1.4.3 Read/Write locks
Despite its simplicity of use, mutex locks are often very costly in some kind of
applications, where shared data variables are read more often than written.
For this kind of situation, a Read/Write lock, RWlock, can be built upon a
mutex and condition variable primitive.

Basically, it permits several threads access for reading a shared resource but
exclusive access for writing the resource. When a writer releases a lock,
other waiting writers will get the lock before any waiting reader.

The following is a very simple implementation example for a RWlock:

typedef struct {
pthread_mutex_t lock;
pthread_cond_t rcond;
pthread_cond_t wcond;
int lock_count; /* < 0 .. held by writer */

/* > 0 .. held by lock_count readers */
/* = 0 .. held by nobody */

int waiting_writers; /* count of waiting writers */
Chapter 5. POSIX threads 121

} rwlock_t;

void rwlock_init(rwlock_t *rwl)
{

pthread_mutex_init(&rwl->lock, NULL);
pthread_cond_init(&rwl->wcond, NULL);
pthread_cond_init(&rwl->rcond, NULL);
rwl->lock_count = 0;
rwl->waiting_writers = 0;

}

void waiting_reader_cleanup(void *arg)
{

rwlock_t *rwl;

rwl = (rwlock_t *)arg;
pthread_mutex_unlock(&rwl->lock);

}

void rwlock_lock_read(rwlock_t *rwl)
{

pthread_mutex_lock(&rwl->lock);
pthread_cleanup_push(waiting_reader_cleanup, rwl);
while ((rwl->lock_count < 0) && (rwl->waiting_writers))

pthread_cond_wait(&rwl->rcond, &rwl->lock);
rwl->lock_count++;
/*
* Note that the pthread_cleanup_pop subroutine will
* execute the waiting_reader_cleanup routine
*/
pthread_cleanup_pop(1);

}

void rwlock_unlock_read(rwlock_t *rwl)
{

pthread_mutex_lock(&rwl->lock);
rwl->lock_count--;
if (!rwl->lock_count)

pthread_cond_signal(&rwl->wcond);
pthread_mutex_unlock(&rwl->lock);

}

void waiting_writer_cleanup(void *arg)
{

rwlock_t *rwl;

rwl = (rwlock_t *)arg;
122 C and C++ Application Development on AIX

rwl->waiting_writers--;
if ((!rwl->waiting_writers) && (rwl->lock_count >= 0))

/*
* This only happens if we have been canceled
*/
pthread_cond_broadcast(&rwl->wcond);
pthread_mutex_unlock(&rwl->lock);

}

void rwlock_lock_write(rwlock_t *rwl)
{

pthread_mutex_lock(&rwl->lock);
rwl->waiting_writers++;
pthread_cleanup_push(waiting_writer_cleanup, rwl);
while (rwl->lock_count)

pthread_cond_wait(&rwl->wcond, &rwl->lock);
rwl->lock_count = -1;
/*
* Note that the pthread_cleanup_pop subroutine will
* execute the waiting_writer_cleanup routine
*/
pthread_cleanup_pop(1);

}

void rwlock_unlock_write(rwlock_t *rwl)
{

pthread_mutex_lock(&rwl->lock);
l->lock_count = 0;
if (!rwl->wating_writers)

pthread_cond_broadcast(&rwl->rcond);
else

pthread_cond_signal(&rwl->wcond);
pthread_mutex_unlock(&rwl->lock);

}

In this example, readers are just counted. When the count reaches zero, a
waiting writer may take the lock. Only one writer can hold the lock. When the
lock is released by a writer, another writer is awakened, if there is one.
Otherwise, all waiting readers are awakened.

To make this example more useful and safe, some more features must be
implemented, such as:

• Checking the lock owner to avoid a thread unlocking a lock that has been
locked by another thread.

• An equivalent to the pthread_mutex_trylock subroutine.
Chapter 5. POSIX threads 123

• And, finally, some error handling.

5.1.4.4 Semaphores
The main idea behind semaphores is to control access to a set of resources,
in the same way a rental car company controls its allocation system. They
have a set of cars available and a kind of counter, or semaphore, that shows
how many cars are ready in the parking lot. Each time a car is rented, the
counter is decremented. Every returned car increases the counter. If a
customer requires a car, but the counter is zero, which means no car is
available, it must wait until one car becomes available.

This concept is applied on semaphores as a synchronization primitive in
traditional UNIX interprocess synchronization facilities. If a semaphore is
configured to hold the values 0 or 1, it is called a binary semaphore and
works in the same way as a mutex. But, if it can reach values greater than 1,
they can control a set of resources and are called counting semaphores. It is
possible to implement interthread semaphores for specific usage.

The following implementation is very basic. Error handling is not performed,
but cancellations are properly handled with cleanup handlers whenever
required.

A semaphore has the sema_t data type. It must be initialized by the sema_init
routine and destroyed with the sema_destroy routine. The semaphore request
to lock and unlock operations are respectively performed by the sema_p and
sema_v routines:

typedef struct {
pthread_mutex_t lock;
pthread_cond_t cond;
int count;

} sema_t;
void sema_init(sema_t *sem)
{

pthread_mutex_init(&sem->lock, NULL);
pthread_cond_init(&sem->cond, NULL);
sem->count = 1;

}

void sema_destroy(sema_t *sem)
{

pthread_mutex_destroy(&sem->lock);
pthread_cond_destroy(&sem->cond);

}

void p_operation_cleanup(void *arg)
124 C and C++ Application Development on AIX

{
sema_t *sem;

sem = (sema_t *)arg;
pthread_mutex_unlock(&sem->lock);

}

void sema_p(sema_t *sem)
{

pthread_mutex_lock(&sem->lock);
pthread_cleanup_push(p_operation_cleanup, sem);
while (sem->count <= 0)

pthread_cond_wait(&sem->cond, &sem->lock);
sem->count--;
/*
* Note that the pthread_cleanup_pop subroutine will
* execute the p_operation_cleanup routine
*/
pthread_cleanup_pop(1);

}

void sema_v(sema_t *sem)
{

pthread_mutex_lock(&sem->lock);
sem->count++;
if (sem->count <= 0)

pthread_cond_signal(&sem->cond);
pthread_mutex_unlock(&sem->lock);

}

The counter specifies the number of users that are allowed to take the
semaphore. It is never strictly negative; thus, it does not specify the number
of waiting users.

5.1.4.5 Joining threads
The joining process is invoked by a thread called the requester, and it is
addressed to a target thread. It simply means that the requester thread blocks
until the target one finishes its execution.

This objective is normally best accomplished by the other synchronization
primitives, such as mutex and semaphores. The real need for this kind of
mechanics is when the requester provided the target thread’s stack and must
release it after the execution.

It is very important to notice that threads created with the undetached
attribute must be joined; otherwise, their storage will be kept until the end of
Chapter 5. POSIX threads 125

the whole process. Threads created with the detached attribute automatically
tidy up upon exit, returning their storage to the process heap. Trying to join a
detached thread will fail.

5.1.5 Signals and threads
The signal mechanics is part of UNIX systems. It provides a way to handle
asynchronous events. Basically, when a process receives a signal, the kernel
stops it. Then, a piece of code defined as a handler is executed, and after its
completion the process resumes at the exact point where it was before being
stopped by the kernel. Each handler is assigned to a specific signal through
the signal handler table. Another table called the signal mask defines, which
signals the process, it will receive and which it will ignore. Every time a
process receives a signal, the kernel checks out its signal mask to determine
if it is allowed and then looks in the signal handler table to execute the proper
handler.

This powerful feature allows three situations to be dealt with:

Error For example, a division by zero or trying to reach an invalid
memory address. Normally, error situations halts the process.

Notification To notify that some situation has changed.

Interruption To force a handler to be executed immediately, despite what
code is running.

Basically, we can say that all handlers are in the process scope. This means
every thread can assign a handler for a signal, and the latest one overwrites
the previous one. But, pthreads address a per thread signal mask that
permits control over which signal each thread should receive.

In a single thread model, there is no distinction between these situations. On
the other hand, when using multi-thread programming, these three situations
are handled in different ways:

Error The signal is delivered to the thread that caused the problem.

Notification The signal is delivered to the process and must be handled on
this level.

Interruption The signal is delivered to the process, and there is no way to
guarantee that one specific thread will receive the signal, even
if it requested it.

Typically, programs may create a dedicated thread to wait for asynchronously
generated signals. Such a thread just loops on a sigwait subroutine call and
126 C and C++ Application Development on AIX

handles the signals. The following code fragment gives an example of such a
signal waiter thread:

sigset_t set;
int sig;

sigemptyset(&set);
sigaddset(&set, SIGINT);
sigaddset(&set, SIGQUIT);
sigaddset(&set, SIGTERM);
sigthreadmask(SIG_BLOCK, &set, NULL);

while (1) {
sigwait(&set, &sig);
switch (sig) {

case SIGINT:
/* handle interrupts */
break;

case SIGQUIT:
/* handle quit */
break;

case SIGTERM:
/* handle termination */
break;

default:
/* unexpected signal */
pthread_exit((void *)-1);

}
}

If more than one thread called the sigwait subroutine, exactly one call returns
when a matching signal is sent. There is no way to predict which thread will
be awakened.

5.1.6 Software models
In the multi-threaded environment, we have two concepts that tend to be
confused:

Concurrency We can say that tasks are concurrent when they can be
executed in any order, or maybe at the same time. This is
exactly what we have in a multi-threaded process. Each
thread can reach the CPU and execute its code. There is no
control or a predefined order.

Parallelism Is applied in multiple CPU environments where more than
one task is running simultaneously. So, we can conclude
Chapter 5. POSIX threads 127

that all parallel programs are concurrent, but not all
concurrent programs are parallel.

As a rule, all concerns about synchronizations are about the concurrency,
and normally, the parallelism is not an issue for the implementation point of
view. In practice, we can say that well designed code, from a concurrency
point of view, will run well, or even faster, on a parallel machine.

The next section describes the advantages of using multi-threaded
applications in concurrent or parallel environments to address common
software models that are well suited to parallel programming techniques.

5.1.6.1 Master/Slave
In the master/slave (sometimes called boss/worker) model, a master entity
receives one or more requests, then creates slave entities to execute them.
Typically, the master controls how many slaves there are and what each slave
does. A slave runs independently of other slaves.

An example of this model is a print job spooler controlling a set of printers.
The spooler's role is to ensure that the print requests received are handled in
a timely fashion. When the spooler receives a request, the master entity
chooses a printer and causes a slave to print the job on the printer. Each
slave prints one job at a time on a printer, handling flow control and other
printing details. The spooler may support job cancellation or other features
that require the master to cancel slave entities or reassign jobs. Figure 19 on
page 129 illustrates this model.
128 C and C++ Application Development on AIX

Figure 19. Master/slave print model

5.1.6.2 Divide/Conquer
In the divide-and-conquer (sometimes called simultaneous computation or
work crew) model, one or more entities perform the same tasks in parallel.
There is no master entity; all entities run in parallel, independently.

An example of a divide-and-conquer model is a parallelized grep command
implementation, which could be done as follows. The grep command first
establishes a pool of files to be scanned. It then creates a number of entities.
Each entity takes a different file from the pool and searches for the pattern,
sending the results to a common output device. When an entity completes its
file search, it obtains another file from the pool or stops if the pool is empty.

5.1.6.3 Producer/consumer
The producer/consumer (sometimes called pipelining) model is typified by a
production line. An item proceeds from raw components to a final item in a
series of stages. Usually, a single worker at each stage modifies the item and
passes it on to the next stage. In software terms, an AIX command pipe, such
as the cpio command, is a good example of a this model.

M S P

M

S

S

S

P

P

P

Master Slaves Printers queued jobs

requests

Spooler
Chapter 5. POSIX threads 129

Figure 20 illustrates a typical producer/consumer model. In this example, the
reader entity reads raw data from standard input and passes it to the
processor entity, which processes the data and passes it to the writer entity,
which writes it to standard output. Parallel programming allows the activities
to be performed concurrently: The writer entity may output some processed
data while the reader entity gets more raw data.

Figure 20. Producer/consumer model

5.1.7 Performance considerations
Multi-threaded applications can improve the application performance when
compared to traditional parallel programs. The three most impacting issues
between threads and process are listed as follows:

Managing

Managing threads, that is, creating threads and controlling their
execution, requires fewer system resources than managing
processes. Creating a thread, for example, only requires the allocation
of the thread's private data area, usually 64 KB, and two system calls.
Creating a process is far more expensive because the entire parent
process address space is duplicated.

A context switch between threads in the same process is also much
simpler and faster than for a processes context switch between
processes.

Communication

Inter-thread communication is far more efficient and easier to use than
inter-process communication. Because all threads within a process
share the same address space, they do not need to use shared
memory. Shared data should be protected from concurrent access
using mutexes and other synchronization tools.

Reader

Processor

Writer

Raw Data

Processed Data
130 C and C++ Application Development on AIX

Synchronization facilities provided by the threads library allow easy
implementation of flexible and powerful synchronization tools. These
tools can easily replace traditional inter-process communication
facilities, such as message queues.

Multiprocessor

On a multiprocessor system, multiple threads can concurrently run on
multiple CPUs. Therefore, multi-threaded programs can run much
faster than on a uniprocessor system. They will also be faster than a
program using multiple processes because threads require fewer
resources and generate less overhead. For example, switching
threads in the same process can be faster, especially in the M:N
library model where context switches can often be avoided. Finally, a
major advantage of using threads is that a single multi-threaded
program will work on a uniprocessor system but can naturally take
advantage of a multiprocessor system without recompiling.

5.1.7.1 A trade-off
Despite the thread structure and its handling being much lighter when
compared to processes, a trade-off consideration must be taken to avoid
wasting processing time only by creating and handling unnecessary threads
and shared data. There are three basic points to consider, which are as
follows:

Overhead of creating/terminating threads

If the application creates and terminates several threads
intensively, the overhead for creating, and then later terminating,
each thread can became very expensive and degrade
performance. It is very important to consider this overhead when
designing the application. A good implementation for this situation
is creating a pool of threads and reuse them several times. This
approach can reduce the creation/termination overhead.

Overhead on context Switch

Normally, multi-threaded programs have more threads than there
are CPUs in the system, which can cause constant thread context
switching. Again, despite a thread context switch being much
lighter than a process one, they consume CPU time and must be
avoided whenever possible or at least minimized. Keep in mind
that every time a thread blocks waiting for a lock or an I/O
operation, it generates a voluntary context switch.
Chapter 5. POSIX threads 131

Overhead on data sharing

The multi-thread application must use locks (mutex, condition
variables, semaphores, and so on) basically for safety while
sharing data and for waiting for some task to be accomplished by
another thread. The use of locks impacts the overall application
performance in a low level when performing the lock and unlock
operations and in a much more considerable level when waiting
for locks that are already locked by another thread.

5.2 Implementing threaded applications on AIX

The newest version of AIX, Version 4.3 implements a full compliance to the
IEEE POSIX standard for threads APIs, IEEE POSIX 1003.1-1996. Table 11
shows a summary of the evolution of thread support in AIX.

Table 11. AIX POSIX thread conformance

Basically, we can say that AIX, Version 4, Release 3 provides full support for
applications compiled on AIX, Version 3, Release 2 and AIX, Version 4. It also
provides compilation support for applications written to the Draft 7 level that
are not able to modify their source code to full standards conformance.

5.2.1 Compiling and linking
In AIX, Version 4.3 compiling and linking a multi-threaded application is as
simple as compiling a non-threaded application.

AIX version and release Threads Version Thread model

3.2 POSIX Draft 4 M:1

4.1 and 4.2 POSIX Drafts 7 and 4 1:1

4.3 UNIX98, POSIX Drafts 10,
7 and 4

M:N

As a rule of thumb, we can say:

1. Use mutex or semaphores only to synchronize access to shared data.

2. Use condition variables to synchronize threads against events, for
example, when one thread must wait until another one finishes.

Note
132 C and C++ Application Development on AIX

Table 12 shows all important information about compiler mode, specifically
the compiler driver program to use depending on the required pthreads
standard.

Table 12. AIX 4.3 C driver programs

The xlc compiles C source codes with a default language level as ANSI, and
cc compiles C sources with default language level as extended. The extended
level is suitable for code that does not require full compliance with the ANSI C
standard, for example, legacy code. The xlC driver is for C++ code.

C Driver program Description

xlc_r
cc_r
xlC_r

All _r-suffixed invocations are functionally similar to their
corresponding base compiler invocation, but set the
macro name -D_THREAD_SAFE and invoke the added
compiler options:

-L/usr/lib/threads
-L/usr/lib/dce
-lpthreads
-qthreaded

Use the _r-suffixed invocations when compiling with the
-qsmp compiler option or if you want to create POSIX
threaded applications.

xlc_r4
cc_r4
xlC_r4

Use _r4-suffixed invocations to provide compatibility
between DCE applications written for AIX, Version 3.2.5
and AIX, Version 4. They link your application to the
correct AIX, Version 4 DCE libraries, providing
compatibility between the latest version of the pthreads
library and the earlier versions supported on AIX,
Version 3.2.5.

xlc_r7
cc_r7
xlC_r7

Use the _r7-suffixed invocations to compile and link
applications conforming POSIX “Draft 7” standard.
Otherwise, the compiler will, by default, compile and link
applications conforming to the current POSIX threads
standards.

Take special attention when code is being ported from another platform or
another POSIX Draft.

Note
Chapter 5. POSIX threads 133

In the following example, a very simple Makefile is suggested to compile and
link a multi-threaded C program called ex1.c:

CC = /usr/vac/bin/xlc_r
CFLAGS = -g
BIN = ex1
all: $(BIN)
clean:

rm -f $(BIN)
rm -f *.o

Notice that the default path for the C compiler is /usr/vac/bin.

5.2.2 Thread model and tuning
AIX, Version 4.3.1 replaced the previous 1:1 threads implementation model
with an M:N version. The M:N model complies with the UNIX 98 pthreads
standard, which includes the POSIX pthreads standard. Previous releases of
AIX, Version 4 complied with Draft 7 of the POSIX pthreads standard. AIX,
Version 4.3.1 is binary compatible with previous releases. The UNIX 98
implementation is the default for application development, but you can use
specific compiler drivers, as shown in Table 12 on page 133, to develop new
applications using Draft 7 pthreads.

5.2.2.1 Tuning
The M:N pthreads implementation provides several environment variables
that can be used to affect application performance. If possible, the application
developer should provide a front-end shell script to invoke the binary
executable in which the user may specify new values to override the system
defaults. The following environment variables can be set by end users and
are examined at process initialization time:

AIXTHREAD_SCOPE
This variable can be used to set the contention scope of pthreads
created using the default pthread attribute object. It is represented
by the following syntax:

AIXTHREAD_SCOPE=[P|S]

The value P indicates process scope, while a value of S indicates
system scope. If no value is specified, the default pthread attribute

For multi-threaded applications, you must use one of the _r-suffixed C
driver programs.

Note
134 C and C++ Application Development on AIX

object will use process scope contention, which implies the M:N
model.

SPINLOOPTIME
This variable controls the number of times the system will try to
get a busy lock without taking a secondary action, such as calling
the kernel to yield the processor. This control is really intended for
SMP systems, where it is hoped that the lock is held by another
actively running pthread and will soon be released. On
uniprocessor systems, this value is ignored.

YIELDLOOPTIME
This variable controls the number of times that the system yields
the processor when trying to acquire a busy mutex or spin lock
before actually going to sleep on the lock. This variable has been
shown to be effective in complex applications where multiple locks
are in use.

The following environment variables impact the scheduling of pthreads
created with process-based contention scope:

AIXTHREAD_MNRATIO

This variable allows the user to specify the ratio of pthreads to
kernel threads. It is examined when creating a pthread to
determine if a kernel thread should also be created to maintain the
correct ratio. It is represented with the following syntax:

AIXTHREAD_MNRATIO=p:k

where k is the number of kernel threads to use to handle p

pthreads. Any positive integer value may be specified for p and k.
These values are used in a formula that employs integer
arithmetic, which can result in the loss of some precision when big
numbers are specified. If k is greater than p, the ratio is treated as
1:1. If no value is specified, the default ratio depends on the
default contention scope. If system scope contention is the
default, the ratio is 1:1. If process scope contention is set as the
default, the ratio is 8:1.
Chapter 5. POSIX threads 135

AIXTHREAD_SLPRATIO

This variable is used to determine the number of kernel threads
used to support local pthreads sleeping in the library code on a
pthread event, for example, attempting to obtain a mutex. It is
represented by the following syntax:

AIXTHREAD_SLPRATIO=k:p

where k is the number of kernel threads to reserve for every p

sleeping pthreads. Notice that the relative positions of the
numbers indicating kernel threads and user pthreads are reversed
when compared with AIXTHREAD_MNRATIO. Any positive
integer value may be specified for p and k. These values are used
in a formula that employs integer arithmetic, which can result in
the loss of some precision when large numbers are specified. If k
is greater than p, the ratio is treated as 1:1. If the variable is not
set, a ratio of 1:12 is used. The reason for maintaining kernel
threads for sleeping pthreads is that, when the pthread event
occurs, the pthread will immediately require a kernel thread to run
on. It is more efficient to use a kernel thread that is already
available than it is to create a new kernel thread once the event
has taken place.

AIXTHREAD_MINKTHREADS

This variable is a manual override to the AIXTHREAD_MNRATIO.
It allows you to stipulate the minimum number of active kernel
threads. The library scheduler will not reclaim kernel threads
below this number.

When migrating threaded applications to AIX from other platforms or
previous versions of AIX, the default 8:1 ratio used with the M:N threads
model may reduce application performance.
If this is the case, you can either change the source code of the application
so that threads are created with the contention scope attribute set to
PTHREAD_SCOPE_SYSTEM, set the AIXTHREAD_SCOPE environment
variable to the value S, or change the ratio of kernel threads to user
threads with the AIXTHREAD_MNRATIO environment variable.

Note
136 C and C++ Application Development on AIX

5.2.3 Pthread creation and handling
This section describes the process for creating and working with a pthread on
AIX.

5.2.3.1 A brief description of pthread_attr_t
The attributes of a thread are stored in an opaque object used when creating
the thread. The pthread_attr_t is a pointer to a structure that must be
initialized before being used. The basic code for defining, initializing, and
setting values of attributes in the pthread_attr_t object is as follows:

#include <pthread.h> /* must be the first #include file */
...
pthread_attr_t attr; /* defines a variable somewhere */

/* in the code, globally or */
/* locally. */

...
pthread_attr_init(&attr); /* creates and initializes with */

/* default variables */
..... /* used for setting non-default values */
pthread_attr_destroy(&attr);/* releases the variable */

Once created, a pthread_attr_t variable contains several attributes,
depending on the implementation of POSIX options. In AIX, the
pthread_attr_t data type is a pointer to a structure; on other systems, it may
be implemented as a structure or another data type. It contains attributes as
shown in Table 13.

Table 13. Attributes of pthread_attr_t type

Attribute Default value

Detachstate PTHREAD_CREATE_JOINABLE is set as
default.

Contention-scope PTHREAD_SCOPE_PROCESS the
default ensures compatibility with
implementations that do not support this
POSIX option.

Inheritsched PTHREAD_INHERITSCHED

Schedparam A sched_param structure which
sched_prio field is set to 1, the least
favored priority.

Schedpolicy SCHED_OTHER

Stacksize PTHREAD_STACK_MIN
Chapter 5. POSIX threads 137

The resulting attribute object (possibly modified by setting individual attribute
values), when used by pthread_create, defines the attributes of the thread
created. A single attributes object can be used in multiple simultaneous calls
to pthread_create.

For setting values other than the defaults on the pthread_attr_t variable, use
the functions detailed in Table 14.

Table 14. Functions for setting pthread_attr_t attributes

5.2.3.2 A brief description of pthread_create
The creation of a new thread is performed using the pthread_create
subroutine. This function creates a new thread and makes it runnable. It is
defined as:

int pthread_create (pthread_t *thread, const pthread_attr_t *attr, void
*(*start_routine) (void), void *arg) ;

where the arguments are:

thread A pointer to the new thread’s ID variable.

Guardsize PAGESIZE

Function Description

pthread_attr_setdetachstate Sets the detachstate attribute in the attr
object.

pthread_attr_setstacksize Set the value of the stacksize attribute of the
thread attributes object attr. This attribute
specifies the minimum stack size, in bytes, of
a thread created with this attributes object.

pthread_attr_setschedparam Set the value of the schedparam attribute of
the thread attributes object attr. The
schedparam attribute specifies the
scheduling parameters of a thread created
with this attributes object. The sched_priority
field of the sched_param structure contains
the priority of the thread.

pthread_attr_setstackaddr Set the value of the stackaddr attribute of the
thread attributes object attr. This
attribute specifies the stack address of a
thread created with this attributes object.

Attribute Default value
138 C and C++ Application Development on AIX

attr Points to a pthread_attr_t variable properly declared and
initialized.

start_routine A pointer to the routine that will be executed by the new
thread.

arg A pointer to arguments that will be passed to the new
thread.

When calling the pthread_create subroutine, you may specify a thread
attributes object. If you specify a NULL pointer, the created thread will have
the default attributes. Thus, the code fragment:

pthread_t thread;
pthread_attr_t attr;
...
pthread_attr_init(&attr);
pthread_create(&thread, &attr, start_routine, NULL);
pthread_attr_destroy(&attr);

is equivalent to:

pthread_t thread;
...
pthread_create(&thread, NULL, start_routine, NULL);

When calling the pthread_create subroutine, you must specify an entry-point
routine. This routine, provided by your program, is similar to the main routine
for a process. It is the user routine executed by the new thread. When the
thread returns from this routine, the thread is automatically terminated.

The entry-point routine has one parameter, a void pointer, specified when
calling the pthread_create subroutine. You may specify a pointer to some
data, such as a string or a structure. The creating thread (the one calling the
pthread_create subroutine) and the created thread must agree upon the
actual type of this pointer. The entry-point routine returns a void pointer. After
the thread termination, this pointer is stored by the threads library unless the
thread is detached.

The thread ID of a newly created thread is returned to the creating thread
through the thread parameter. A thread ID is an opaque object; its type is
pthread_t. In AIX, the pthread_t data type is an integer. On other systems, it
may be a structure, a pointer, or any other data type.The caller can use this
thread ID to perform various operations on the thread.

Depending on the scheduling parameters, the new thread may start running
before the call to the pthread_create subroutine returns. It may even happen
Chapter 5. POSIX threads 139

that, when the pthread_create subroutine returns, the new thread has already
terminated. The thread ID returned by the pthread_create subroutine through
the thread parameter is then already invalid. It is, therefore, important to
check for the ESRCH error code returned by threads library subroutines using
a thread ID as a parameter.

If the pthread_create subroutine is unsuccessful, no new thread is created,
the thread ID in the thread parameter is invalid, and the appropriate error
code is returned.

5.2.3.3 Thread specific data
As all threads share the same process address space, they also share the
same data space. Thread Specific Data - TSD is a POSIX functionality that
permits creation of per-thread data. This allows multiple threads to run the
same code and access thread-specific data using the same variable names.
This makes the design of the code easier since it does not need to be aware
of which thread is running.

Thread-specific data may be viewed as a two-dimensional array of values,
with keys serving as the row index and thread IDs as the column index as
shown in Figure 21 on page 141. A thread-specific data key is an opaque
object, of type pthread_key_t. The same key can be used by all threads in a
process. Although all threads use the same key, they set and access different
thread-specific data values associated with that key. Thread-specific data are
void pointers. This allows referencing any kind of data, such as dynamically
allocated strings or structures.

To enhance the portability of programs using the threads library, the thread
ID should always be handled as an opaque object. For this reason, thread
IDs should be compared using the pthread_equal subroutine. Never use
the C equality operator (==) because the pthread_t data type may be
neither an arithmetic type nor a pointer.

Note
140 C and C++ Application Development on AIX

Figure 21. Thread-specific data array

The pthread_key_create subroutine creates a thread-specific data key. The
key is shared among all threads within the process, but each thread has its
own data associated with the key. The thread-specific data is initially set to
NULL.

The application is responsible for ensuring that this subroutine is called only
once for each requested key. This can be done, for example, by calling the
subroutine before creating other threads or by using the one-time initialization
facility.

At the key creation time, an optional destructor routine can be specified. If the
key specific value is not NULL, that destructor will be called for each thread
terminated and detached. Typically, the destructor routine will release the
storage thread-specific data. It will receive the thread-specific data as a
parameter.

For example, a thread-specific data key may be used for dynamically
allocated buffers. A destructor routine should be provided to ensure that the
buffer is freed when the thread terminates. The free subroutine can be used:

pthread_key_create(&key, free);

More complex destructors may be used as shown in the following:

typedef struct {
FILE *stream;
char *buffer;

} data_t;
...

k1

k2

k3

k4

T1 T2 T4

threads

keys
6 56 4 1

87 21 0 9

23 12 61 2

11 76 47 88

thread-specific data value for

T3

thread T2, key k3 = 12
Chapter 5. POSIX threads 141

void destructor(void *data)
{

fclose(((data_t *)data)->stream);
free(((data_t *)data)->buffer);
free(data);
*data = NULL;

}

Thread-specific data is accessed using the pthread_getspecific and
pthread_setspecific subroutines. The first one reads the value bound to the
specified key and specific to the calling thread; the second one sets the value
as shown in the following code example:

pthread_key_create(&key, free);
...
private_data = malloc(...);
pthread_setspecific(key, private_data);
...
pthread_getspecific(key, &data);
...

5.2.3.4 Cancelling threads
The thread cancellation mechanism allows a thread to terminate the
execution of any other thread in the process in a controlled manner. The
target thread (that is, the one that's being canceled) can hold cancellation
requests pending in a number of ways and perform application-specific
cleanup processing when the notice of cancellation is acted upon. When
canceled, the thread implicitly calls the pthread_exit((void *)-1) subroutine.

The cancellation of a thread is requested by calling the pthread_cancel
subroutine. When the call returns, the request has been registered, but the
thread may still be running.

The cancelability state and type of a thread determines the action taken upon
receipt of a cancellation request:

Disabled cancelability

Although some implementations of the threads library may repeat
destructor calls, the destructor routine is called only once in AIX.

Take care when porting code from other systems where a destructor
routine can be called several times.

Note
142 C and C++ Application Development on AIX

Any cancellation request is set pending, until the cancelability
state is changed or the thread is terminated in another way. A
thread should disable cancelability only when performing
operations that cannot be interrupted. For example, if a thread is
performing some complex file save operations (such as an
indexed database) and is canceled during the operation, the files
may be left in an inconsistent state. To avoid this, the thread
should disable cancelability during the file save operations.

Deferred cancelability

Any cancellation request is set pending until the thread reaches
the next cancellation point. This is the default cancelability state.
This cancelability state ensures that a thread can be cancelled,
but limits the cancellation to specific moments in the thread's
execution, called cancellation points. A thread canceled on a
cancellation point leaves the system in a safe state; however, user
data may be inconsistent or locks may be held by the canceled
thread. To avoid these situations, you may use cleanup handlers
or disable cancelability within critical regions.

Asynchronous cancelability

Any cancellation request is acted upon immediately. A thread that
is asynchronously canceled while holding resources may leave
the process, or even the system, in a state from which it is difficult
or impossible to recover.

Cancellation points are points inside of certain subroutines where a thread
must act on any pending cancellation request if deferred cancelability is
enabled. An explicit cancellation point can also be created by calling the
pthread_testcancel subroutine. This subroutine simply creates a cancellation
point. If deferred cancelability is enabled, and if a cancellation request is
pending, the request is acted upon, and the thread is terminated. Otherwise,
the subroutine simply returns.

Other cancellation points occur when calling the following subroutines:

• pthread_cond_wait

• pthread_cond_timedwait

• pthread_join

The following code shows a thread where the cancelability is disabled for a
set of instructions and then restored using pthread_setcancelstate function:

void *Thread(void *string)
Chapter 5. POSIX threads 143

{
int i;
int o_state;

/* disables cancelability */
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &o_state);

/* writes five messages */
for (i=0; i<5; i++)

printf("%s\n", (char *)string);

/* restores cancelability */
pthread_setcancelstate(o_state, &o_state);

/* writes further */
while (1)

printf("%s\n", (char *)string);
pthread_exit(NULL);

}

Table 15 lists the set of functions that contain cancellation points.

Table 15. Cancellation point functions

aio_suspend close creat

fcntl fsync getmsg

getpmsg lockf mq_receive

mq_send msgrcv msgsnd

msync nanosleep open

pause poll pread

pthread_cond_timedwait pthread_cond_wait pthread_join

pthread_testcancel putpmsg pwrite

read readv select

sem_wait sigpause sigsuspend

sigtimedwait sigwait sigwaitinfo

sleep system tcdrain

usleep wait wait3

waitid waitpid write
144 C and C++ Application Development on AIX

Table 16 shows functions where cancellation points may occur.

Table 16. Functions where cancellation can occur

writev

catclose catgets catopen

closedir closelog ctermid

dbm_close dbm_delete dbm_fetch

dbm_nextkey dbm_open dbm_store

dlclose dlopen endgrent

endpwent fwprintf fwrite

fwscanf getc getc_unlocked

getchar getchar_unlocked getcwd

getdate getgrent getgrgid

getgrgid_r getgrnam getgrnam_r

getlogin getlogin_r popen

printf putc putc_unlocked

putchar putchar_unlocked puts

pututxline putw putwc

putwchar readdir readdir_r

remove rename rewind

endutxent fclose fcntl

fflush fgetc fgetpos

fgets fgetwc fgetws

fopen fprintf fputc

fputs getpwent getpwnam

getpwnam_r getpwuid getpwuid_r

gets getutxent getutxid

getutxline getw getwc
Chapter 5. POSIX threads 145

5.3 Examples

The first multi-threaded program discussed here is very simple. It displays
"Hello!" in both English and French for five seconds:

#include <pthread.h> /* include file for pthreads - must be 1st */
#include <stdio.h> /* include file for printf() */
#include <unistd.h> /* include file for sleep() */
void *Thread(void *string)
{

while (1)
printf("%s\n", (char *)string);

pthread_exit(NULL);
}
int main()
{

char *e_str = "Hello!";
char *f_str = "Bonjour !";

getwchar getwd rewinddir

scanf seekdir semop

setgrent setpwent setutxent

strerror syslog tmpfile

tmpnam ttyname ttyname_r

fputwc fputws fread

freopen fscanf fseek

fseeko fsetpos ftell

ftello ftw glob

iconv_close iconv_open ioctl

lseek mkstemp nftw

opendir openlog pclose

perror ungetc ungetwc

unlink vfprintf vfwprintf

vprintf vwprintf wprintf

wscanf
146 C and C++ Application Development on AIX

pthread_t e_th;
pthread_t f_th;

int rc;

rc = pthread_create(&e_th, NULL, Thread, (void *)e_str);
if (rc)

exit(-1);
rc = pthread_create(&f_th, NULL, Thread, (void *)f_str);
if (rc)

exit(-1);
sleep(5);

exit(0);
}

The main thread in the example program shown above creates two threads
and waits for five seconds and then exits. Both threads have the same
entry-point routine (the Thread routine) but a different parameter. The
parameter is a pointer to the string that will be displayed.

Now, let‘s take a look at a little more complex and useful example. A matrix
multiplication operation is always a bottleneck on programs due to its loop
iterations. For a bigger matrix, the computational time can became very long

In all programs using pthreads, the first non-comment or whitespace line in
the code must include the pthread.h header file since it contains macro
definitions used in other system header files.

Note

Calling the exit subroutine terminates the entire process, including all its
threads. In a multi-threaded program, the exit subroutine should only be
used when the entire process needs to be terminated, for example, in the
case of an unrecoverable error.

The pthread_exit subroutine terminates only the calling thread. It frees any
thread-specific data, including the thread's stack.

Note
Chapter 5. POSIX threads 147

if processed in a single flow of operation. In the following example, we will
show a very simple multi-threaded program for matrix multiplication:

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

#define SIZE 5

/* creating the variables */
double A[SIZE][SIZE],

B[SIZE][SIZE],
C[SIZE][SIZE];

pthread_t id[SIZE][SIZE];

struct _element {
long i,

j;
} element [SIZE][SIZE];

/* This reentrant program computes C[i][j] = A[i][?]XB[?][j] */
void * xprod_thread(void * arg)
{
register double s;
struct _element *p;
long i, j, k;
p = (struct _element *)arg;
s = 0;
i = p->i;
j = p->j;
for (k = 0; k < SIZE; ++k)

s += A[i][k] * B[k][j];
C[i][j] = s;
pthread_exit(NULL);
}
/* initialize matrix A, B */
void initMat(void)
{
int i, j;

for(i = 0; i < SIZE; ++i)
for(j = 0; j < SIZE; ++j) {

A[i][j] = i + j;
B[i][j] = i - j;

}
}

148 C and C++ Application Development on AIX

/* print the matrix */
void showMat(double m[SIZE][SIZE], int lin, int col)
{
long i, j;

for(i = 0; i < lin; ++i)
{

printf("\n\t| ");
for(j = 0; j < col; ++j)

printf("%5.2lf ", m[i][j]);
printf("|");

}
printf("\n");

}
main(int argc, char * argv[])
{
long i, j;
/* Initialize the Matrixes */

initMat();
/* Matrix product */

for (i = 0; i < SIZE; ++i)
for (j = 0; j < SIZE; ++j)
{

element[i][j].i = i;
element[i][j].j = j;
pthread_create (&id[i][j], NULL, xprod_thread,

(void *)&element[i][j]);
}

/* Let us wait for the computation to be finished */
for (i = 0; i < SIZE; ++i)
for (j = 0; j < SIZE; ++j)
{

pthread_join (id[i][j], NULL);
}

/* The computation is over */
/* Lets show the result */

printf("\n----- Matrix A ------");
showMat(A, SIZE, SIZE);
printf("\n----- Matrix B ------");
showMat(B, SIZE, SIZE);
printf("\n----- Matrix C ------");
showMat(C, SIZE, SIZE);

}

There are several other optimized algorithms, but here we are just focused on
one multi-threaded implementation. Performance considerations are
addressed in Chapter 6, “Making our programs run faster” on page 163.
Chapter 5. POSIX threads 149

Here, you can see a sequence of pthreads created. They execute a
multiplication line per column on a simple reentrant and thread-safe function
xprod_thread. The number of threads created depends on the size of the
matrix (#define SIZE 5).

5.3.1 Supported POSIX API
There are very few differences between POSIX Draft 7 and the final standard:

• There are some minor errno differences. The most prevalent is the use of
ERSCH to denote the specified pthread could not be found. Draft 7
frequently returns EINVAL for this failure.

• Pthreads are joinable be default. This is a significant change since it can
result in a memory leak if ignored.

• Pthreads have process scheduling scope by default.

• The various scheduling policies associated with the mutex locks are
slightly different.

• The pthread_yield subroutine has been replaced by sched_yield.

Table 17 lists all POSIX threads interfaces supported on AIX, Version 4.3.

Table 17. POSIX thread API functions supported on AIX 4.3

pthread_atfork pthread_attr_destroy

pthread_attr_getdetachstate pthread_attr_getschedparam

pthread_attr_getstackaddr pthread_attr_getstacksize

pthread_attr_init pthread_attr_setdetachstate

pthread_attr_setschedparam pthread_attr_setstackaddr

pthread_attr_setstacksize pthread_cancel

pthread_cleanup_pop pthread_cleanup_push

By default, pthreads are joinable, which means their memory space is
not released after it terminates. You must join them, using pthread_join,
or set the detachstate attribute to PTHREAD_CREATE_DETACHED
before its creation. Otherwise, you may run out of storage space when
creating new threads because each thread takes up an amount of
memory.

Note
150 C and C++ Application Development on AIX

pthread_detach pthread_equal

pthread_exit pthread_getspecific

pthread_join pthread_key_create

pthread_key_delete pthread_kill

pthread_mutex_destroy pthread_mutex_init

pthread_mutex_lock pthread_mutex_trylock

pthread_mutex_unlock pthread_mutexattr_destroy

pthread_mutexattr_getpshared pthread_mutexattr_init

pthread_mutexattr_setpshared pthread_once

pthread_self pthread_setcancelstate

pthread_setcanceltype pthread_setspecific

pthread_sigmask pthread_testcancel

sigwait pthread_cond_broadcast

pthread_cond_destroy pthread_cond_init

pthread_cond_signal pthread_cond_timedwait

pthread_cond_wait pthread_condattr_destroy

pthread_condattr_getpshared pthread_condattr_init

pthread_condattr_setpshared pthread_create

pthread_attr_getguardsize pthread_attr_setguardsize

pthread_getconcurrency pthread_mutexattr_gettype

pthread_mutexattr_settype pthread_rwlock_destroy

pthread_rwlock_init pthread_rwlock_rdlock

pthread_rwlock_tryrdlock pthread_rwlock_trywrlock

pthread_rwlock_unlock pthread_rwlock_wrlock

pthread_rwlockattr_destroy pthread_rwlockattr_getpshared

pthread_rwlockattr_init pthread_rwlockattr_setpshared

pthread_setconcurrency
Chapter 5. POSIX threads 151

AIX, Version 4.3 does not support the interfaces listed in Table 18; the
symbols are provided, but they always return an error and set the errno to
ENOSYS.

Table 18. POSIX API functions not supported on AIX 4.3

5.3.2 Thread-safe and reentrant functions
One very important point to take care of when building multi-threaded
programs is the resource handling. To avoid getting in trouble, be sure to
create only thread-safe and reentrant functions as much as possible.
Reentrance and thread-safety are separate concepts: A function can be
either reentrant, thread-safe, both, or neither.

Reentrant A reentrant function does not hold static data over successive
calls, nor does it return a pointer to static data. All data is
provided by the caller of the function. A reentrant function
must not call non-reentrant functions.

Thread-safe A thread-safe function protects shared resources from
concurrent access by locks. Thread-safety concerns only the
implementation of a function and does not affect its external
interface. The use of global data is thread-unsafe. It should be
maintained per thread or encapsulated so that its access can
be serialized.

Reentrant and thread-safe libraries are useful in a wide range of parallel (and
asynchronous) programming environments, not just within threads. Thus, it is
a good programming practice to always use and write reentrant and
thread-safe functions.

Several libraries shipped with the AIX Base Operating System are
thread-safe. In the AIX 4.3, the following libraries are thread-safe:

• libc.a - Standard C library

pthread_attr_getinheritsched pthread_attr_getschedpolicy

pthread_attr_getscope pthread_attr_setinheritsched

pthread_attr_setschedpolicy pthread_attr_setscope

pthread_getschedparam pthread_mutex_getprioceiling

pthread_mutex_setprioceiling pthread_mutexattr_getprioceiling

pthread_mutexattr_getprotocol pthread_mutexattr_setprioceiling

pthread_mutexattr_setprotocol pthread_setschedparam
152 C and C++ Application Development on AIX

• libbsd.a - Berkeley compatibility library (libbsd.a)

• libm.a - Math Library

• libmsaa.a - SVID (System V Interface Definition) math library profiled

• librts.a - Run-Time Services library

• libodm.a - ODM (Object Data Manager) library

• libs.a - Security functions

• libdes.a - Data Encryption Standard

• libXm.a - Bidirectional Support in Xm

• libXt.a - X11 toolkit library

• libX11.a - X11 run time library

Some of the standard C subroutines are non-reentrant, such as the ctime and
strtok subroutines. The reentrant version of the subroutines have the name of
the original subroutine with a suffix _r (underscore r).

When writing multi-threaded programs, the reentrant versions of subroutines
should be used instead of the original version. For example, the following
code fragment:

token[0] = strtok(string, separators);
i = 0;
do {

i++;
token[i] = strtok(NULL, separators);

} while (token[i] != NULL);

should be replaced in a multi-threaded program by the following code
fragment:

char *pointer;
...
token[0] = strtok_r(string, separators, &pointer);
i = 0;
do {

i++;
token[i] = strtok_r(NULL, separators, &pointer);

} while (token[i] != NULL);

Thread-unsafe libraries may be used by only one thread in a program. The
uniqueness of the thread using the library must be ensured by the
programmer; otherwise, the program will have unexpected behavior or may
even crash.
Chapter 5. POSIX threads 153

The provided POSIX thread-safe functions on AIX are listed in Table 19.

Table 19. Thread-safe functions in AIX 4.3

Table 20 lists all non thread-safe functions.

Table 20. Non thread-safe functions in AIX 4.3

asctime_r ctime_r flockfile

ftrylockfile funlockfile getc_unlocked

getchar_unlocked getgrgid_r getgrnam_r

getpwnam_r getpwuid_r gmtime_r

localtime_r putc_unlocked putchar_unlocked

rand_r readdir_r strtok_r

asctime catgets ctime

dbm_clearerr dbm_close dbm_delete

dbm_error dbm_fetch dbm_firstkey

dbm_nextkey dbm_open dbm_store

dirname drand48 ecvt

encrypt endgrent endpwent

endutxent fcvt gamma

gcvt getc_unlocked getchar_unlocked

getdate getenv getgrent

getgrgid getgrnam getlogin

getopt getpwent getpwnam

getpwuid getutxent getutxid

getutxline getw gmtime

l64a lgamma localtime

lrand48 mrand48 nl_langinfo

ptsname putc_unlocked putchar_unlocked

putenv pututxline rand
154 C and C++ Application Development on AIX

5.3.3 Inspecting a process and its kernel threads
AIX provides the ps command for showing current process status. Setting the
appropriates flags, we can also show the kernel threads information. On AIX,
Version 4.3, to display information about all processes and kernel threads,
enter:

ps -emo THREAD

The output is similar to:

USER PID PPID TID S C PRI SC WCHAN FLAG TTY BND CMD
jane 1716 19292 - A 10 60 1 * 260801 pts/7 - biod

- - - 4863 S 0 60 0 599e9d8 8400 - - -
- - - 5537 R 10 60 1 5999e18 2420 - 3 -

luke 19292 18524 - A 0 60 0 586ad84 200001 pts/7 - -ksh
- - - 7617 S 0 60 0 586ad84 400 - - -

luke 25864 31168 - A 11 65 0 - 200001 pts/7 - -
- - - 8993 R 11 65 0 - 0 - - -

Where the columns are defined as:

USER The login name of the process owner.
PID The process ID of the process.
PPID The process ID of the parent process.
TID The thread ID of the kernel thread.
S The state of the process or kernel thread.
C The CPU utilization of the process or kernel thread.
PRI The priority of the process or kernel thread.
SC The suspend count of the process or kernel thread.
WCHAN The wait channel of the process or kernel thread.
FLAG The flags of the process or kernel thread.
TTY The controlling terminal of the process.
BND The CPU to which the process or kernel thread is bound.
CMD The command being executed by the process.

In the example output shown above, we can see that process 1716 has two
kernel threads, one in SLEEPING state and the other in RUNNING.

readdir setgrent setkey

setpwent setutxent strerror

strtok ttyname
Chapter 5. POSIX threads 155

5.4 Program parallelization with compiler directives

So far this chapter has discussed the features of the pthreads interface for
writing parallel programs. The latest compilers from IBM also support two
alternative methods of creating parallel code, both of which involve the use of
compiler directives to indicate the purpose of the code. They are:

• IBM Directives

• OpenMP Directives

OpenMP is a specification for a set of compiler directives, library routines,
and environment variables that can be used to specify shared memory
parallelism in Fortran and C/C++ programs. Refer to the OpenMP Web site for
more information:

http://www.openmp.org

In both instances, the compiler uses the given directives to replace sections
of code with parallel constructs.

The number of parallel threads generated depends on the run time data. This
feature can improve applications performance, especially when taking
advantage of multiple CPU machines.

The region of code to be parallelized can be defined automatically by the
compiler, for the IBM Directives, or can be explicitly defined by the programer
using a proper #pragma syntax for both IBM and OpenMP directives.

5.4.1 IBM directives
IBM directives for parallelization are based on the possibility of parallelizing
countable loops. A loop is considered countable when the following rules can
be applied:

• There is no branching into or outside of the loop.

• The incremental expression (incr_expr) is not within a critical section.

The VisualAge C++ Professional for AIX, Version 5 compiler only supports
IBM and OpenMP directives for parallelization on C language code
compilation.

Note
156 C and C++ Application Development on AIX

Table 21 shows the C language control flow statements and the regular
expressions that define when they can be treated as countable loops.

Table 21. Regular expressions for countable loops

where:

exit_cond iv <= ub

iv < ub

iv >= ub

iv > ub

incr_expr ++iv

iv++

--iv

i--

iv += incr

C Control of flow Regular expression

for for ([iv]; exit_cond; incr_expr)
statement

for ([iv]; exit_cond; [expr]
{

[declaration_list]
[statement_list]
incr_expr;
[statement_list]

}

while while (exit_cond)
{

[declaration_list]
[statement_list]
incr_expr;
[statement_list]

}

do do {
[declaration_list]
[statement_list]
incr_expr;
[statement_list]

} while (exit_cond)
Chapter 5. POSIX threads 157

iv -= incr

iv = iv + incr

iv = incr + iv

iv = iv - incr

iv Iteration variable. The iteration variable is a signed integer that
has either automatic or register storage class, does not have its
address taken, and is not modified anywhere in the loop except
in incr_expr.

incr Loop invariant signed integer expression. The value of the
expression is known at compile-time and is not 0. incr cannot
reference extern or static variables, pointers or pointer
expressions, function calls, or variables that have their address
taken.

ub Loop invariant signed integer expression. ub cannot reference
extern or static variables, pointers or pointer expressions,
function calls, or variables that have their address taken.

In general, a countable loop is automatically parallelized only if all of the
following conditions are met:

• The order in which loop iterations start or end does not affect the results of
the program.

• The loop does not contain I/O operations.

• Floating point reductions inside the loop are not affected by round-off
error, unless the -qnostrict option is in effect.

• The -qnostrict_induction compiler option is in effect.

• The -qsmp compiler option is in effect without its omp sub option. The
compiler must be invoked using a thread-safe compiler mode.

5.4.1.1 The IBM directives syntax
When using IBM directives for explicitly defining parallel portions of code, use
the following syntax:

#pragma ibm pragma_name_and_args
<countable for|while|do loop>

Pragma directives must appear immediately before the section of code to
which they apply. For most parallel processing pragma directives, this section
of code must be a countable loop, and the compiler will report an error if one
is not found.
158 C and C++ Application Development on AIX

More than one parallel processing pragma directive can be applied to a
countable loop. For example:

#pragma ibm independent_loop
#pragma ibm independent_calls
#pragma ibm schedule(static,5)
<countable for|while|do loop>

Some pragma directives are mutually-exclusive. If mutually-exclusive
pragmas are specified for the same loop, the last pragma specified applies to
the loop. In the example below, the parallel_loop pragma directive is applied
to the loop, and the sequential_loop pragma directive is ignored:

#pragma ibm sequential_loop
#pragma ibm parallel_loop

Other pragmas, if specified repeatedly for a given loop, have an additive
effect. For example:

#pragma ibm permutation (a,b)
#pragma ibm permutation (c)

is equivalent to:

#pragma ibm permutation (a,b,c)

Table 22 shows all IBM pragma directives supported by the latest compilers.

Table 22. IBM pragma supported by VA C++ compiler, Version 5.0

Pragma Description

#pragma ibm critical Instructs the compiler that the statement or
statement block immediately following this
pragma is a critical section.

#pragma ibm independent_calls Asserts that specified function calls within
the chosen loop have no loop-carried
dependencies.

#pragma ibm independent_loop Asserts that iterations of the chosen loop are
independent, and that the loop can therefore
be parallelized.

#pragma ibm iterations Specifies the approximate number of loop
iterations for the chosen loop.

#pragma ibm parallel_loop Explicitly instructs the compiler to parallelize
the chosen loop.

#pragma ibm permutation Asserts that specified arrays in the chosen
loop contain no repeated values.
Chapter 5. POSIX threads 159

5.4.2 OpenMP directives
OpenMP directives exploit shared memory parallelism by defining various
types of parallel regions. Parallel regions can include both iterative and
non-iterative segments of program code.

Pragmas fall into four general categories:

1. The first category of pragmas lets you define parallel regions in which
work is done by threads in parallel. Most of the OpenMP directives either
statically or dynamically bind to an enclosing parallel region.

2. The second category lets you define how work will be distributed across
the threads in a parallel region.

3. The third category lets you control synchronization among threads.

4. The fourth category lets you define the scope of data visibility across
threads.

5.4.2.1 The OpenMP syntax
The syntax for using OpenMP directives is as follow:

#pragma omp pragma_name_and_args
statement_block

Pragma directives generally appear immediately before the section of code to
which they apply.

The omp parallel directive is used to define the region of program code to be
parallelized. Other OpenMP directives define visibility of data variables in the
defined parallel region and how work within that region is shared and
synchronized.

For example, the following example defines a parallel region in which
iterations of a for loop can run in parallel:

#pragma omp parallel {
#pragma omp for

for (i=0; i<n; i++)
...

#pragma ibm schedule Specifies scheduling algorithms for parallel
loop execution.

#pragma ibm sequential_loop Explicitly instructs the compiler to execute
the chosen loop sequentially.

Pragma Description
160 C and C++ Application Development on AIX

}

Next example defines a parallel region in which two or more non-iterative
sections of program code can run in parallel:

#pragma omp parallel region {
/* code here is executed by all threads */
#pragma omp sections {

/* each section is executed once */
#pragma omp section

structured_block_1
...

#pragma omp section
structured_block_2

...
....

}
}

Table 23 shows the OpenMP pragmas that are supported by the latest
compilers.

Table 23. OpenMP pragmas supported by VA C++ compiler, Version 5.0

Pragma Description

#pragma omp parallel Defines a parallel region to be run by
multiple threads in parallel. With specific
exceptions, all other OpenMP directives
work within parallelized regions defined by
this directive.

#pragma omp for Preprocessor Work-sharing construct identifying an
iterative for-loop whose iterations should be
run in parallel.

#pragma omp parallel for Shortcut combination of omp parallel and
omp for pragma directives used to define a
parallel region containing a single for
directive.

#pragma omp sections Work-sharing construct identifying a
non-iterative section of code containing one
or more subsections of code that should be
run in parallel.

#pragma omp parallel sections Shortcut combination of omp parallel and
omp sections pragma directives used to
define a parallel region containing a single
sections directive.
Chapter 5. POSIX threads 161

#pragma omp single Work-sharing construct identifying a section
of code that must be run by a single available
thread.

#pragma omp master Synchronization construct identifying a
section of code that must be run only by the
master thread.

#pragma omp critical Synchronization construct identifying a
statement block that must be executed by a
single thread at a time.

#pragma omp barrier Synchronizes all the threads in a parallel
region.

#pragma omp atomic Identifies a memory location that must be
updated atomically and not be exposed to
multiple, simultaneous writing threads.

#pragma omp flush Preprocessor Synchronization construct identifying a point
at which the compiler ensures that all
threads in a parallel region have the same
view of specified objects in memory.

#pragma omp ordered Identifies a structure block of code that must
be executed as a sequential loop.

#pragma omp threadprivate Defines the scope of selected file-scope
data variables as being private to a thread,
but file-scope visible within that thread.

Pragma Description
162 C and C++ Application Development on AIX

Chapter 6. Making our programs run faster

No programmer or user ever complains that their programs are too fast. This
chapter covers some of the compiler options and coding techniques that can
be used to improve the execution speed of applications. The first part of the
chapter deals with measurements because we can claim to improve
something only if we measure it before and after our intervention. As we are
going to see, code changes and compiler options can sometimes give
unexpected results, and this chapter provides some insight in distinguishing
good ideas from not-so-good ones.

6.1 Measuring tools

There are two simple ways to time a program:

1. Use the time built-in Korn shell command. For example:

$ time a.out

This provides information about real (elapsed) time, user time, and system
time for a program. There is also a time command in the C shell, and a
/usr/bin/time command (which is different from the time command used
by either the Korn or C shell) that you can use with other shells.

On a multiprocessor system, the elapsed time of an application can be
considerably smaller than the sum of the user and system times shown if
the application is multi-threaded. This is because the user and system
times are the sum of the user and system times for all threads.

The output of each time command is slightly different as shown in the
three examples in Figure 22 on page 164.
© Copyright IBM Corp. 2000 163

Figure 22. Different versions of time command

Notice that in addition to the format of the output being different, the time
results also differ slightly because the load of the system varies a little
from one moment to the next.

2. Use the gettimeofday() C function.

This will only provide elapsed time information, but allows more precise
time measurement because you can precisely time a section of the
program rather than the entire program. Of course, using the gettimeofday
function means that you must have the source code of the application and
be able to recompile it.

The examples in this chapter use both timing techniques as described above.
In addition, the chapter describes another technique, called profiling,
discussed in Section 6.5, “Profiling your programs” on page 171.

To measure the execution time of program sections, consider the following
two functions. One is called start_timing() and marks the start of time
accounting. The second is called stop_timing(); it measures the elapsed time
in microseconds since start_timing() was called and writes it on stdout.

Although the functions produce a result in microseconds, the program is
running on a multiuser machine, the load of which is variable, and experience
shows that two runs of the same program will give results that can differ by
tens of milliseconds and perhaps even more.

Figure 23 on page 165 shows sample implementations of the timing
functions. For the convenience of the examples used in this book, the

$ time a.out

real 0m3.70s
user 0m3.63s
sys 0m0.06s
$ csh
% time a.out
3.6u 0.0s 0:03 100% 11+4874k 0+0io 0pf+0w
% /usr/bin/time a.out

Real 3.61
User 3.53
System 0.07
164 C and C++ Application Development on AIX

functions were defined in the header file param.h, although the functions
could just as easily be incorporated into a library of utility routines.

Figure 23. Sample timing functions

For an extended discussion on the full suite of performance measuring tools
available on the AIX operating system, refer to the following IBM Redbooks:

• Understanding RS/6000 Performance and Sizing, SG24-4810

• RS/6000 Performance Tools in Focus, SG24-4989

6.2 About the examples

Wherever possible, this chapter uses a simple, but somehow realistic, matrix
multiplication program as an example when describing the various compiler
options and coding techniques.

However, some optimizations can best be demonstrated by using very
specific examples to show how the optimization works in their case. For
instance, the effects of function call optimization or malloc() optimization are

/* Timing functions : start_timing() and stop_timing()
THESE FUNCTIONS ARE SUPPOSED TO BE CALLED FROM THE MAIN PROGRAM ONLY
Do not use them in threads, as they are NOT designed as reentrant */

#include <sys/time.h>

/* Measurement of time : start_timing() and stop_timing(). */

static struct timeval starting, ending;
static long microseconds;

start_timing()
{

gettimeofday (&starting, NULL);
}

stop_timing()
{

gettimeofday (&ending, NULL);
microseconds = (ending.tv_sec - starting.tv_sec) * 1000000

+ending.tv_usec- starting.tv_usec;
printf ("%15ld microseconds\n", microseconds);

}

Chapter 6. Making our programs run faster 165

best demonstrated on programs that essentially make many function calls or
mallocs just for the sake of it. Not only are the examples easier to understand
that way, but this increases the signal-to-noise ratio when the optimization
effects are measured.

The best results obtained in reducing various bottlenecks, whether in real-life
examples or in limited condition examples, are summarized in Section 6.11,
“A summary of our best results” on page 238.

Most of the examples used in the book are CPU intensive, with either little or
no I/O taking place. This has been done to remove the impact of other factors,
such as user reaction time, on the timing results obtained.

6.2.1 What to expect from example timing
Most examples are deliberately constructed to show, in the simplest possible
way, how to reduce a particular bottleneck. When a given change reduces
execution time by a factor of 5 on an example, you should understand that the
time spent by your program on this particular bottleneck will be reduced by a
factor of 5, not that your whole program will be five times faster. For example,
if your program spends 20 percent of its total time in that bottleneck, a
reasonable expectation will be a total execution time reduced by 16 percent.
This is shown in Figure 24 on page 167.
166 C and C++ Application Development on AIX

Figure 24. What to expect from an optimization

In cases where the program performs a large amount of I/O, the apparent
reduction in execution time may be considerably less due to factors, such as
the impact of disk access time and user reaction time. Although the reduction
in elapsed time may not be as dramatic as the 16 percent described above,
the application should be placing less of a CPU load on the system.

6.2.2 Run the examples on your machine
The sample timings shown in this book were obtained on an RS/6000 Model
S70 Advanced server, with the following characteristics:

• 12 RS64 II processors at 262 MHz

• 8 MB of L2 cache per processor

• 1024 MB of main memory

• 1 GB of swap space

If your machine is different, you will obtain different timing results when
running the same examples. It is recommended that you run the samples and
obtain your own timing results for comparison. Both the raw characteristics of

16 %

Your program Bottleneck

If the bottleneck took 20% of the execution time
and an optimization reduces it by a factor of 5 :

Your new program is faster...

... by :

(This is a scale of elapsed time)
Chapter 6. Making our programs run faster 167

your machine and the degree to which it is loaded will play a role in the
results.

If your machine speed or memory size is very different, you can change some
loop or size options (a SIZE compile-time variable is available for that in many
examples) to obtain results in the meaningful and convenient range going
from 100 ms to 30 seconds.

6.3 Timing a typical program

The matrix.c program, shown in Figure 25 on page 169, is a simple program
to multiply two NxN matrices. The example will time the multiplication
component of the program, the time of which is in N3 depending on the
defined variable SIZE.
168 C and C++ Application Development on AIX

Figure 25. The matrix.c sequential matrix multiplication program

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>

/* The following program initializes two matrices and multiplies them.
** Its purpose is to test the efficiency of -O and -O3 options
*/

#include "param.h"

main(int argc, char * argv[])
{

long i, j, k;
int garbage;
double A[SIZE][SIZE], B[SIZE][SIZE], C[SIZE][SIZE];

/* create matrices A and B */
for (i=0; i<SIZE; ++i)

for (j=0; j<SIZE; ++j)
{

A[i][j]=i+j;
B[i][j]=i-j;

}

/* Matrix product */
start_timing();
for (i=0; i<SIZE; ++i)

for (j=0; j<SIZE; ++j)
{

C[i][j] = 0;
for (k=0; k<SIZE; ++k)

C[i][j] += A[i][k]*B[k][j];
}

stop_timing();

/* We are not interested at the result, but the
** optimizer should not know it !
*/
garbage = open("junk", O_RDWR|O_CREAT);
write(garbage, C, sizeof C);
close(garbage); unlink("junk");

}

Chapter 6. Making our programs run faster 169

The results for multiplying two 500x500 matrices with no compiler
optimization options is as follows:

$ cc matrix.c -DSIZE=500 -o matrix
$ matrix

26430222 microseconds

6.4 Useful basic compiler options

The first step in getting a program to go faster is to use the options provided
by the compiler. The IBM compiler products available on AIX have evolved
over many years and, as a result, are capable of generating very well
optimized code, assuming you use the correct options.

The first part of this section discusses the basic compiler options that can be
used to provide maximum benefit for most programs.

The compiler options of interest are:

-g Generate extra symbolic information for the debugger or the
tprof profiler.

-p Generate profiling information for use with the prof profiler.

-pg Generate profiling information for use with the gprof profiler.

-O Optimize program (-O, -O3, -O4, -O5).
-O will attempt to make the best possible use of registers.
Further levels will group calculations in order to remove
redundancy, move non loop-dependent code outside of loops,
and sometimes change the order in which instructions are
executed for extra efficiency. For this reason, the -O options
should generally not be used with the -g or -p options.

-qalign Choose between CPU-fast memory access (aligned data) or
compact representation of data at the expense of a little CPU
overhead (unaligned data).

-qfuncsect Generate additional information so that it is possible to avoid
some useless or redundant function loads.

-qtune Compile for best results on a given machine type.

-qarch Compile using the instruction set for the defined architecture.
170 C and C++ Application Development on AIX

6.5 Profiling your programs

It is not hard to know which part of the matrix.c program is the most
time-consuming, but for a real-life program with potentially many thousands of
lines of code, it is more difficult to detect.

The technique of profiling a program allows you to discover which parts of
your program are consuming the most CPU cycles. This, in turn, allows you to
target your initial code optimization efforts to attempt to maximize the
improvement.

The AIX, Version 4.3 operating system provides and supports three profiling
programs for analyzing your code. Each profiler has a different method of
operation and provides a different type of information.

6.5.1 Profiling with tprof
Profiling a program with tprof consists of two steps:

1. Compile your program with the -g flag. This adds additional symbol
information to the executable, which is used to determine the line of
source code being executed at any instant in time.

2. Run your program from the tprof profiling environment. For example:

tprof a.out

Only the root user can perform the second part because tprof enables a form
of system tracing. When tprof is running, the clock tick interrupt handler,
which runs 100 times a second, records the process ID and instruction being
executed when the interrupt occurred. When the execution of the application
has completed, tprof disables the system tracing it had enabled. It then
generates a number of output files from the data it collected.

The tprof command is part of the perfagent.tools fileset supplied with AIX,
Version 4.3. The fileset is not installed by default when installing the operating
system; so, you will have to use your AIX product media to install it if the
command is not present. AIX, Version 4.1 and AIX, Version 4.2 did not supply
the perfagent.tools fileset as part of the operating system but as part of the
separately orderable Performance Agent Licensed Program Product.

Figure 26 on page 172 shows an example of profiling a program with the
tprof command. Note that the source code files for the application must be in
the directory from which tprof is run; otherwise, the output files containing
microprofiling information will not be produced.
Chapter 6. Making our programs run faster 171

Figure 26. Profiling a program with tprof

The tprof command produces a number of output files in the current
directory, all prefixed with __ (two underscore characters). The files that start
with __tmp are temporary files used in producing the microprofiling output
files.

For each source file in the application, the tprof command produces a file
called __h.filename, which shows the lines in that file that consumed the most
CPU time. Since our example only has a single source file, there is only one
__h file, __h.matrix.c, as shown in Figure 27 on page 173. This file contains
the essential information for us: Which lines received the most CPU ticks.
These are called the hot lines (hence the __h). The contents of the file is a
hit-parade of the lines where our program spent the most CPU time.

$ cc -g -DSIZE=500 matrix.c
$ tprof a.out
You Must Run Tprof As Root
$ su
root's Password:
tprof a.out
Starting Trace now
Starting a.out
Thu Feb 24 10:28:34 2000
System: AIX itsosrv1 Node: 4 Machine: 00017D374C00

26514787 microseconds
Trace is done now
29.867 secs in measured interval
* Samples from __trc_rpt2
* Reached second section of __trc_rpt2
#^D
$ls -lrt | tail -8
-rw-r--r-- 1 root system 36164 Feb 24 10:29 __trc_rpt2
-rw-r--r-- 1 fda project 0 Feb 24 10:29 __tmp.s
-rw-r--r-- 1 fda project 47 Feb 24 10:29 __ldmap
-rw-r--r-- 1 fda project 997 Feb 24 10:29 __a.out.all
-rw-r--r-- 1 fda project 2600 Feb 24 10:29 __tmp.u
-rw-r--r-- 1 fda project 260 Feb 24 10:29 __tmp.k
-rw-r--r-- 1 root system 953 Feb 24 10:29 __t.main_matrix.c
-rw-r--r-- 1 root system 110 Feb 24 10:29 __h.matrix.c
172 C and C++ Application Development on AIX

Figure 27. Contents of __h.matrix.c

In addition to the hot lines file for each source file, tprof also produces a file
for each function in the executable. The files have names of the format
__h.function_filename. Our simple example only has a main routine; so, the
only function file produced by tprof is __t.main_matrix.c as shown in Figure
28 on page 174. This file shows the hot lines in their correct context.

Hot Line Profile for ./matrix.c

Line Ticks

32 1868
31 772
30 4
22 2
19 2
21 1
28 1
Chapter 6. Making our programs run faster 173

Figure 28. The __t file shows execution time of instructions in the source program

The information tells us that line 32 is the most time-consuming part of our
program, followed by line 31, in case we did not know. We can now
concentrate on ways to make these lines run faster, as they are responsible
for most of the execution time.

How can we make the application run faster? The rest of this section is going
to get a little technical, but you can skip it at first reading. It is only intended to

Ticks Profile for main in ./matrix.c

Line Ticks Source

18 - for (i=0; i<SIZE; ++i)
19 2 for (j=0; j<SIZE; ++j)
20 - {
21 1 A[i][j]=i+j;
22 2 B[i][j]=i-j;
23 - }
24 -
25 - /* Matrix product */
26 - start_timing();
27 - for (i=0; i<SIZE; ++i)
28 1 for (j=0; j<SIZE; ++j)
29 - {
30 4 C[i][j] = 0;
31 772 for (k=0; k<SIZE; ++k)
32 1893 C[i][j] += A[i][k]*B[k][j];
33 - }
34 - stop_timing();
35 -
36 - /* We are not interested at the result, but the
37 - ** optimizer should not know it !
38 - */
39 - garbage = open("junk", O_RDWR|O_CREAT);
40 - write(garbage, C, sizeof C);
41 - close(garbage); unlink("junk");
42 - }

2675 Total Ticks for main in ./matrix.c
174 C and C++ Application Development on AIX

show the burden that program optimization could have been if compiler
designers had not built the optimization options in. To take the easy option,
skip to Section 6.6, “Optimizing with the -O option” on page 179.

6.5.1.1 Manual optimization example
The first thing to consider is declaring the loop indexes, especially the
innermost one, k, as a register variable. However, as k is precisely a loop
index, the compiler may have already done that automatically. This will be
verified.

If the address of C[i][j] is computed for every value of k, this is very
inefficient. This could be avoided by one of these two means:

1. Compute p=&C[i][j] before entering the k loop and replace the use of
C[i][j] += with *p += . The pointer variable p would also be declared as a
register variable.

2. Another (perhaps more readable) way is to declare a new variable of type
register double s and replace C[i][j] += with s +=. Only when we get out
of the k loop, shall we perform the assignment C[i][j]=s;

Table 24 shows the results reported by tprof for line 32 when trying the three
enhancements described above.

Table 24. Trying some enhancements by hand

An interesting option of the compiler, -qlist, can show you the generated code
in assembler format. Even if you do not understand the details of assembler
code, this option will sometimes give you an idea of what is going on.

We can also use the profiler to have an idea about the speed of different C
arithmetic operations according to the types of their operands. This can be
done using the code shown in Figure 29 on page 176.

method result in ticks interpretation

original program 1893

register long k 1879 The compiler had already done that for us.

(*p) += 3021 Not a good idea

register double s 1581 Slight improvement
Chapter 6. Making our programs run faster 175

Figure 29. profil.c: Timing some typical C instructions

Notice the test() line, which will time an empty loop. The corresponding tick
count should be subtracted from the other tick counts in order to know the
execution time of the computations themselves, not of the loop executing
them.

The output from running the program is shown in Figure 30 on page 177.

#define test(x) for (k=0; k<100000000; ++k) x;

int i, j, k, m[1000];
long ii, jj, kk, mm[1000];
double x, y, z, t[1000];
long double xx, yy, zz, tt[1000];

main()
{
test ()
test (i = i+1)
test (i = i*j)
test (i = k%1000)
test (m[k%1000] = k)
test (ii = ii+1)
test (ii = ii*jj)
test (mm[k%1000] = (long) k)
test (x = x+1.)
test (x = x*y)
test (t[k%1000] = (double) k)
test (xx = xx+1.)
test (xx = xx*yy)
test (tt[k%1000] = (long double) k)
}

176 C and C++ Application Development on AIX

Figure 30. The output of profil.c

Table 25 summarizes the actual cost in clock ticks of each type of calculation.

Table 25. Real execution tick count

computation real tick count

i = i + 1 188

i = i * j 416

i = k % 1000 175

m[k%1000] = k 304

ii = ii + 1 186

ii = ii * jj 416

mm[kk%1000] = (long) k 272

x = x + 1. 454

x = x * y 531

Ticks Profile for main in ./profil.c

Line Ticks Source

10 348 test ()
11 537 test (i = i+1)
12 765 test (i = i*j)
13 524 test (i = k%1000)
14 653 test (m[k%1000] = k)
15 535 test (ii = ii+1)
16 765 test (ii = ii*jj)
17 621 test (mm[k%1000] = (long) k)
18 803 test (x = x+1.)
19 880 test (x = x*y)
20 717 test (t[k%1000] = (double) k)
21 802 test (xx = xx+1.)
22 879 test (xx = xx*yy)
23 725 test (tt[k%1000] = (long double) k)
24 - }

9554 Total Ticks for main in ./profil.c
Chapter 6. Making our programs run faster 177

6.5.2 Other profilers
The nice thing about tprof is that it provides profiling at the source-code level
(which is sometimes called microprofiling) and does not need anything other
than the -g option to run. This -g option is routinely used in the development
process most of the time because it is needed if you want to run the
executable code under control of a debugger.

The not quite so nice thing is that you have to give the root password to
whoever wants to use it, and multiplying the number of people having the root
password also multiplies the risk of having somebody damaging other
people’s files by mistake.

For that reason, two other profilers can be used. These profilers give only
basic information (mostly about function call statistics), but can be run by any
user. The output of these profilers may be sufficient in most cases to
determine the areas of code that would benefit most from performance
improvement. These profilers need the sources to be recompiled with
additional compiler options.

6.5.2.1 prof
The prof profiler is a basic profiler that will provide you the number of
milliseconds spent in every function your program called. The application
should be compiled with the -p option before using prof.

It does not provide much usable information to use with the matrix.c example,
as you can judge by yourself. This is mainly because the application does not
make many function calls.

t[k%1000] = (double) k 368

xx = xx + 1. 453

xx = xx * yy 530

tt[kk%1000] = (long double) k 376

computation real tick count
178 C and C++ Application Development on AIX

Figure 31. Using prof

6.5.2.2 gprof
The gprof profiler is used to obtain a call graph of the application. Use of
gprof requires a program to be recompiled with the -pg option. The
application is run as normal and leaves behind a gmon.out file. The gprof

command is then used to process the gmon.out file to produce the call graph
information.

Figure 32. Using gprof

Use gprof when you have a lot of functions called and you want to know which
ones spent the most time.

6.6 Optimizing with the -O option

The -O compiler option performs some basic optimization of the code that is
produced. The result of using -O with the matrix.c program can be seen in
Figure 33.

Figure 33. Improvement with optimization

Compared to the results in Figure 28 on page 174, we see that for this
program, using the -O option is more efficient that trying to optimize things
manually. Moreover, it allows us to preserve program readability by writing

$ cc -p matrix.c -DSIZE=100 && prof a.out
Name %Time Seconds Cumsecs #Calls msec/call
.stop_timing 99.1 3.27 3.27
.main 0.9 0.03 3.30 1 30.
$

$ cc -pg matrix.c -DSIZE=100
$ a.out
$ gprof

25 - for (i=0; i<SIZE; ++i)
26 - for (j=0; j<SIZE; ++j)
27 - { C[i][j] = 0;
28 373 for (k=0; k<SIZE; ++k) C[i][j] += A[i][k]*B[k][j];
29 - }
Chapter 6. Making our programs run faster 179

instructions in a “natural” way, readable for human beings, rather than using
more efficient, but more obscure, forms as seen in Table 24 on page 175.

People who program in assembler language admit that while it is still possible
to do a very good manual optimization for a short program (for example, a
device driver), the C optimizer will beat anyone except the very experienced
programmer when the source program is more than a few pages. Why is this
so? The RS/6000 has a lot of registers and its use of the chromatic algorithm
guarantees one of the very best possible register allocation. An excellent
low-level language programmer knowing the application (and information the
compiler does not have) could do better, but at the expense of program
readability and, therefore, maintainability.

Profiling a program, as described in Section 6.5, “Profiling your programs” on
page 171, stays, nevertheless, a good way to know where the real program
bottlenecks are and act accordingly. For instance, bottlenecks can be good
candidates to be considered for multithreading, as we shall see in Section
6.7, “Reworking a program to use multiple processors” on page 206.

Figure 34 on page 181 shows what happens when we apply the -O option to
the program profil.c shown in Figure 29 on page 176.
180 C and C++ Application Development on AIX

Figure 34. Optimized profil.c

Some instructions seem to execute in no time at all. What has happened?
The reasons for this are:

• The -O option tries to move out of a loop whatever can be computed once
and for all outside of the loop.

• If the loop is empty, -O removes it.

• If the contents of a variable are never used, the -O option tries not to
compute that variable at all.

Table 26 details the interesting results.

Table 26. Some effects of the -O option

instruction original count count with -O reduction

i = i + 1 188 0 N/A

i = i * j 416 0 N/A

i = k % 1000 175 77 56 %

Ticks Profile for main in ./profil.c

Line Ticks Source

10 - test ()
11 - test (i = i+1)
12 - test (i = i*j)
13 77 test (i = k%1000)
14 589 test (m[k%1000] = k)
15 - test (ii = ii+1)
16 191 test (ii = ii*jj)
17 572 test (mm[k%1000] = (long) k)
18 153 test (x = x+1.)
19 153 test (x = x*y)
20 547 test (t[k%1000] = (double) k)
21 153 test (xx = xx+1.)
22 153 test (xx = xx*yy)
23 575 test (tt[k%1000] = (long double) k)
24 - }

3163 Total Ticks for main in ./profil.c
Chapter 6. Making our programs run faster 181

The overall effect for the whole program is a that we get down from 9553 tick
counts to 3163 tick counts, a 67 percent reduction in elapsed time. Bear in
mind, however, that not all instructions were executed.

6.6.1 Optimizing at higher levels
Other compiler options are even more aggressive than -O. According to the
compiler basic help, some of these optimizations, from -O on, have the
potential to alter the semantics of a user's program.

What does altering the semantics mean? Can this level of optimization make
the program compute something other than what we think we asked? In a
sense, yes. For instance, the -O3 option boldly assumes that (a*b)*c is the
same thing that a*(b*c). Mathematically, of course, it is perfectly correct since
multiplication of scalars is supposed to be a commutative operation. But, if a,
b, and c are floating-point variables, this might be only almost true, because
of rounding errors. Therefore, if you are doing numerical analysis, you should
be careful because these roundoffs might accumulate in some way.

The -O3 option also authorizes the compiler to make its computations in a
different order than specified in the program if that allows the code to go
faster. This means, unfortunately, that tprof’s results will in that case be
meaningless. For that reason, the -qstrict option allows to the user to turn off
that particular authorization.

Let us now compare compilation and execution times of matrix.c for different
optimization levels and different values of SIZE. This was done using the
command sequence shown in Figure 35 on page 183.

ii = ii + 1 186 0 N/A

ii = ii * jj 416 191 54 %

x = x + 1. 454 153 66 %

x = x * y 531 153 71 %

xx = xx + 1. 453 153 66 %

xx = xx * yy 530 153 71 %

instruction original count count with -O reduction
182 C and C++ Application Development on AIX

Figure 35. A script to compare optimization options

The results are summarized in Table 27.

Table 27. Comparing optimization levels

We see that the compilation time gets bigger with the optimization level, and
that execution times get statistically lower with it, especially for SIZE = 100.
Two charts will show us more clearly the amounts of magnitude involved in
the two cases. Let us begin with the chart of compilation times as shown in
Figure 36 on page 184.

Compilation
option

Compilation
time

(seconds)

Execution time (microseconds)

SIZE=4 SIZE=10 SIZE=25 SIZE=100

None 0.45 14 159 2 465 187 854

-O 0.48 5 18 258 23 945

-O3 -qstrict 0.57 7 16 256 24 449

-O3 0.58 5 13 284 20 208

-O4 1.02 5 10 212 20 170

-O5 1.06 7 11 228 20 153

for size in 4 10 25 100
do
for options in "" "-O" "-O3 -qstrict" "-O3" "-O4" "-O5"
do
echo "Options : $options"
time /usr/vac/bin/cc_r $1.c -DSIZE=$size -DOPT=\"$options\" $options
time a.out
Chapter 6. Making our programs run faster 183

Figure 36. Comparison of compile times

We see that there is a kind of quantum leap involved when we go over -O3.
Because of the law of diminishing returns, which states “do the most effective
things first”, we expect the quantum leap in execution time to be between
using no optimization and using basic optimization with the -O option. The
comparison of execution times is shown in Figure 37 on page 185.
184 C and C++ Application Development on AIX

Figure 37. Comparison of execution times

The computation time per element is the ratio of the elapsed time to the
number of “multiply and add” operations involved, which is of the order of
SIZE3. We see three things on the chart:

1. The time per element can go down to 0.01 microseconds (that is, 10
nanoseconds) per computed element. The only way for the RS/6000 to go
so fast is having it perform many instructions at the same time using
pipelining. This is precisely one of the things the optimizer tries to do, with
some success.

2. The time per element first goes down with SIZE, then increases slowly.
This is due to the stride effect that we shall see in Section 6.10, “The stride
effect” on page 233. Notice that we see the best ordering for SIZE=100,
while for a smaller value of SIZE such as 4, the results are not so clear.
When your execution time is just five microseconds, any load fluctuation in
the system introduces noise in the results.

3. The real execution time quantum leap for this program is clearly between
using no optimization and using -O, as we expected.

This is, of course, just an example concerning this particular program. Your
mileage may vary. Nevertheless, the general relationship of compilation and
execution times compared with optimization level will generally stay similar.
Chapter 6. Making our programs run faster 185

We have now seen the best improvement. What follows will supply only
marginal gains, comparatively, but stays worth to be mentioned.

6.6.2 Optimizing further with -qipa
The -qipa option performs interprocedural analysis. At compilation time, the
compiler examines every procedure to determine which registers are used or
unused. This information can be used to prevent the calling subroutine from
having to save and restore the registers that are not used by the called
procedure.

Let us use the program shown in Figure 38 to demonstrate how the -qipa
option works.

Figure 38. Example code for -qipa

Obviously, this program does nothing very useful, but we understand a lot of
time is going to be spent calling the function f and, therefore, stacking and
restoring contexts.

Let us compile with some different options and time the executions. The
command sequence shown in Figure 39 on page 187 demonstrates the effect
of the -qipa option on the code shown in Figure 38.

#include <stdio.h>
#include <stdlib.h>

int f(int i){ return i+1; }

main()
{int i, j, k;
for (i=0; i<100; ++i)

{ j=i;
for (k=0; k<1000000; ++k) j=f(j);
printf ("%d ",j);

}
}

186 C and C++ Application Development on AIX

Figure 39. Effect of the -qipa option

Note that compilation time is longer when using the -qipa option. This is not
unexpected since the compiler is performing extra processing. Notice the
result, however. Using the extra knowledge of what the called procedure
does, the compiler generates an executable that is more than 13 times faster
in this example.

This is good news for people who like to program in Smalltalk-like style, with
many short procedures calling one another. If they like to program that way,
the -qipa option will give them good execution times, nevertheless. This is
also good news for people using the GNU SmallEiffel compiler, which also
produces a lot of small C procedures that call one another.

The -qipa option accepts additional parameters, some of which are shown in
Table 28.

Table 28. Important -qipa optional parameters

Option Effect

level=0 (or 1, or 2) From minimal (0) to maximal (2) analysis. The
default value is 1, which is intermediate

$ time xlc -O3 ipa.c

real 0m0.41s
user 0m0.16s
sys 0m0.06s
$ time a.out >/dev/null

real 0m3.08s
user 0m3.05s
sys 0m0.00s
$ time xlc -O3 -qipa ipa.c

real 0m0.72s
user 0m0.21s
sys 0m0.20s
$ time a.out >/dev/null

real 0m0.03s
user 0m0.01s
sys 0m0.00s
Chapter 6. Making our programs run faster 187

6.6.3 Doing even better with -qinline
Of course, in the preceding example, we could wonder whether it is worth
calling such a small procedure at all. When the procedure is so short, why not
just copy its text in the main program code? In that way, we not only avoid
stacking and restoring registers, but we avoid stacking and restoring a return
address as well. In fact, this is already what happens when we use the string
manipulation functions defined in the system header file, <string.h>.

This can be done by making f a macro instead of a function, for example:

#define f(x) (x+1)

However, with real-life functions, the macro could be very difficult to read,
including a lot of line breaks with the backslash character. It can also make us
lose time by thinking about possible side effects. For exampl, would f(i++)
give the correct results?

The compiler provides us with the way to treat the function f as a macro
without having to rewrite it. This can be done using the -qinline option, which
inlines the function code. The effect of this is shown in Figure 40.

Figure 40. The -qinline option gives the best results here

This, of course, does not mean that -qinline should be preferred every time
over -qipa. As we have already said, this example, in fact all our examples in
this chapter, are limit situations, as good examples should be.

lowfreq=toto1,toto2,toto3
Calling the functions toto1, toto2 and toto3 will not
occur frequently. Ignore them in analysis if that can
make the rest better.

Option Effect

$ time xlc -O3 -qinline ipa.c

real 0m0.43s
user 0m0.11s
sys 0m0.08s
$ time a.out >/dev/null

real 0m0.01s
user 0m0.00s
sys 0m0.01s
188 C and C++ Application Development on AIX

Nothing prevents you from using both options because you can use optional
additional parameters with -qinline to indicate what you want to be inlined as
shown in Table 29.

Table 29. Some inlining options

Alternatively, the -qipa option also has an inline suboption.

Table 30 resumes and extends the execution time information, as well as
compilation time and size of the generated executables, for our example
program.

Table 30. Compilation time, size of code, execution times

Compared to -qipa, the -qinline option generates a bigger stripped
executable. Note that the -qipa option also needs some extra compilation time
because this option needs an extensive analysis by the compiler of register
allocation in each subprogram. It will allow it to compromise for the best
possible combination with register allocation in the calling program. This is a
lot of extra work for the compiler, but when it pays off, you will be glad you
asked for it.

6.6.4 Space/time trade-off for data
Many RISC machines are sensitive to the alignment of data within memory
and give best performance when data is aligned on given boundaries.

In-lining options example Effect

-qinline Inline every short function.

-qinline=15
Inline every function having less than 15 lines of
effective source code. Any other threshold number
can be specified.

-qinline+toto:titi:tata The toto, titi, and tata functions should be inlined.

-qinline-proust:marx:guth The proust, marx, and guth functions should not be
inlined.

Options
Compilation

time
(seconds)

Size of
executable

Size of
stripped

executable

Execution
time

(seconds)

-O3 0.37 4187 1631 3.08

-O3 -qipa 0.76 4153 1603 0.03

-O3 -qinline 0.38 4209 1623 0.02
Chapter 6. Making our programs run faster 189

This is the default used by the compiler. The library functions shipped with
AIX, and dealing with structures, have also been compiled using that option.

However, as often in computer science, “there is no silver bullet”. Aligning
data on certain boundaries may be an excellent choice when you deal with
one data structure, but not such a good one if you deal with an array of one
thousand or one million of data structures.

This is because memory space is used less efficiently, which could lead to
more frequent cache misses in the first case, or worse, more page misses,
especially if the array of structures is accessed in a sequential way.

Four alignment options are supported by the compiler as detailed in Table 31.

Table 31. Alignment options supported by the compiler

As this may seem a little abstract, let us define a structure mixing, sloppily, a
number of variables of different sized types. This is shown in Figure 41.

Figure 41. A structure mixing char, int, and double

-qalign= Effect Use

power (or full) Uses the POWER
alignment rules

Good speed, but will use some
memory for padding.

twobyte (or mac68k) Uses the Apple Macintosh
alignment rules

Useful to read a file of records
coming from a Mac.

packed Uses the packed alignment
rules

Good memory usage, exact
influence on program execution
unclear.

natural
Structure members are
mapped on their natural
boundaries

Biggest memory user. May be
efficient for number-crunching
applications when we have
plenty of memory.

struct t_hollow
{ char c1;
double dd;
char c2;
int ii;
char c3;
int jj;

}

190 C and C++ Application Development on AIX

Now, let us compile and execute the program shown in Figure 42 with
different alignment options to see where the compiler puts the structure
variables in memory.

Figure 42. A program to investigate how variables in a structure are aligned

The results are shown in Figure 43 on page 192.

#include <stdio.h>
#include <stdlib.h>
#include "param.h"

#define o(x) ((char *) &hollow[0].x - (char *) &hollow[0])
#define p(x) printf("%s uses offsets %3d to %3d\n", \

#x , o(x), o(x)+sizeof hollow[0].x -1);

/* The following structure shoud take very different
memory sizes according to alignment rules */

struct t_hollow
{ char c1;
double dd;
char c2;
int ii;
char c3;
int jj;

} hollow[SIZE];

int k;

main()
{
int pas;
printf ("Size of array : %10ld, %ld elements of size %ld\n",

sizeof hollow, SIZE, sizeof hollow[0]);
p(c1)
p(dd)
p(c2)
p(ii)
p(c3)
p(jj)

pas = ((char *)&hollow[1])-(char *)&hollow[0];
printf ("Offset next struct :%3ld\n", pas);

start_timing();

for (k=0; k<SIZE; ++k)
{
/* printf("%10d\n", k); */
hollow[k].c1= hollow[k].c2= hollow[k].c3='A';
hollow[k].dd = 0. ;
hollow[k].ii = hollow[k].jj = k;

}

stop_timing();
}

Chapter 6. Making our programs run faster 191

Figure 43. The different layouts for a structure according to alignment options

Table 32 details the offsets of the various structure members depending on
the alignment option chosen.

Table 32. Offsets of structure variables according to alignment options

power twobyte packed natural

c1 (byte) 0 0 0 0

dd (double) 4 to 11 2 to 9 1 to 8 8 to 15

-w -DSIZE=10000 -qalign=power
Size of array : 280000, 10000 elements of size 28
c1 uses offsets 0 to 0
dd uses offsets 4 to 11
c2 uses offsets 12 to 12
ii uses offsets 16 to 19
c3 uses offsets 20 to 20
jj uses offsets 24 to 27
Offset next struct : 28

4426 microseconds

-w -DSIZE=10000 -qalign=twobyte
Size of array : 220000, 10000 elements of size 22
c1 uses offsets 0 to 0
dd uses offsets 2 to 9
c2 uses offsets 10 to 10
ii uses offsets 12 to 15
c3 uses offsets 16 to 16
jj uses offsets 18 to 21
Offset next struct : 22

4303 microseconds

-w -DSIZE=10000 -qalign=packed
Size of array : 190000, 10000 elements of size 19
c1 uses offsets 0 to 0
dd uses offsets 1 to 8
c2 uses offsets 9 to 9
ii uses offsets 10 to 13
c3 uses offsets 14 to 14
jj uses offsets 15 to 18
Offset next struct : 19

4168 microseconds

-w -DSIZE=10000 -qalign=natural
Size of array : 320000, 10000 elements of size 32
c1 uses offsets 0 to 0
dd uses offsets 8 to 15
c2 uses offsets 16 to 16
ii uses offsets 20 to 23
c3 uses offsets 24 to 24
jj uses offsets 28 to 31
Offset next struct : 32

3634 microseconds
192 C and C++ Application Development on AIX

Figure 44 shows a representation of how the structures are laid out in
memory.

Figure 44. Memory scattering according to alignment options.

We can see from this that no padding occurs between two adjacent members
when the -qalign=packed option is used.

For data file portability reasons (between machines of different constructors),
it seems tempting to use the compact model. Which are the trade-offs
involved?

1. Poor alignment of double variables will necessitate more machine
instructions when fetching and storing them.

2. On the other hand, having a more compact data structure can have
positive effects on elapsed time because:

a. The cache may be more efficiently used, as it does not have to store
any padding information.

c2 (byte) 12 10 9 16

ii (int) 16 to 19 12 to 15 10 to 13 20 to 23

c3 (char) 20 16 14 24

jj (int) 24 to 27 18 to 21 15 to 18 28 to 31

Total size 28 22 19 32

power twobyte packed natural

8-byte boundaries
4-byte boundaries
2-byte boundaries
bytes

power : 28 bytes

twobyte : 22 bytes

packed : 19 bytes

natural : 32 bytes

dd ii jj

dd ii jj

dd ii jj

dd ii jj
Chapter 6. Making our programs run faster 193

b. A large array of structures will use less pages of virtual memory.

Once again, there is no universal answer. At most, we can see what happens
to the execution times of our particular program according to a combination of
SIZEs and alignment options used. The results are shown in Table 33.

Table 33. Time measurements for our sample program according to alignment

For this program, the natural alignment gives the best results when
optimization is turned off; however, the packed alignment gives better results
when optimization is turned on.

Now, when looking at Figure 44 on page 193, we see that the placement of
variables in our structure is one of the causes for the waste of space, which,
on a system that uses cache memory and virtual memory, can cause a waste
of CPU cycles. No -O optimization is bold enough to rearrange the disposition
of variables within a structure for us because we would then have no control
over the data layout in file records; however, this can be done by hand.

The structure shown in Figure 45 on page 195 is very inefficient from a
memory utilization point of view.

Compile time options power twobyte packed natural

SIZE=10K 4 426 4 303 4 168 3 634

SIZE=10K, -O4 2 172 1 898 1731 2 212

SIZE=10M 4 427 042 4 371 687 4 219 509 3 688 052

SIZE=10M, -O4 1 947 929 1 828 376 1 660 141 2 199 061

Our structure has only one double floating-point value, no long long, and it
is not used for intensive computations. With a lot of large variables
misaligned and heavily used for computations, compact could, on the
contrary, dramatically slow the program. Always test alignment results on
your real program using real data sets before chosing an alignment option.

Note
194 C and C++ Application Development on AIX

Figure 45. An inherently inefficient structure

What about coding it with biggest variables first? This will not imply any
change in the application code other than the structure definition. The result
of rearranging is shown in Figure 46.

Figure 46. Rearranging the structure

This rearrangement should give us more compact results in whichever
alignment option is used, except, of course, packed, where the size will
remain the same. The comparisons of size are shown in Table 34.

Table 34. Comparing the size of each structure definition

Table 35 compares the execution times of the program when using the
different structures with the alignment and optimization options.

Table 35. Comparing the results for each structure definition

Structure Size in bytes for alignment

power twobyte packed natural

Old 28 22 19 32

New 24 20 19 24

Compile options Structure power twobyte packed natural

SIZE=10 K Old 4 426 4 303 4 168 3 634

SIZE=10 K New 3 997 3 842 4 119 4 045

struct t_hollow
{ char c1;
double dd;
char c2;
int ii;
char c3;
int jj;

}

struct t_hollow
{ double dd; /* 8 bytes */
int ii; /* 4 bytes */
int jj; /* 4 bytes */
char c1, c2, c3; /* 3*1 byte */

}

Chapter 6. Making our programs run faster 195

We see that designing a structure, with as few alignment holes as possible,
sometimes enhances greatly the speed of a program without having to
change anything in the code itself.

Whenever you can reduce the space that is wasted in your structures, you
can increase your chances of reducing the execution time. For small data
sets, this is because more of the meaningful things will be in the cache. For
large data sets, this is because a bigger part of your data will be present in
the active pages in physical memory.

Figure 47 on page 197 and Figure 48 on page 197 graphically illustrate the
difference in execution times when using the different alignment options and
the old and redesigned structures. Figure 49 on page 198 shows the padding
and layout of the redesigned structure.

SIZE=10 K, -O4 Old 2 172 1 898 1 731 2 212

SIZE=10 K, -O4 New 1 679 1 637 1 647 1 777

SIZE=10 M Old 4 427 042 4 371 687 4 212 509 3 688 052

SIZE=10 M New 1 706 133 1 675 191 1 675 272 1 731 576

SIZE=10 M, -O4 Old 1 947 929 1 828 376 1 660 141 2 199 061

SIZE=10 M, -O4 New 1 912 861 1 659 335 1 668 713 1 724 004

Compile options Structure power twobyte packed natural
196 C and C++ Application Development on AIX

Figure 47. Initializing 10,000 structure elements

Figure 48. Initializing 10 million elements
Chapter 6. Making our programs run faster 197

Figure 49. Layout for the reworked structure

The grey space shown in Figure 49 represents the padding between adjacent
structures in an array. The compiler performs this padding because the next
structure begins with a double dd, and no alignment other than packed can
allow dd to start on an odd byte boundary. Power and natural even require it
to start on a 8-byte boundary.

The #pragma align directive performs the same function as the -qalign
compiler option. The difference between the two is that the #pragma version
can be used to limit the effect of the alteration in alignment to particular lines
of code. For example:

#include <stdio.h>
#include <stdlib.h>
/* Structures defined in the header files will have the alignment

8-byte boundaries
4-byte boundaries
2-byte boundaries
bytes

power

twobyte
20 bytes

24 bytes

packed
19 bytes

natural
24 bytes

dd

dd

dd

dd

ii

ii

ii

ii

jj

jj

jj

jj

Remember that some system functions return pointers to structures and
accept pointers to structures as arguments. These functions in the AIX
libraries have been compiled with the standard alignment option.

For this reason, if you call these functions, you should never use directly
the -qalign option on the compiler line because you would give the compiler
a false hint about the structures that are returned.

You can define a different alignment option for your private data structures
by using the #pragma align directive.

Note
198 C and C++ Application Development on AIX

** defined on the compiler command line
*/
#pragma align(packed)
/* structures from now on will use the packed alignment */
struct private_data {
...
...
#pragma align(full)
/* everything from here on will have default alignment */
...
...

6.6.5 Light adaptation to a machine with -qtune
Not all RS/6000 systems are created equal. Historically, the instruction set
used was POWER (Processing Optimization With Enhanced RISC). Later,
POWER gave rise to the PPC (PowerPC) instruction set for chips developed
by IBM, Apple, and Motorola. IBM also developed the POWER2 and
POWER3 chips. This is a good thing since evolution cannot, and should not,
be stopped.

In every one of these cases, some instructions were added in architecture,
and some other ones were dropped. For compatibility reasons, some of the
suppressed instructions were emulated so that legacy programs could run,
nevertheless.

That means there will be more than one way to compile a program for the
same result. Some of these ways may be faster on some machines only. The
-qtune option gives the compiler a hint to try and make the program faster for
a given type of machine. It means the program will mostly be used on these
machines. The instructions are ordered in such a way as to suit the
instruction pipeline on the specified chips.

Unless otherwise specified by a -qarch option, described in 6.6.6, “Heavy
adaptation to a machine with -qarch” on page 199, the compiler only
generates instructions that are present in all the instruction sets. This is
called the common architecture and ensures complete binary portability
between different types of RS/6000 hardware.

6.6.6 Heavy adaptation to a machine with -qarch
Let us suppose now that we know on which machine we shall run the program
and wish to use its additional instructions as well. We could lose binary
portability, but that would not matter much as long as we have the source
code. On the other hand, we get a chance that the generated program can
Chapter 6. Making our programs run faster 199

take profit of the specific fast instructions of this machine and execute in a
smaller amount of time.

As the new instructions are not the same in PPC and PWRn architectures, a
program compiled for one architecture can be unable to run on another if it
made use of those specific instructions. Trying to run it on a such a machine
will then give the infamous message:

Illegal instruction(coredump)

You may consider this as a drawback if you want your programs to run
everywhere, and as an advantage if you want them to be somehow protected.
For instance, a software vendor could be glad, after all, that its low-cost PPC
version could not run on powerful and costly POWERx machines. This way,
they could market a “professional” version of its software “optimized for the
powerful machines” (and sold at a higher price) by just making a simple
recompilation. But, let us not forget that in such a case their maintenance
costs will be higher too.

The -qarch option allows us to specify a given architecture for the
compilation. The default value is com (common). Let us try to specify different
values of -qarch to compile and execute matrix.c in the hope of knowing
which type of architecture we are running on. We shall make two different
runs in order to have an idea of the role of this option on execution time
compared to the random load fluctuations of the system. Figure 50 on page
201 shows the results of this.
200 C and C++ Application Development on AIX

Figure 50. The -qarch option used with matrix.c

What we know for sure now is that our computer architecture is neither pwr2
nor p2sc since the execution of the code aborted with the message, illegal
instruction, in these two cases. The other results are more controversial for
this particular type of program.

However, as processor architectures evolve and get more and more
specialized (personal workstation, Web server, file server, number cruncher,
and so on), this -qarch option will probably become more and more important
in the future.

6.6.7 Combining -qarch and -qtune
The -qarch and -qtune options are not incompatible, and combining them for
your machine (or for another machine you intend to run the program on) is
supposed to give you the best results. The compiler will warn you if, by
mistake, you specify a -qtune option incompatible with your -qarch choice.

6.6.8 Removing redundant code from executables with -qfuncsect
Let us consider the C++ file func1.cpp shown in Figure 51 on page 202.
Chapter 6. Making our programs run faster 201

Figure 51. A typical C++ function using a stack template

The code for the template is normally coded in the function at compilation
time. This means that the compiler sees the code for the stack template
function as part of the compilation unit and includes it as part of the output
object file. The object file is created with a single CSECT (code section),
which is the atomic unit used by the linker when creating the final executable.
Now, many other functions coded elsewhere can also have to use this stack
template, which means the code for the template will be included in many
compilation units and, thus, many object files. For simplicity, we are going to
define six other functions using the same template, func2.cpp to func7.cpp,
which are just going to be clones of func1.cpp. The calling program for these
functions is shown in Figure 52 on page 203.

When the linker is creating the final executable, it sees multiple copies of the
stack template code since there is one copy in each object file produced. It
can not remove the duplicate entries, however, since each one is within a
single CSECT with other code that needs to be included in the final
executable. This means the final executable is larger than it needs to be since
it has multiple copies of certain routines.

#include <stack>
#include <string>
#include <iostream>

using namespace std;

int func1()
{

stack<string> stk;
stk.push("apple");
stk.push("banana");
stk.push("orange");
cout << "size = " << stk.size() << endl;
cout << "top = " << stk.top() << endl;
while (!stk.empty()) {

cout << stk.top() << endl;
stk.pop();

}
return 0;

}

202 C and C++ Application Development on AIX

Figure 52. stack.cpp: A program calling all the functions.

Let us see what happens when we compile and link this without using
-qfuncsect. The script shown in Figure 53 is used to perform the test.

Figure 53. testfuncsect: A script to test the -qfuncsect option

using namespace std;
extern int func1();
extern int func2();
extern int func3();
extern int func4();
extern int func5();
extern int func6();
extern int func7();

int main()
{

func1();
func2();
func3();
func4();
func5();
func6();
func7();
return 0;

}

set -x
xlC -c *.cpp
ls -l *.o
xlC -w *.o
ls -l a.out
strip a.out
ls -l a.out

xlC -c -qfuncsect *.cpp
ls -l *.o
xlC -w *.o
ls -l a.out
strip a.out
ls -l a.out
Chapter 6. Making our programs run faster 203

The result of running the first part of the test is shown in Figure 54. Loader
warning messages about duplicate entries have been suppressed for clarity.

Figure 54. Not using the -qfuncsect option

The important things to remember here are:

• Each compiled function takes 157 700 bytes

• The executable takes 435 400 bytes unstripped

• The stripped executable takes 281 479 bytes

Figure 55 on page 205 shows the results of running the second part of the
test.

+ xlC -c func1.cpp func2.cpp func3.cpp func4.cpp func5.cpp func6.cpp
func7.cpp stack.cpp
func1.cpp:
func2.cpp:
func3.cpp:
func4.cpp:
func5.cpp:
func6.cpp:
func7.cpp:
stack.cpp:
+ ls -l func1.o func2.o func3.o func4.o func5.o func6.o func7.o stack.o
-rw-r--r-- 1 root project 157700 Mar 02 10:44 func1.o
-rw-r--r-- 1 root project 157700 Mar 02 10:44 func2.o
-rw-r--r-- 1 root project 157700 Mar 02 10:44 func3.o
-rw-r--r-- 1 root project 157700 Mar 02 10:44 func4.o
-rw-r--r-- 1 root project 157700 Mar 02 10:44 func5.o
-rw-r--r-- 1 root project 157700 Mar 02 10:44 func6.o
-rw-r--r-- 1 root project 157700 Mar 02 10:44 func7.o
-rw-r--r-- 1 root project 1266 Mar 02 10:44 stack.o
+ xlC -w func1.o func2.o func3.o func4.o func5.o func6.o func7.o stack.o
+ ls -l a.out
-rwxr-xr-x 1 root project 435400 Mar 02 10:44 a.out
+ strip a.out
+ ls -l a.out
-rwxr-xr-x 1 root project 281479 Mar 02 10:44 a.out
204 C and C++ Application Development on AIX

Figure 55. Using the -qfuncsect option

Using the -qfuncsect option instructs the compiler to generate object code
where each function is contained with its own CSECT. This means the object
files will be slightly larger since there will be extra formatting information. The
benefit of using the option is that the linker can now discard the redundant
routines. A comparison of the results is shown in Table 36.

Table 36. Advantages of using -qfuncsect

Component Size Size using
-qfuncsect

Comments

Compiled function 157 700 200 371
Takes more space on disk because
of additional information about
different parts.

Executable 435 400 239 626 45% less spaced used by avoiding
code duplication.

+ xlC -c -qfuncsect func1.cpp func2.cpp func3.cpp func4.cpp func5.cpp
func6.cpp func7.cpp stack.cpp
func1.cpp:
func2.cpp:
func3.cpp:
func4.cpp:
func5.cpp:
func6.cpp:
func7.cpp:
stack.cpp:
+ ls -l func1.o func2.o func3.o func4.o func5.o func6.o func7.o stack.o
-rw-r--r-- 1 root project 200371 Mar 02 10:44 func1.o
-rw-r--r-- 1 root project 200371 Mar 02 10:44 func2.o
-rw-r--r-- 1 root project 200371 Mar 02 10:44 func3.o
-rw-r--r-- 1 root project 200371 Mar 02 10:44 func4.o
-rw-r--r-- 1 root project 200371 Mar 02 10:44 func5.o
-rw-r--r-- 1 root project 200371 Mar 02 10:44 func6.o
-rw-r--r-- 1 root project 200371 Mar 02 10:44 func7.o
-rw-r--r-- 1 root project 1266 Mar 02 10:44 stack.o
+ xlC -w func1.o func2.o func3.o func4.o func5.o func6.o func7.o stack.o
+ ls -l a.out
-rwxr-xr-x 1 root project 239626 Mar 02 10:45 a.out
+ strip a.out
+ ls -l a.out
-rwxr-xr-x 1 root project 115719 Mar 02 10:45 a.out
Chapter 6. Making our programs run faster 205

Use of the -qfuncsect can result in smaller executables, which, in turn,
reduces the amount of paging that must be done while the application is
running. This, in turn, improves the performance of the application. Any
improvement may not be noticeable to the end user once other factors, such
as device I/O, are taken into consideration. However, the system as a whole
will be performing less work for the same result.

6.7 Reworking a program to use multiple processors

A single CPU has often been a bottleneck in computers having more and
more memory to handle as time goes by. AIX, Version 4.3 supports hardware
with multiple-CPU configurations, which are becoming more and more
commonplace and more and more affordable. Though reworking a program to
use multiple processors is certainly not the first thing one would do to
optimize a program, we shall discuss enough to show:

1. How surprisingly easy it can be.

2. Which gains can be expected.

3. Which gains should not be expected.

6.7.1 Know your system
Multiprocessor systems are becoming more and more common these days,
but do we happen to have one? Using the sysconf() function, the program
shown in Figure 56 on page 207 will tell us what we want to know.

Stripped executable 281 479 115 719 41% for stripped code.

Component Size Size using
-qfuncsect

Comments
206 C and C++ Application Development on AIX

Figure 56. Fast inquiry about the system with sysconf()

The results of running the program are shown in Figure 57.

Figure 57. The sysconf() results

Our machine has 12 processors, supports threads, and each thread will
reserve at least 8 K (that is, 2 pages) for its stack operations.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <limits.h>

#define w(x) printf("%25.25s %ld\n", #x, sysconf(x));

main()
{
w(_SC_CLK_TCK) /* # of clock ticks/second */
w(_SC_VERSION) /* POSIX version & revision */

w(_SC_CHILD_MAX) /* Max # of children per process */

w(_SC_THREADS) /* Are pthreads implemented ? */
w(_SC_THREAD_PROCESS_SHARED) /* pshared attribute supported ? */
w(_SC_THREAD_THREADS_MAX) /* Max # of threads per process */
w(_SC_THREAD_STACK_MIN) /* Minimum stack size for threads */
w(_SC_THREAD_ATTR_STACKSIZE) /* Can it be changed ? */

w(_SC_NPROCESSORS_CONF) /* Number of processors configured */
w(_SC_NPROCESSORS_ONLN) /* Number of processors online */
}

_SC_CLK_TCK 100
_SC_VERSION 199506

_SC_CHILD_MAX 262144
_SC_THREADS 1

_SC_THREAD_PROCESS_SHARED 1
_SC_THREAD_THREADS_MAX 32767
_SC_THREAD_STACK_MIN 8192

_SC_THREAD_ATTR_STACKSIZE 1
_SC_NPROCESSORS_CONF 12
_SC_NPROCESSORS_ONLN 12
Chapter 6. Making our programs run faster 207

6.7.2 Know your program
If our program is already coded, we assume we know where its bottlenecks lie
thanks to profiling as described in Section 6.5, “Profiling your programs” on
page 171.

If we consider threading at design time, a better approach, but only if we
already have acquired some experience in threading, we assume we have an
idea about where these bottlenecks could be.

6.7.3 The gentle art of threading
How are we going to have our C matrix computed by many processors at the
same time? A simple way is to have each line of the matrix computed
separately, and let the system allocate processors to compute each line as
they become available. This design is shown in Figure 58 on page 209.

The number of processes per user (forks, not threads) is limited to 40, by
default, to prevent a rogue user from swamping the system. This limitation
does not apply to the root user, who can also change the limit for other
users using the SMIT command, and selecting the option: Change / Show

Characteristics of Operating System.

Note
208 C and C++ Application Development on AIX

Figure 58. Computing the matrix with many threads

Now, what happens if we have more lines in the matrix than processors in the
system? Nothing very tragic: The operating system ensures that every thread
will wait quietly for a processor available to process it, even if we have 500
threads. Remember that a thread is a lightweight process. Having over 1000
threads is quite possible if we have the care to create them with well-tailored
options rather than the default ones.

Of course, this may not be the most efficient practice, but the art of
programming is also to compromise between “the three great virtues of a
programmer: laziness, impatience, and [pride]", according to Larry Wall, the
creator of PERL (he uses the term of hubris instead of pride).

If the expected ratio between the number of threads and the number of
processors happened to be very high, say 5000 threads per processor, we
would consider using a pool of threads. The basic idea of a pool of threads is
to manage a queue so that the number of running threads has the same order
of magnitude as the number of processors available.

Now, let us thread the matrix multiplication of matrix.c.

6.7.3.1 What we start with
The multiplication consists of the three imbricated loops shown in Figure 59.

Thread 0 computes line 0

Thread 1 computes line 1

Thread i computes line i

The number of threads
does not have to match
the number of available
processors. The threads
for which no processor
is available will automatically
wait for their turn.

...

...
Chapter 6. Making our programs run faster 209

Figure 59. Core computation

We want to replace it with something like:

for (i=0; i<SIZE; ++i) compute_line(i); /* but as a thread */

Naturally enough, we can expect compute_line(i) to be something like that
shown in Figure 60.

Figure 60. Computing one line of the result matrix

No worry about passing parameters. The i variable (matrix line to compute) is
the only thing needed by compute_line() because a threaded procedure
already has access to all the global variables defined in its process.

Except, of course, the global variable i which is masked by the parameter i,
although normal good coding style would avoid this conflict.

For the same reason, we must declare j and k as local variables. If they were
global, our computation would be a total mess.

All global variables in the process are accessible to all threads. This is what
makes them lightweight, but is also what makes them dangerous. Hence, the
following rules for making threads safe are:

• Any work variable used by a thread should be declared local to that
thread.

• When a thread writes to a global variable, you should either make it safe
by design (it is the case here: Each thread writes in, so to say, its own
territory, and no threads can interfere if our design is good) or make it safe
by program using mutexes.

for (i=0; i<SIZE; ++i)
for (j=0; j<SIZE; ++j)

{ C[i][j] = 0;
for (k=0; k<SIZE; ++k) C[i][j] += A[i][k]*B[k][j];

}

compute_line(i)
{ int j, k;

for (j=0; j<SIZE; ++j)
{ C[i][j] = 0;

for (k=0; k<SIZE; ++k) C[i][j] += A[i][k]*B[k][j];
}

}

210 C and C++ Application Development on AIX

• When many threads can write to the same variable, remember to declare it
as volatile. That will tell the compiler that if a variable content was loaded
in a register some lines before and has to be used again, the value of the
register is not reliable and should be reloaded.

6.7.3.2 Calling compute_line() as a thread
Now, we just have to specify that compute_line() should be started as a
thread:

for (i=0; i<SIZE; ++i) pthread_create (&id[i], NULL, compute_line, i);

The variable id is an array of type pthread_t where the thread identifying
numbers will be stored so that we can reference them later in order to wait for
their completion before using their result.

6.7.3.3 Declaring what is needed
First, as we use threads, the following line should be inserted as the first line
in the program:

#include <pthread.h>

We also need to store the thread IDs in a table:

pthread_t id[SIZE];

6.7.3.4 Waiting for completion of all threads
Here is the loop to wait for completion of all the threads:

for (i=0; i<SIZE; ++i) pthread_join (id[i], NULL);

Note that this loop is not acknowledging the completion of the threads in the
order in which these completions occur, but we just do not care. In this case,
whichever the order the threads complete, we cannot use the matrix as long
as all the threads are not terminated; so, the order in which we wait for them
is irrelevant.
Chapter 6. Making our programs run faster 211

Figure 61. We have to wait for the completion of all threads

Please note also that any computation not using the result matrix can be
inserted between the loop launching the threads and the loop waiting for their
completion. We shall then have a working boss program rather than a lazy
boss program. Refer to Section 5.1.6, “Software models” on page 127 for a
comparison of the different program designs for using threads.

6.7.3.5 Testing the return codes
We shall add a return code test in the thread-launching part, as shown in
Figure 62 on page 212, just to be sure everything went well. Otherwise, we
shall abort the program and display information detailing where it failed in the
hope it will help us in understanding why. Should it occur, that will probably
mean there is no more space available in the process address space.

This shortage could be overcome by specifying a -bmaxdata=0x80000000 at
compilation time, but it will be wiser, in such a case, to design the program in
a way that creates less threads for the same work. Refer to Section 2.3,
“Process private data” on page 43 for information on the use of the -bmaxdata
option.

Figure 62. Testing the return code at thread creation time

thread i

OVER

thread i+1

NOT OVER
thread i+2

NOT OVER
thread i+3

OVER
thread i+4

NOT OVER
thread i+5

OVER

We are going to wait for the completion of that thread.
The fact that some further threads may be already completed
does not interest us because we need the completion of
all threads in order to go on.

for (i=0; i<SIZE; ++i)
{

rc=pthread_create (&id[i], NULL, compute_line, i);
if (rc) { printf ("For line [%d][*] ",i);

perror ("Unable to create thread");
exit (28);

}
}

212 C and C++ Application Development on AIX

We can also test the result of the pthread_join operation, as shown in Figure
63, though there is much less risk of failure here.

Figure 63. Testing the return code a thread completion time

6.7.4 Our final program
Here is the mathread3.c program obtained by applying the preceding
modifications to matrix.c:
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include "param.h"

double A[SIZE][SIZE], B[SIZE][SIZE], C[SIZE][SIZE];
pthread_t id[SIZE];
int garbage;

/* This reentrant program computes the whole line C[i][*] */

void compute_line(int i)
{float s;
int j, k;
for (j=0; j<SIZE; ++j)
{ s=0.;
for (k=0; k<SIZE; ++k) s+=A[i][k]*B[k][j];
C[i][j]=s;

}
}
main(int argc, char * argv[])
{long i;
int rc;

/* create matrices A and B */

for (i=0; i<SIZE; ++i)

for (i=0; i<SIZE; ++i)
{
rc=pthread_join (id[i], NULL);
if (rc) { printf ("thread %d could not be joined.\n", i);

exit (28);
}

}

Chapter 6. Making our programs run faster 213

for (j=0; j<SIZE; ++j) { A[i][j]=i+j; B[i][j]=i-j; }

/* Matrix product */

start_timing();

for (i=0; i<SIZE; ++i)
{

rc=pthread_create (&id[i], NULL, compute_line, i);
if (rc) { printf ("For line [%d][*] ",i);

perror ("Unable to create thread");
exit (28);

}
}

/* Let us wait for the computation to be finished */

for (i=0; i<SIZE; ++i)
{

pthread_join (id[i], NULL);
}

/* The computation is over */

stop_timing();

/* We are not interested at the result, but the optimizer should
not know it !

*/

garbage = open ("junk", O_RDWR|O_CREAT);
write (garbage, C, sizeof C);

}

6.7.5 A good example
Let us see the execution time of this program for 500x500 matrices:

cc_r mathread3.c -DSIZE=500 && a.out
2114006 microseconds

While that may not appear spectacular at the first look, this program is 11.43
times faster (2.11 seconds of execution instead of 24.16 seconds) than
matrix.c as timed in Section 6.3, “Timing a typical program” on page 168. As
our machine has 12 processors, the increase in speed is not very far from the
ideal.
214 C and C++ Application Development on AIX

6.7.6 A bad example
What happens, however, if we have to multiply small matrices, typically not
500x500, but 4x4? OpenGL uses a lot of 4x4 matrices as, in fact, do most
programs dealing with geometric information:

cc_r matrix.c -DSIZE=4 && a.out
13 microseconds
cc_r mathread3.c -DSIZE=4 && a.out
1411 microseconds

The message is clear: The computation of the result is so fast in such a case
that the overhead of creating four threads, however small, is bigger than the
13 microseconds needed by the whole serial computation. We shall measure
by how much in Section 6.8, “Threads versus forks” on page 216, but we
already guess it will be around 1400/4 = 350 microseconds.

So, using threads is not a good choice in that case.

Note also that here we had no chance of ever using the 12 available
processors anyway. At most, four of them will be used since four user threads
will be created, one per line of the matrix.

6.7.7 Deciding when to use threads
You can see why having 1000 threads in the same program is not much of a
problem: Not only do threads use a very small amount of memory (each time
a thread is created, it gets assigned just an 8 KB stack area within the process),
but creating 1000 of them will typically add only 350 milliseconds, or 0.35
seconds, to program execution time. This speed of creation make threads
especially attractive for all kinds of telecommunications or client/server
applications, too. Even if we have 10,000 new clients per minute, we can
create one thread to serve each client without penalizing the system.

Of course, if you are running on a uniprocessor machine, do not expect any
performance gain by using the threaded solution, as the program is clearly
CPU-bound. But, on the other hand, your very same a.out file will be able to
use multiple processors on another machine without any recompilation, which
can be interesting.

To summarize things:

1. It is a good idea to know the order of magnitude of thread creation time on
your machine.
Chapter 6. Making our programs run faster 215

2. It is also a good idea to know the order of magnitude of your computation
times. 350 microseconds per thread suggest that a typical thread should
do at least 3.5 ms of computation, as a 10% overhead stays acceptable.

3. When threads are concerned, a good solution at a given scale can
become not-so-good (one would say catastrophic in this example) when
scaled differently.

So much for the myth according to which the multiplication of CPUs would be
the solution to every one of yesterday’s problems.

6.8 Threads versus forks

Knowing the typical overheads of a fork() or a pthread_create() can be
interesting. Two programs, forks.c shown in Figure 64 on page 217 and
threads.c shown in Figure 65 on page 218, will create SIZE forks or threads.
These forks and threads do not do anything. We are just, once more, trying to
measure a kind of empty shell.

You may have to choose between an optimal solution, which is not
scalable, and a non-optimal, but scalable, solution. An alternative is to
invest in some extra programming effort so that your program can
determine how it should behave at run-time.

Note
216 C and C++ Application Development on AIX

Figure 64. A program to time fork()

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
#include "param.h"

main()
{
int i;
pid_t rc;

start_timing();

for (i=0; i<SIZE; ++i)
{ rc = fork();
/* Did the fork() succeed ? Otherwise get out */
if (rc<0) { printf("No more processes available.\n");
exit (28);

}

/* Let the child sleep after a symbolic work
which will not be timed anyway */

if (rc == 0) { printf("Child %d created\n", getpid());
sleep(5);

printf ("Child %d has finished\n", getpid());
exit(0);

}

/* If we are the parent, do nothing */
}

/* No child will ever arrive here because of the exit(0).
So we are timing the parent, and only the parent. */

stop_timing(); printf(" for %4d forks.\n", SIZE);
}

Chapter 6. Making our programs run faster 217

Figure 65. A program to time pthread_create()

We just have to compare the execution times of the two programs for different
values of SIZE with the script shown in Figure 66 on page 219.

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include "param.h"

void mythread(int i)
{

/* Let the thread sleep after a symbolic work
which will not be timed anyway */

printf("Thread %d created\n", i);
sleep(5);
printf ("Thread %d finished\n", i);
pthread_exit(0);

}

main()
{
int i, rc;
pthread_t id[SIZE];

start_timing();

for (i=0; i<SIZE; ++i)
{ rc = pthread_create (&id[i], NULL, mythread, i);
/* Was the thread created ? Otherwise get out */
if (rc) { printf("Unable to create thread %d.\n", i);

exit (28);
}

}

/* No thread worker will ever arrive here because of the exit(0).
So we are timing the boss, and only the boss. */

stop_timing(); printf (" for %4d threads.\n", SIZE);

for (i=0; i<SIZE; ++i) pthread_join(id[i], NULL);
}

218 C and C++ Application Development on AIX

Figure 66. A script to explore the effect of SIZE

Figure 67 shows the results of tuning the threadsforks script as shown in
Figure 66.

Figure 67. Running the threadsforks script

rm results/threadsforks.txt
for size in 10 20 50 100 200 500 1000
do
echo "Testing size $size"
cc -w -DSIZE=$size forks.c -o forks
forks >> results/threadsforks.txt
sleep 7
cc_r -w -DSIZE=$size threads.c -o threads
threads >>results/threadsforks.txt
sleep 7
done

threadsforks
Testing size 10
Testing size 20
Testing size 50
Testing size 100
Testing size 200
Testing size 500
Testing size 1000
grep micro results/threadsforks.txt

7263 microseconds for 10 forks.
2996 microseconds for 10 threads.
14749 microseconds for 20 forks.
5856 microseconds for 20 threads.
38940 microseconds for 50 forks.
14952 microseconds for 50 threads.
79872 microseconds for 100 forks.
29344 microseconds for 100 threads.
164336 microseconds for 200 forks.
59781 microseconds for 200 threads.
447253 microseconds for 500 forks.
146688 microseconds for 500 threads.
1167343 microseconds for 1000 forks.
293043 microseconds for 1000 threads.
Chapter 6. Making our programs run faster 219

Figure 68 gives a better understanding of these results. The generic term
subprocess is used to designate a forked child or a thread.

Figure 68. Creation times for threads versus forks

Notice that creating forks is twice slower than creating threads, and things
tend to get worse as the number of created subprocesses increase, while
thread creation time remains quite stable, around 300 microseconds.

Consider also that threads can work on common data without having to use
shared memory, pipes, or some other form of IPC. The most basic C
programmer is able to use threads within minutes.

6.8.1 Putting it all together
What happens now if we apply optimization options to our former threaded
program, mathread3.c? The results are shown in Table 37.

Table 37. Executing mathread3.c with different optimization options

options microseconds real (seconds) user sys

(none) 1 798 492 1.95 21.41 0.13

-O 402 348 0.52 4.63 0.11

-O2 395 448 0.52 4.51 0.12
220 C and C++ Application Development on AIX

The execution time for calculating the matrix using the threaded code is
reduced from 24 seconds to 0.43 second when the code is optimized. In the
preceding sections, we squeezed the elapsed time of our computation by a
factor of 55. We can, therefore, expect that jobs formerly taking hours will be
reduced considerable by combining the two tools of multithreading and
compiler optimization options. Figure 69 graphically illustrates the reduction
in execution time.

Figure 69. Our progress so far

We have now seen the best. What follows may supply only marginal gains,
comparatively, but is, nevertheless, worth being mentioned.

6.8.2 The effects of scope and M:N ratio
Let us continue with the good threading case seen in Section 6.7.5, “A good
example” on page 214, and see, without recompiling the executable, how the

-O3 -qstrict 341 243 0.45 3.90 0.13

-O3 295 905 0.40 3.31 0.11

-O4 308 554 0.43 3.53 0.12

options microseconds real (seconds) user sys
Chapter 6. Making our programs run faster 221

run-time parameters, AIXTHREAD_SCOPE and AIXTHREAD_RATIO, affect
execution times. These parameters and the M:N ratio are described in detail
in Section 5.1.2, “Lightweight process -LWP” on page 109. The script shown
in Figure 70 will be used to gather results.

Figure 70. A script to test various M:N ratios together with the scope

Running this script with the matrix.c program gives the results shown in
Figure 71.

Figure 71. Effect of M:N ratio when running the matrix.c program

The result is quite normal. The program, matrix.c, remember, does not use
multithreading. However, when we run mathread3.c, we get the results shown
in Figure 72 on page 223.

#! /bin/ksh
Run a.out with different THREAD options

export AIXTHREAD_SCOPE=P
for ratio in "1:1" "2:1" "4:1" "8:1" "12:1" "16:1" "12:2" "12:3" "12:4"
do
export AIXTHREAD_MNRATIO=$ratio
a.out
echo " for scope $AIXTHREAD_SCOPE mnratio = $AIXTHREAD_MNRATIO"
done

unset AIXTHREAD_MNRATIO
export AIXTHREAD_SCOPE=S
a.out
echo “ for scope S”

matrix compiled with option -DSIZE=500

24164807 microseconds for scope P mnratio = 1:1
24053571 microseconds for scope P mnratio = 2:1
24246108 microseconds for scope P mnratio = 4:1
24083303 microseconds for scope P mnratio = 8:1
24029279 microseconds for scope P mnratio = 12:1
24256506 microseconds for scope P mnratio = 16:1

24227765 microseconds for scope S
222 C and C++ Application Development on AIX

Figure 72. Influence of M:N ratio on mathread3.c

What is happening here? The execution times for the different ratios do not
seem to differ at all.

The reason is that our threads are so fast in executing that they terminate
before reaching the end of their time slice and, therefore, never get a chance
to be handled by the scheduler after having been launched. Of course, in
these conditions, the choice of the scheduling policy will not change anything.

Rather than writing a more complicated floating-point program (our point is
program optimization, not numerical analysis), we are going to cheat a little,
and execute each computation 10000 times so that our threads will last
longer.

Therefore, we make the changes highlighted in Figure 73 to the compute_line
function, which is the routine being run by each thread.

Figure 73. Slow compute_line()

We shall not use the -O type optimizations here because the optimizer could
move the computations out of the loop, and then discover that the loop is
empty and remove it. The reason for this example is to show the impact of the
M:N ratio on the execution time, rather than trying to reduce the execution
time. The SIZE macro is reduced to 20, and the program recompiled. The
results are shown in Figure 74 on page 224.

mathread3 compiled with option -DSIZE=500
2114006 microseconds for scope P mnratio = 1:1
2168204 microseconds for scope P mnratio = 2:1
2121688 microseconds for scope P mnratio = 4:1
2130196 microseconds for scope P mnratio = 8:1
2112072 microseconds for scope P mnratio = 12:1
2131732 microseconds for scope P mnratio = 16:1

2110639 microseconds for scope S

void compute_line(int i)
{int j, k, l;
for (l=0; l<10000; ++l)
for (j=0; j<SIZE; ++j)
{ s=0.;
for (k=0; k<SIZE; ++k) s+=A[i][k]*B[k][j];
C[i][j]=s;

}
}

Chapter 6. Making our programs run faster 223

Figure 74. M:N ratio influence on execution time for the modified program

Notice that:

• Elapsed time increases when the number of user threads per system
thread is increased.

• Specifying 2:1, or even 4:1, gives better results for this example than the
standard AIXTHREAD_RATIO of 8:1.

• Not surprisingly:

- The results for 12:2 (we could have written it 6:1) fit somewhere
between the results for 4:1 and 8:1.

- The results for 12:3 are similar to those for 4:1.

- The result when scope=S is one of the best.

• For scope=P, 12:4 (that is, 3:1) seems the best compromise here.

Figure 75 on page 225 shows the impact of the M:N ration on the execution
time of this application.

15668986 microseconds for scope P mnratio = 1:1
15509688 microseconds for scope P mnratio = 2:1
15752484 microseconds for scope P mnratio = 4:1
26389433 microseconds for scope P mnratio = 8:1
36945916 microseconds for scope P mnratio = 12:1
46210871 microseconds for scope P mnratio = 16:1
20522753 microseconds for scope P mnratio = 12:2
15974403 microseconds for scope P mnratio = 12:3
15413396 microseconds for scope P mnratio = 12:4

15518422 microseconds for scope S
224 C and C++ Application Development on AIX

Figure 75. Execution time against M:N ratio for the new program

6.9 Malloc multiheap

By default, the malloc subsystem uses a single heap or free memory pool.
Starting with AIX Version, 4.3.3, the malloc routine supports an optional
multiheap capability to allow applications to enable the use of multiple heaps
of free memory, rather than just one.

The purpose of providing multiple heap capability in the malloc subsystem is
to improve the performance of threaded applications running on
multiprocessor systems. When the malloc subsystem is limited to using a
single heap, simultaneous memory allocation requests received from threads
running on separate processors are serialized, meaning that the malloc
subsystem can only service one thread at a time. This can have a serious
impact on application performance.

With the multiheap capability enabled, the malloc subsystem creates a fixed
number of heaps for its use. Each memory allocation request is serviced
using one of the available heaps. The malloc subsystem can then process
memory allocation requests in parallel as long as the number of threads
Chapter 6. Making our programs run faster 225

simultaneously requesting service is less than or equal to the number of
heaps.

6.9.1 Using malloc multiheap
The simplest way of using the malloc multiheap feature is to set the following
environment variable:

MALLOCMULTIHEAP=true

This enables the feature with the default configuration of 32 memory pools.
Let us build a program using a lot of threads that make a lot of calls to malloc,
then run it using the standard malloc, and then with malloc multiheap
enabled. The program does not do anything else other than call malloc, and
that is why we can expect severe competition between all the active threads
to gain access to the heap. This means the malloc routine will be the
bottleneck for all the threads. The program source code is shown in Figure 76
on page 227. Multithreaded C++ programs will potentially also have a large
benefit from using the malloc multiheap feature since each the heap must be
accessed each time a constructor or destructor is called.
226 C and C++ Application Development on AIX

Figure 76. A program making a lot of calls to malloc

The results of running this program using the regular malloc routine, and then
with the malloc multiheap feature enabled, are as follows:

$ time a.out
8894998 microseconds

real 0m8.96s
user 0m13.65s
sys 1m26.41s
$ export MALLOCMULTIHEAP=true
$ time a.out

392056 microseconds
real 0m0.45s
user 0m1.59s

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include "param.h"

void mythread(void)
{ int i;
struct numberlist

{ double x;
struct numberlist * next;} *p;

p = malloc (sizeof(struct numberlist));
for (i=1; i<10000; ++i)

{ p->x=0.;
p->next = malloc (sizeof(struct numberlist));
p=p->next;
if (!p) { printf("Unable to allocate for i = %d\n.", i);

exit (28);
}

}
}

main()
{ int i, rc;
pthread_t id[100];
start_timing();

for (i=0; i<100; ++i)
{ rc = pthread_create (&id[i], NULL, mythread, NULL);
if (rc) { printf("Unable to create thread for i = %d.\n", i);
exit (28);

}
}

/* Let us wait for all those threads to finish */
for (i=0; i<100; ++i)

{ rc = pthread_join (id[i]);
if (rc) { printf ("Unable to join thread %d.\n", i);
exit(28);
}

stop_timing();
}

Chapter 6. Making our programs run faster 227

sys 0m2.75s

This is a 20:1 improvement in speed. Any comment would be superfluous
here.

6.9.2 Parameters of malloc multiheap
The malloc multiheap feature also offers tuning parameters to alter the
number of heaps from the default of 32 and alter the algorithm to select the
heap to be used.

6.9.2.1 The number of heaps
If it is enabled, the malloc multiheap feature uses 32 heaps by default. If you
know you will not use as many processors, or for any other reason, you can
ask for any lower number of heaps. Instead of setting the environment
variable, MALLOCMULTIHEAP, to a value of true, it is set to a value of
heaps:n, when n is the number of heaps that are desired. As we are fond of
measurements, let us see how the number of heaps would affect the elapsed
computation time using the example program shown in Figure 76 on page
227.

The following command sequence was used to determine the impact of the
number of heaps:

unset MALLOCMULTIHEAP
$ for i in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32
> do
> export MALLOCMULTIHEAP=heaps:$i
> time a.out
> done

Since the system used for testing has 12 processors, we guess the
interesting part will be between 1 and 12 heaps, and the result will not change
very much with higher heap numbers.

Figure 77 on page 229 shows the results of running the program with different
numbers of malloc heaps.
228 C and C++ Application Development on AIX

Figure 77. malloc.c: Execution time versus number of heaps

We see that the system time for the single heap version is absolutely huge:
86 seconds for nine seconds of elapsed time, which is on the average seven
seconds per processor. Also, the acceleration due to multiprocessing is
abnormally small:

user time/real time = 13.65/8.96 = 1.52

compared to the 11.43 observed in Section 6.7.5, “A good example” on page
214”. Both this system overhead and this poor usage of each processor have
the same origin: Processes compete for a bottleneck, which is memory
allocation in a unique pool thread, because only one processor can have
access to the allocation section at a time; so, one processor is served while
the others wait.

Having two heaps already reduces the system times fourfold here, and this
system time continues to diminish as the number of heaps increases. Figure
78 on page 230 concentrates on what happens in the range of three to 16
heaps.
Chapter 6. Making our programs run faster 229

Figure 78. malloc.c: Details from 3 to 16 heaps

We see the system time diminishing up to nine heaps, and then rising again,
probably because the overhead of handling more heaps overcomes any
waiting overhead that could remain. But, both the user time and the real time,
our precious human wait-time that costs much more than machine time, go on
diminishing until the number of heaps equal the number of processors.

After that, trends for real and system time stabilize, and only slight random
fluctuations remain.

Two interesting variables can be introduced here. The first is the user/real
ratio, which is the degree of parallelism of our program, and the second the
user/sys ratio, which is related to a kind of good behavior: Running a job
without penalizing the system.
230 C and C++ Application Development on AIX

Figure 79. Better parallelism and better behavior with considersize

Figure 79 shows the degrees of parallelism and good behavior as related to
the number of heaps (black markers). The white markers (“cs” in the legend)
are results obtained using a considersize option that is described in Section
6.9.2.2, “The considersize option” on page 231. Please note that using this
option enhances, in our example, both the degrees of parallelism and of good
behavior. We are going to see, however, that it is at some extra cost.

Why does the usage of system resources increase? Because the heaps are
allocated in a round-robin way. This means all the heaps we are asking for will
be used, whether we really need them or not. A more subtle (though more
time-consuming) way to allocate space would be to use the first available
heap instead of the next one. The considersize option is going to allow us just
that.

6.9.2.2 The considersize option
By default, malloc multiheap selects a new, available heap every time a
request is made, essentially using round-robin selection. The considersize
option will select, instead, the first available heap that has enough free space
to handle the request. While somewhat slower in computation time, this
option can help reduce both the working set size and the number of sbrk()
calls. The considersize option is specified when setting the
Chapter 6. Making our programs run faster 231

MALLOCMULTIHEAP environment variable along with the number of required
heaps as follows:

MALLOCMULTIHEAP=heaps:4,considersize

Table 38 displays the timings of the sample malloc program when changing
the number of heaps is used both with and without the considersize option.

Table 38. Impact of the considersize option

For a malloc intensive program like our example, the considersize options
gives clearly better elapsed time results for a large number of heaps (here, for
nine and above) at the cost of an increased user time between seven percent
and 54 percent.

The elapsed time, where better, is better by two percent (9 heaps) to 34
percent (16 heaps).

Number of heaps
No considersize Considersize

real user sys real user sys

1 8.41 11.83 83.54 8.76 12.91 85.32

2 2.71 7.03 21.00 3.00 8.78 22.82

3 1.58 6.11 9.55 1.82 7.77 10.92

4 1.07 4.93 5.65 1.24 6.72 5.80

5 0.85 4.47 3.80 1.01 6.94 3.47

6 0.71 4.34 2.63 0.82 6.50 2.01

7 0.58 3.92 1.73 0.67 5.24 1.46

8 0.53 3.77 1.35 0.58 4.80 1.04

9 0.48 3.15 1.23 0.47 3.69 1.06

10 0.43 2.15 1.72 0.41 2.94 0.88

11 0.44 1.99 2.02 0.36 2.64 0.83

12 0.43 1.55 2.63 0.34 1.94 1.15

13 0.42 1.68 2.46 0.33 2.12 0.92

14 0.43 1.82 2.34 0.33 2.09 0.95

15 0.44 1.66 2.53 0.33 1.91 1.09

16 0.43 1.77 2.36 0.32 1.90 1.05
232 C and C++ Application Development on AIX

Figure 80. The considersize option enhance data locality

Figure 80 shows that the considersize option has indeed a cost when the
number of heaps is too small. The additional computations involved make
them even more constrained, but, on the other hand, the real time and system
overhead are reduced when more heaps are allocated than the optimal level.

As the curve is very asymmetric, overestimating the number of heaps is less
penalizing than underestimating it. A reasonable choice is to set the number
of heaps equal to the number of processors and use the considersize option
to be sure we are not using what we do not need.

6.10 The stride effect

Whenever possible, use your data in a sequential manner. In that way:

1. You enhance the number of probable cache hits.

2. You reduce your risks of having to wait for a missing page.

Let us look at the sensitivity of a simple matrix initialization to the stride
effect. The sample programs to demonstrate the effect are shown in Figure 81
on page 234 for row major array access and Figure 82 on page 235 for
column major array access.
Chapter 6. Making our programs run faster 233

Figure 81. stride.c: accessing a matrix in row-wise order (row by row)

#include <stdio.h>
#include <fcntl.h>
#include "param.h"

#define SIZE 1000

long a[SIZE][SIZE];
long i, j, garbage;

main()
{
start_timing();

for (i=0; i<SIZE; ++i)
for (j=0; j<SIZE; ++j)
a[i][j] = i+j;

stop_timing();

garbage = open ("junk", O_RDWR+O_CREAT);
write (garbage, a, sizeof a);
}

234 C and C++ Application Development on AIX

Figure 82. stride2.c: accessing a matrix column-wise order (column by column)

Although the two sample programs look rather similar, their execution times
are not:

$ time stride
36599 microseconds

real 0m0.09s
user 0m0.02s
sys 0m0.07s
$ time stride2

179379 microseconds
real 0m0.24s
user 0m0.16s
sys 0m0.07s

To avoid the stride effect, it is not uncommon for numerical analysts to store
their matrices into 64x64 submatrices. Multiplying matrixes is equivalent to
multiplying their submatrices as one would do with scalars, and for each
submatrix multiplication, both operands and result fit in the cache of each

#include <stdio.h>
#include <fcntl.h>
#include "param.h"

#define SIZE 1000

long a[SIZE][SIZE];
long i, j, garbage;

main()
{

start_timing();

for (j=0; j<=SIZE; ++j)
for (i=0; i<SIZE; ++i)
a[i][j] = i+j;

stop_timing();

garbage = open ("junk", O_RDWR | O_CREAT);
write (garbage, a, sizeof a);
}

Chapter 6. Making our programs run faster 235

processor, not only giving excellent results, but avoiding any type of cache
interference between processors.

6.10.1 An counterintuitive consequence
Let us consider a classical programming problem: The sieve or Eratosthenes,
which is used to determine a list of prime numbers. The principle is to cross
out all multiples of every prime number, and whatever has not been crossed
out at the end of the process is, of course, a prime number.

Now, how should we represent the numbers to be crossed out? With an array
of int or with an array of char?

An idea coming from the dark ages of computers (the days before virtual
memory was generalized) was that using data aligned on word boundaries
was the correct way to make programs faster. This is still true within any
active page. But, because of the stride effect, it ceases to be true for large
arrays; in that case, choosing word-aligned data can reduce the cache hit as
well as increase the probability of swapping pages in and out of memory.

The first version of a sieve program is shown in Figure 83.

Figure 83. sieve1.c: The sieve of Eratosthenes

#include <stdio.h>
#include <stdlib.h>

int k, crible, status[SIZE], primes[SIZE], a[SIZE*SIZE];

get_next_to_crossout()
{while (a[++k]) /* printf(“%8ld is not prime.\n”, k) */

; /* Examine the following integer as divisor */

/* printf(“Selecting %ld as the next prime number.\n”, k); */
}

main()
{
k=2;
do {

for (crible=k+k; crible<SIZE*SIZE; crible+=k) a[crible]=1;
get_next_to_crossout();

} while (k < SIZE);

/* print out the prime numbers */

for (k=2; k<SIZE*SIZE; ++k)
if (!a[k]) /* printf(“%9ld “, k) */ ;

/* for (k=1; k<SIZE; ++k) printf(“%5d %5d\n”, status[k], a[k]); */
}

236 C and C++ Application Development on AIX

Table 39 shows the results of executing the sieve program with different
values of SIZE.

Table 39. sieve1.c: Execution times

Now, let us replace int a[SIZE][SIZE] by char a[SIZE][SIZE], thus, giving
program sieve2.c. The execution times are reduced as shown in Table 40.

Table 40. sieve2.c: Execution times

The execution time is reduced by up to 45 percent.

SIZE # of primes seconds

100 10 000 0.04

200 40 000 0.04

350 122 500 0.06

500 250 000 0.10

1000 1 000 000 0.36

2000 4 000 000 2.35

3500 12 250 000 8.95

5000 25 000 000 19.86

SIZE # of primes seconds

100 10 000 0.03

200 40 000 0.04

350 122 500 0.05

500 250 000 0.08

1000 1 000 000 0.27

2000 4 000 000 1.09

3500 12 250 000 5.10

5000 25 000 000 12.82
Chapter 6. Making our programs run faster 237

6.11 A summary of our best results

Table 41 summarizes the techniques described in this chapter.

Table 41. The optimization how to

Situation Possible
solutions

Shown bottleneck
improvement

Comments

Large overall
computation time

-O
-O3 -qstrict

67 % on a realistic
example

Preserves the
possibility to use
profiling

Large overall
computation time

-O3, -O4, -O5 85 % on a realistic
example

Incompatible with
profiling

Overhead due to
many function calls

-qipa 92 % on a realistic
example

Modularity no more
enemy of efficiency

Many uses of some
small functions

- qinline Up to 99 % on a limit
situation
example

More readable and
less possible side
effects than macros

Large arrays of
structures

-qalign About 30 % Comparisons need
recompilations

We use mostly one
type of machine

-qtune Keeps binary code
compatibility

We use ONLY one
type of machine

-qarch About 10 % Drops binary code
compatibility

Using templates in
many C++
compilation units

-qfuncsect
40 % code size
reduction should
reduce paging

Bigger libraries, but
smaller executables

Large overall
computation time Multithreading

Up to 91 % on a
machine with 12
processors

No recompilation
needed to run on
uniprocessors

We want a fair
share of CPU time Adjust M:N

ratio

Up to 60 % on a
realistic example

Trial and error
possible with the
same executable

Threads compete
to get and free
heap memory

Malloc
multiheap

Up to 90 % on a very
specific example

Trial and error
possible with the
same executable.

Stride situation
Use smallest
possible
chunks of data

Up to 50 % in a
plausible example.

May be more or less,
depending on the
degree of paging
238 C and C++ Application Development on AIX

Chapter 6. Making our programs run faster 239

240 C and C++ Application Development on AIX

Appendix A. Special notices

This publication is intended to help application developers using IBM C and
C++ compilers on the AIX operating system. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by the compilers. See the PUBLICATIONS section of the
IBM Programming Announcement for IBM C for AIX Version 5, and VisualAge
C++ Professional for AIX Version 5 for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
© Copyright IBM Corp. 2000 241

attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business
MachinesCorporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

AIX
IBM
PartnerWorld
SP
Redbooks
Redbooks Logo

C Set ++
Open Class
RS/6000
VisualAge
242 C and C++ Application Development on AIX

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix A. Special notices 243

244 C and C++ Application Development on AIX

Appendix B. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

B.1 IBM Redbooks

For information on ordering these publications see “How to get IBM
Redbooks” on page 247.

• Understanding RS/6000 Performance and Sizing, SG24-4810

• RS/6000 Performance Tools in Focus, SG24-4989

• Getting to Know VisualAge C++, Version 4.0, SG24-5489

• AIX Version 4.3 Differences Guide, SG24-2014

B.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at ibm.com/redbooks for information about all the CD-ROMs offered,
updates and formats.

B.3 Other resources

These publications are also relevant as further information sources:

• Using License Use Management Runtime for AIX, SH19-4346

B.4 Referenced Web sites

These Web sites are also relevant as further information sources:

CD-ROM Title Collection Kit
Number

IBM System/390 Redbooks Collection SK2T-2177
IBM Networking Redbooks Collection SK2T-6022
IBM Transaction Processing and Data Management Redbooks Collection SK2T-8038
IBM Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
IBM AS/400 Redbooks Collection SK2T-2849
IBM Netfinity Hardware and Software Redbooks Collection SK2T-8046
IBM RS/6000 Redbooks Collection SK2T-8043
IBM Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2000 245

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

• http://www.rs6000.ibm.com/library

• http://www-4.ibm.com/software/ad/vacpp/support.html

• http://http://www-4.ibm.com/software/ad/caix/support.html

• http://www.developer.ibm.com

• ftp://ftp.software.ibm.com/software/lum/aix/doc/V4.5.5/lumusgaix.pdf

• http://www.ibm.com/servers/aix/products/ibmsw/list/
246 C and C++ Application Development on AIX

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site ibm.com/redbooks

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 247

mailto: pubscan@us.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.redbooks.ibm.com/

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
248 C and C++ Application Development on AIX

Index

Symbols
#! 56
#!. 60
#pragma align 198
#pragma define 99
#pragma implementation 97
#pragma priority 85
/etc/ibmcxx.cfg 8, 11
/etc/inittab 26
/etc/vac.cfg 4, 7, 12
/etc/vacpp.cfg 11
/etc/xlC.cfg 3, 7, 8, 11
/lib 62, 73
/usr/ibmcxx 8, 11
/usr/lib 62, 73
/usr/lpp/xlC 3, 7, 8, 11
/usr/vac 4, 7
/usr/vacpp 11, 12
/var/ifor/nodelock 22
__h 172
__tmp 172
_r 23
_r4 23
_r7 23

Numerics
0509-022 64
0509-023 65
0509-026 64
1

1 model 109
128 24
128_r 24
128_r4 24
128_r7 24
64-bit hardware 5

A
absolute pathname 61, 74
access conflicts 31
access permissions 76
active pages 196
additional computations 233
address interpretation 46
address space 33, 105
© Copyright IBM Corp. 2000
admin_name 22
advantages of shared libraries 49
AIX Bonus Pack 24
AIX shared object 52
AIXTHREAD_MINKTHREADS 136
AIXTHREAD_MNRATIO 135
AIXTHREAD_RATIO 222, 224
AIXTHREAD_SCOPE 134, 222
AIXTHREAD_SLPRATIO 136
alias 42
alignment boundaries 189
alignment holes 196
alignment options 191
alter the semantics 182
ANSI C++ standard 91
ANSI/ISO C++ language standard 10
Application Manager 25
ar format archive 50
archive library 61
arithmetic operations 175
array of structures 190, 194
assembler language 180
assembly code 116
asynchronous cancelability 143
asynchronously generated signals 126
atomic unit 202
automatic template instantiation 99
avoiding race conditions 117

B
batch C++ compiler 14
batch compiler 9
batch environment 10
-bdynamic 65
-bE

54, 84
-berok 67, 68
-bexpall 53, 69, 84
binary portability 199
binary semaphore 124
binder 89
-binitfini 61, 80
-bipath 73
-blazy 66
-bloadmap 89
blocked signals 107
-bM
249

SRE 54, 67
-bmap 89
-bMAXDATA 44
-bmaxdata 212
-bnoautoexp 67
-bnoentry 54, 58, 69
-bnoexpall 84
-bnoipath 63, 64, 73, 74
-bnortllib 62, 67
boolean variable 120
bos.adt.include 14
boss/worker model 128
bottleneck 206
bottlenecks 180
browser 25
-brtl 52, 67
-bstatic 65
-bsymbolic 67
BUMP 89

C
C compilers 2
C runtime library 81
C++ code bloat 95
C++ compilers 7
C++ export file 83
C++ linkage 84
C++ runtime library 81
C++ standard 10, 91
C++ symbol names 81
c89 23
cache hits 233
cache misses 190
call graph 179
calling process 107
calling thread 107
cancelability state 142
cancellation mechanism 142
cancellation points 143
cc 23
cgi-bin script 25
character devices 42
child fork handler 108
child process 107
choosing a C++ compiler 11
choosing a license type 17
class templates 91
cleanup handlers 143

client/server applications 215
clock tick 171
code address 77
code layout 91
code section 95, 202
codestores 10
column major array access 233
command line 1, 61
command line C++ compiler 14
commands

cpio 129
dump 54, 65, 72
find 64
genkld 71
gprof 179
grep 71, 129
i4blt 21
i4cfg 18
i4config 18
imndomap 27
ld 50
prof 178
ps 155
rm 72
rtl_enable 70
slibclean 72
sort 71
time 163
tprof 171, 178
ulimit 89
vacpphelp 25
wsm 15

common architecture 199
Common Desktop Environment 10
commutative operations 182
compact data structure 193
compatibility issues 2
compilation time 187
compilation unit 92
compiler core 1
compiler directives 156
compiler filesets 12
compiler licenses 17
compiler options 91
compiling threaded applications 132
complex locks 121
concurrency 127
concurrent network license 17
concurrent nodelock license 17
250 C and C++ Application Development on AIX

condition state 120
condition variables 120
condition wait subroutine 120
configuration file 1
considersize option 232
constructor 226
constructors 81
contention scope 112, 113, 134
context switch 115, 130
contexts 186
copy-on-write 41
countable loops 156
counter 124
counting semaphores 124
cpio command 129
CPU intensive 166
CPU ticks 172
CreateExportList 59
critical sections 118
cross-platform applications 8
CSECT 95, 202
ctime 153
current directory 61
current working directory 107

D
daemons 18
data alignment 189
data file portability 193
dead-lock 108
deadlock condition 117
debugger 178
default AIX scheduling 113
default contention scope 135
default linker options 53
default M

N ratio 135
default options 1
deferred cancelability 143
deferred loading of modules 66
defined parallel region 160
degree of parallelism 230
dependent shared object 53
destructor 226
destructor routine 141
destructors 81
detached threads 126
developing applications 11

direct function calls 103
directory structure 63
disabled cancelability 142
disclaim 35
disk access time 167
DISPLAY 25
divide-and-conquer model 129
dlclose 78
dlerror 78
DLL 50
dlopen 52, 78
dlsym 78
dump command 54, 65, 72
duplicate entries 204
duplicate symbols 91
dynamic data structures 60
dynamic linking 50

E
EINVAL 150
elapsed time 163, 232
empty loop 176, 181
ENOSYS 152
entry point 54
entry-point routine 139
environment 107
errno 150
ERSCH 150
ESRCH 140
example timings 166
exec()

0509-036 64
execution flow 105
exit 147
EXP 55
explicit cancellation point 143
export file 53
export file in C++ 83
exporting symbols from main 60
extended compile time 95
extended shmat capability 36
EXTSHM 36

F
FIFO scheduling 113
file descriptors 107
file system object 40
filesets 12
251

find command 64
fine granularity locking 120
first available heap 231
flow of control 107
fork 107
fork overhead 216
free memory pool 225
frequently asked questions 29
ftok 35
function address 77
function call graph 179
function call statistics 178
function overloading 81
function replacement 70
function templates 91

G
-G 58, 67
-g 170, 178
generated function bodies 93
genkld command 71
gettimeofday 164
global data 152
global symbols 53
global variables 210
gmon.out 179
gprof command 179
graceful exit 61
grep command 71, 129
group ID 107

H
handler 126
header files 14
heap 43
Help Homepage 25
hgssrch.htm 27
high-level locking 120
hot lines 172
HTML documentation 24
HTTP server 25
httpdlite 27
httpdlite.conf 26

I
i4blt command 21
i4cfg command 18

i4config command 18
i4gdb 20
i4glbcd 20
i4llmd 20
i4lmd 20
IBM class libraries 8
IBM Open Class library 10
idebug 13
identical function definitions 95
IMEX 55
imndomap command 27
IMNSearch 13
IMNSearch.rte.httpdlite 26
IMP 55
IMPid 55
import file 53
Import File Strings 72
importing symbols from main 60
include files 14
incremental C++ compiler 14
incremental compiler 9, 10
incremental expression 156
independent entities 116
indirect function calls 103
indirection 36
initial thread 108
initialization priority 83
initialization routines 60
initialized data 34, 43
inline member functions 93
inline virtual functions 103
inlining functions 188
installation layout 63
installation taskguide 14
installing compiler products 12
instruction pipeline 199
instructions 199
Integrated Development Environment 10
interdependent shared objects 55
internal linkage 93, 103
interprocedural analysis 186
interrupt handler 33, 171
invocation command 1
IPC 31, 220
ipfx 13

J
joining threads 125
252 C and C++ Application Development on AIX

K
kernel data structure 109
kernel segments 34

L
-L 62
-l 62
large code size 101
large data 47
large executable size 95
large initialized data 44
large memory heap 44
large shared memory region 36
lazy boss 212
lazy loading 66
ld command 50
LD_LIBRARY_PATH 64
LDR_CNTRL 90
libdl.a library 80
LIBPATH 64, 73
library cleanup 60
library initialization 60
library permissions 65
library scheduler 109, 136
licence certificate 12
licence files 14
license adminsitration 18
license certificate locations 21
license daemons 18
license server 17
License Use Management 16
lightweight process 209
limit situations 188
link time 50
linkage block 84
linker 101, 202
linker error 89
linker options 61
load 80
load fluctuation 185
load time 66
loadAndInit 81
loadbind 80
loader section 50, 71
localhost

49213 25
localhost port 24
locking schemes 119

loop indexes 175
loop optimization 181
lowfreq 188
low-level locking 120
lseek 39
LUM 16
LUM daemons 18, 20
LUM licensing 5
LUM online documentation 16

M
M

1 model 109
N model 109
N ratio 222

macro 188
madvise 40, 42
main function 54
maintaining code 11
makeC++SharedLib 82, 85, 100
makefiles 9, 10
malloc 165, 225
malloc intensive program 232
malloc replacement 70
MALLOCMULTIHEAP 228
mangled 81
manual optimization 175
MAP_ANONYMOUS 40
MAP_FIXED 41
MAP_HASSEMAPHORE 42
MAP_INHERIT 42
MAP_UNALIGNED 42
mapping files 35
matrix initialization 233
memdbg 13
memory addressability 34
memory allocation requests 225
memory heap 34
memory leak 150
memory management policy 33
memory management subsystem 33
memory mapping 31
memory pools 226
memory regions 31
memory segments 33
message queues 31, 107
microprofiling 171
mincore 40
253

missing page 233
mmap 35, 40
mmap and shmat 42
module interdependencies 70
mprotect 40, 42
msync 40
multiheap 225
multiple #include protection 94
multiple codestores 10
multiple copies 202
multiple definitions 94
multiple symbol definition 95
multiplexed threads 114
multiplexed user threads 111
multithreaded C++ programs 226
multi-threaded libraries 108
munmap 40
mutex 118
mutex locks 121
mutexes 108, 210
mutual exclusion lock 118

N
natural 192
Netscape browser 25
network license 17
new style shared object 52, 58, 74
nodelock license certificate 17
nodelock license server 18

69
noise 185
number of heaps 228
number_of_lics 22
numerical analysis 182

O
-O 170, 179
-O3 182, 183
-O4 183
-O5 183
omp parallel directive 160
online documentation 16, 24
Open Class library 10
OpenMP 6, 156
operand types 175
operating system documentation 28
optimal solution 216
optimization 179

optimization routines 3
optimization techniques 10
optimize things manually 179
order of initialization 84

P
-p 170, 178
packed 192
padding 193
page misses 190
PAGESIZE 138
parallel constructs 156
parallel programming 6
parallelism 127
parent fork handler 108
parent process 107
patching executables 47
PATH 1, 4, 8, 23
PCS 112
pending signals 107
perfagent.tools 171
performance analysis 10
-pg 170, 179
physical addresses 33
pipe 31
pipelining 185
pipelining model 129
pipes 107, 220
pool of threads 111
Port 49213 26
Portapak compiler 8
porting C++ code 91
porting code 11
POSIX threads 105
POWER 199
power 192
POWER2 199
POWER3 199
PowerPC 199
precise timing 164
prepare fork handler 108
preprocessor macros 94
prime numbers 236
priority values 85
private data segment 43, 45
private mappings 41
private shared object 75
process address space 31, 35, 109
254 C and C++ Application Development on AIX

process contention scope 112
process group ID 106
process ID 106, 171
process private data segment 43
process private segment 76
process scope 126, 134
producer/consumer model 129
product license administration 18
product media 171
prof command 178
program readability 179
proxy handling 24
ps command 155
PTFs 3
pthread_atfork 108
pthread_attr_setdetachstate 138
pthread_attr_setschedparam 138
pthread_attr_setstackaddr 138
pthread_attr_setstacksize 138
pthread_attr_t 137
pthread_cancel 142
pthread_cond_timedwait 143
pthread_cond_wait 143
pthread_create 108, 138
PTHREAD_CREATE_DETACHED 150
PTHREAD_CREATE_JOINABLE 137
pthread_equal 140
pthread_exit 142, 147
pthread_getspecific 142
PTHREAD_INHERITSCHED 137
pthread_join 143, 213
pthread_key_create 141
pthread_key_t 140
pthread_mutex_trylock 123
PTHREAD_SCOPE_PROCESS 137
pthread_setcancelstate 143
pthread_setspecific 142
PTHREAD_STACK_MIN 137
pthread_t 139, 211
pthread_testcancel 143
pthread_yield 150

Q
-qalign 170
-qarch 170, 199
-qfuncsect 95, 96, 103, 170, 205
-qinline 188
-qipa 186

-qlist 175
-qmkshrobj 82, 100
-qnostrict 158
-qnostrict_induction 158
-qnotempinc 98
-qpriority 85
-qsmp 158
-qstrict 182
-qtempinc 94, 97, 100
-qtune 170, 199

R
race condition 116
race conditions 117
random fluctuations 230
read/write locks 121
rearranging structures 195
recursive functions 44
redundant code 95
reentrant functions 152
referenced shared libraries 50
register allocation 180, 189
register variable 175
registers 180
relative order of initialization 85
relative pathname 61
replaceCSET 2, 4, 23
restoreCSET 2, 4
restoring registers 186
rm command 72
root password 178
rounding errors 182
round-robin scheduling 113
row major array access 233
rtl_enable command 70
RTLD_LAZY 79
RTLD_MEMBER 79
RTLD_NOW 79
run-time linker 69

S
safe by design 210
safe by program 210
saving disk space 51
saving registers 186
sbrk 231
scalable solution 216
SCHED_OTHER 137
255

sched_yield 150
schedulable entit 107
scheduling policy 113, 223
scheduling priority 113
scheduling properties 107
SCS 112
segment ID 33
segment register 33, 36
segment register use 34
segment size 35
segments 33
selecting a C++ compiler 11
semaphores 31, 107, 124
sequential access 190
serial computation 215
setgid programs 64
setuid programs 64
shared address space 130
shared libraries 49
shared library 52
shared library data segment 34
shared library text segment 34
shared memory 107, 220
shared memory areas 31
shared memory limits 35
shared memory segments 35
shared object 52
shared object data segment 76
shared object text 76
shared resources 152
shared reusable object 54
SHM_MAP 39
shmap 35
shmat 35, 37
shmat and mmap 42
shmctl 35, 37
shmdt 35, 37
shmget 35, 37
side effects 188
signal actions 107
signal handler 126
signal mask 126
signals 31
sigwait subroutine 126
simple nodelock license 17
simple template method 101
single header file 94
single heap 225
single source tree 91

sleep lock 117
slibclean command 72
slower compile times 101
small procedures 187
smaller executables 206
SMIT 15
SOCKS_NS 24
software installation taskguide 14
sort command 71
source code structure 97
spin lock 117
SPINLOOPTIME 135
SRE 52
stack 34, 43, 107
stack overflow 44
standards conformance 132
start_timing 164
state machine 114
state transitions 114
static data 152
static library 50
stop_timing 164
stride effect 185, 235
stripped executable 189
strtok 153
strtok_r 153
structure layout 194
support web sites 29
suppress absolute pathname 74
symbol information 75
symbol resolution 70
symbolic links 1
synchronization 116
synchronization primitive 115
synchronization variables 108
sysconf 206
system contention scope 112
system group 71
system header files 14
system loader 50, 64, 66, 71, 76
system scheduler 109
system scope 134
system shared library segment 71
system shared object segment 76
system time 163
system tracing 171
256 C and C++ Application Development on AIX

T
tempinc 97
tempinc directory 101
template code generation 98
template declaration 91
template definition 92
template definition file 97
template implementation file 99
template implementation method 91
template instance 92
template instantiation information 98
templates 91
templates with shared libraries 100
terminateAndUnload 81
termination routines 60
thread creation overhead 215
thread models 109
thread specific data 140
threaded applications 105
time command 163
timestamp 99
timing code sections 164
tprof command 171, 178
traditional AIX shared object 52
twobyte 192

U
ulimit command 89
undef 69
undefined symbols 50
undetached threads 125
UNIX 98 pthreads 134
UNIX98 105
unload 80
unload shared objects 72
unpack 25
unreferenced symbols 53
Unresolved symbols 89
unresolved symbols 67
use count 71
user defined malloc 70
user ID 107
user reaction time 167
user time 163

V
vacpp.cmp.batch 14
vacpp.lic 14

vacpphelp command 25
vatools 13
viewing the documentation 24
virtual function table 103
virtual functions 103
virtual memory 33, 89, 194
virtual memory address 33
virtual processor 109
Visual Builder 14
volatile 211
VP 109

W
WCHAN 155
well defined interface 53
word boundaries 236
work crew model 129
working boss 212
working set size 231
writing new code 11
wsm command 15

X
X11 runtime 21
XCOFF header 50
xlc 23
XLC Version 1.3 2
xlC.rte 14
xlc_r7 24
xlC128 24
xlsmp 13

Y
YIELDLOOPTIME 135

Z
ZIP 25
257

258 C and C++ Application Development on AIX

© Copyright IBM Corp. 2000 259

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

• Use the online Contact us review redbook form found at ibm.com/redbooks
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-5674-00
C and C++ Application Development on AIX

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/
http://www.ibm.com/privacy/yourprivacy/

C and C+
+

 Application Developm
ent on AIX

®

SG24-5674-00 ISBN 0738417114

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

C and C++
Application
Development on AIX
Create and use C and
C++ shared libraries

Understand shared
memory and C++
templates

Improve application
performance

Application development on any platform is a complex
subject, particularly if you are unfamiliar with the operating
system. Familiar tools may be missing, and things don't work
like you expect them to.

This IBM Redbook covers the subject areas that most often
cause problems for developers when they migrate their C and
C++ applications to AIX. The subjects explained include:
Shared libraries, C++ templates, shared memory, compiler
products and options, and measuring and improving the
performance of applications. The book contains many source
code and command examples to illustrate each problem
along with recommended solutions.

This book is a must for experienced UNIX application
developers who are about to migrate applications to AIX. It is
also useful for existing AIX developers who want to increase
the efficiency and performance of their applications.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. C and C++ compilers on AIX
	1.1 Compiler product similarities
	1.1.1 Multiple command line drivers
	1.1.2 Installation directory

	1.2 IBM C compilers
	1.2.1 IBM C for AIX, Version 3
	1.2.2 IBM C for AIX, Version 4.1
	1.2.3 IBM C for AIX, Version 4.3
	1.2.4 IBM C for AIX, Version 4.4
	1.2.5 IBM C for AIX, Version 5.0
	1.2.6 C compiler summary

	1.3 IBM C++ Compilers
	1.3.1 IBM C Set ++ for AIX, Version 3
	1.3.2 IBM C and C++ Compilers, Version 3.6
	1.3.3 IBM VisualAge C++ Professional for AIX, Version 4
	1.3.4 IBM VisualAge C++ Professional for AIX, Version 5
	1.3.5 C++ Compiler summary

	1.4 Installation of compiler products
	1.4.1 Install compiler filesets

	1.5 Activating the compilers
	1.5.1 What is LUM
	1.5.2 Configuring LUM

	1.6 Activating the LUM server
	1.7 Enrolling a product license
	1.7.1 Enrolling a concurrent license
	1.7.2 Enrolling a simple nodelock license

	1.8 Invoking the compilers
	1.8.1 Default compiler drivers

	1.9 Online documentation
	1.9.1 Viewing locally
	1.9.2 Viewing remotely

	1.10 Additional developer resources
	1.10.1 AIX operating system documentation
	1.10.2 Compiler product information
	1.10.3 PartnerWorld for developers

	Chapter 2. Shared memory
	2.1 Program address space
	2.1.1 The physical address space of a 32-bit system
	2.1.2 Segment Register addressing

	2.2 Memory mapping mechanics
	2.2.1 The shmap interfaces
	2.2.2 The mmap functions
	2.2.3 Comparison of shmat and mmap

	2.3 Process private data
	2.3.1 Example

	Chapter 3. AIX shared libraries
	3.1 Terminology
	3.1.1 Static library
	3.1.2 Shared library

	3.2 Creating a shared library
	3.2.1 Traditional AIX shared object
	3.2.2 New style shared object
	3.2.3 Importing symbols from the main program
	3.2.4 Initialization and termination routines

	3.3 Using a shared library
	3.3.1 On the compile line
	3.3.2 Searching at runtime
	3.3.3 Shared or non-shared
	3.3.4 Lazy loading

	3.4 Run-time linking
	3.4.1 Rebinding system defined symbols

	3.5 Developing shared libraries
	3.5.1 The genkld command
	3.5.2 The slibclean command
	3.5.3 The dump command
	3.5.4 Using a private shared object

	3.6 Programatic control of loading shared objects
	3.6.1 The dlopen subroutine
	3.6.2 The dlsym subroutine
	3.6.3 The dlclose subroutine
	3.6.4 The dlerror subroutine
	3.6.5 Using dynamic loading subroutines
	3.6.6 Advantages of dynamic loading
	3.6.7 Previous dynamic loading interface

	3.7 Shared objects and C++
	3.7.1 Creating a C++ shared object
	3.7.2 Generating an exports file
	3.7.3 The -qmkshrobj option
	3.7.4 Mixing C and C++ object files

	3.8 Order of initialization
	3.8.1 Priority values

	3.9 Troubleshooting
	3.9.1 Link failures
	3.9.2 Runtime tips

	Chapter 4. Using C++ templates
	4.1 AIX template implementations
	4.1.1 Generated function bodies

	4.2 Simple code layout method
	4.2.1 Disadvantages of the simple method

	4.3 Preferred template method
	4.3.1 The -qtempinc option
	4.3.2 Contents of the tempinc directory
	4.3.3 Forcing template instantiation

	4.4 Shared objects with templates
	4.4.1 Templates and makeC++SharedLib
	4.4.2 Templates and -qmkshrobj

	4.5 Virtual functions

	Chapter 5. POSIX threads
	5.1 Designing threaded application with pthreads
	5.1.1 Threads and UNIX processes
	5.1.2 Lightweight process -LWP
	5.1.3 Thread scheduling
	5.1.4 Synchronization
	5.1.5 Signals and threads
	5.1.6 Software models
	5.1.7 Performance considerations

	5.2 Implementing threaded applications on AIX
	5.2.1 Compiling and linking
	5.2.2 Thread model and tuning
	5.2.3 Pthread creation and handling

	5.3 Examples
	5.3.1 Supported POSIX API
	5.3.2 Thread-safe and reentrant functions
	5.3.3 Inspecting a process and its kernel threads

	5.4 Program parallelization with compiler directives
	5.4.1 IBM directives
	5.4.2 OpenMP directives

	Chapter 6. Making our programs run faster
	6.1 Measuring tools
	6.2 About the examples
	6.2.1 What to expect from example timing
	6.2.2 Run the examples on your machine

	6.3 Timing a typical program
	6.4 Useful basic compiler options
	6.5 Profiling your programs
	6.5.1 Profiling with tprof
	6.5.2 Other profilers

	6.6 Optimizing with the -O option
	6.6.1 Optimizing at higher levels
	6.6.2 Optimizing further with -qipa
	6.6.3 Doing even better with -qinline
	6.6.4 Space/time trade-off for data
	6.6.5 Light adaptation to a machine with -qtune
	6.6.6 Heavy adaptation to a machine with -qarch
	6.6.7 Combining -qarch and -qtune
	6.6.8 Removing redundant code from executables with -qfuncsect

	6.7 Reworking a program to use multiple processors
	6.7.1 Know your system
	6.7.2 Know your program
	6.7.3 The gentle art of threading
	6.7.4 Our final program
	6.7.5 A good example
	6.7.6 A bad example
	6.7.7 Deciding when to use threads

	6.8 Threads versus forks
	6.8.1 Putting it all together
	6.8.2 The effects of scope and M:N ratio

	6.9 Malloc multiheap
	6.9.1 Using malloc multiheap
	6.9.2 Parameters of malloc multiheap

	6.10 The stride effect
	6.10.1 An counterintuitive consequence

	6.11 A summary of our best results

	Appendix A. Special notices
	Appendix B. Related publications
	B.1 IBM Redbooks
	B.2 IBM Redbooks collections
	B.3 Other resources
	B.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Index
	IBM Redbooks review

