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Abstract

Expressions for the electrostatic field of a point charge in an infinite plane condenser com-
prising one or three homogeneous isolating parallel dielectric layers are presented. These
solutions are essential for detector physics simulations of Parallel Plate Chambers (PPCs)
and Resistive Plate Chambers (RPCs). In addition, expressions for the weighting field of
a strip electrode are presented which allow calculation of induced signals and crosstalk in
these detectors. A detailed discussion of the derivation of these solutions can be found in

[1].
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1 Introduction

The electric field solutions of a point charge in an infinite plane condenser is necessary for
detector simulations of various kinds of particle detectors. Fig.1 shows the two geometries de-
scribed in this report. The point charge is at positidny/, z’. The signal induced on a strip
electrode (Fig. 2) by the movement of a charge in the condenser can be calculated by a so called
weighting field, i.e. the electric field in the condenser if the electrode is put to a poténtial
while all the other electrodes are grounded. These solutions are also given in this report.

The capacitor with one homogeneous layer resembles e.g. the geometry of a noble liquid
calorimeter cell [2] or Parallel Plate Chamber [3] while the structure with three homogeneous
layers resembles the geometry of a Resistive Plate Chamber [4].
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Figure 1: The two geometries discussed in this report. The point chaigat position’, ', 2'.
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Figure 2: Readout strip geometries discussed in this report. The strips are infinitely lgng in
and the gap between the strips is assumed to be zero.

We will use cylindrical coordinates and write the distance between point charge)(and
point of observation (af) as

R=l-rf = e oy ) =
= p?—2ppcos(p—¢)+p? +(z—2)? = (1)
= P? + (2 —2)2

2 Potential of a Point Charge in a Condenser Filled by a Homogeneous Dielectric

In this geometry it is no longer possible to represent the potential by a closed analytical ex-
pression. One must use superpositions of particular solutions of the homogeneous potential
equation. These may be infinite series or integrals.



2.1 Infinite Series Representation
The Eigenfunction expansion of the potential [5] is given by
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where K is the modified Bessel function. This representation does not exist on the kn@
passing through the source point sincgdiverges. Convergence will be slow near to this line.
For sufficiently large values d?, the convergence will be excellent due to the exponential decay
of K.

2.2 Integral Representation
An integral representation is given by
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This modified integral representation works fine sinaecreases rather fast with increasing
and this quite independent of the argumefs andz’.

The singularities arising from a possible coalescence of the point of observation with the source
point or with the first image just outside each electrode are accounted for by the first three
terms. The final, fast converging integral is obtained by subtracting the Sommerfeld integrals [6]
corresponding to the first three terms from the common integral representation of the potential
for the plane condensor.

2.3 The Weighting Field of a Strip Electrode

The current induced on an electroddy a point charge; moving with velocitys may be
calculated from Ramo’s theorem [7] and may be expressed as [8]:
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whereV is the voltage applied to the electrodgenerating the electric fielﬁi(?) in the absence

of the chargey and having all the other electrodes groundedr) is called the weighting field

[9] and can be derived from a scalar potendialr), which we shall call the weighting potential.
We getfor0 < z < D :
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The two components of the weighting field are derived from this as:
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3 Potential of a Point Charge for the Three-Layer Problem

In this section the plane condenser comprising three homogeneous isolating dielectric layers
is treated. The configuration is shown in Fig.1. The electrodes ate-at—q¢ < 0 and at

z =p > g > 0. The gas gap corresponds to laye02{ » < g) with a dielectric constant;,

the two planes{q < z < 0), (9 < z < p) have a dielectric constant, 3 respectively. The

e;'s represent the full dielectric constants, i.e. theysgrémes the relative dielectric constant.

3.1 Series Representations

In principle also series representations may be derived for the potential in a plane condenser
comprising several homogeneous layers. This has been done before [10][11]. However this
requires to find a large number of roots of a transcendental equation and it must be ensured that
all roots with small values are found! The resulting series converge slowly or not at all (those for
the field components) and must be summed and differentiated numerically. So such an approach
has unfavourable auspices.

3.2 Integral Representation

An integral representation with good convergence for the potential in layer 2 of a point charge
in layer 2 is given by
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and the numerator is
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3.3 Computation of the Electric Field Components

The expressions for the electric fields are found from the potentials by derivation. For the radial
electric field component, the integrals contair-x.J; (xp) in place of Jy(xp). Since thisx is
multiplied by exponentials with negative exponents the convergence may be a bit slower than
that of the integrals of the potential but will still be satisfactory. The very last remark applies
also to the componerfi. .

3.4 The Weighting Field in the Gas Gap
The weighting potential in the gas gap for a strip electrode is given by
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The above integrals must be evaluated numerically. If the strip is very wide, the#fieidthe
center of the stripA = 0) approaches
Vieies
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