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Abstract

Expressions for the electrostatic field of a point charge in an infinite plane condenser com-
prising one or three homogeneous isolating parallel dielectric layers are presented. These
solutions are essential for detector physics simulations of Parallel Plate Chambers (PPCs)
and Resistive Plate Chambers (RPCs). In addition, expressions for the weighting field of
a strip electrode are presented which allow calculation of induced signals and crosstalk in
these detectors. A detailed discussion of the derivation of these solutions can be found in
[1].
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1 Introduction

The electric field solutions of a point charge in an infinite plane condenser is necessary for
detector simulations of various kinds of particle detectors. Fig.1 shows the two geometries de-
scribed in this report. The point charge is at positionx′, y′, z′. The signal induced on a strip
electrode (Fig. 2) by the movement of a charge in the condenser can be calculated by a so called
weighting field, i.e. the electric field in the condenser if the electrode is put to a potentialV
while all the other electrodes are grounded. These solutions are also given in this report.

The capacitor with one homogeneous layer resembles e.g. the geometry of a noble liquid
calorimeter cell [2] or Parallel Plate Chamber [3] while the structure with three homogeneous
layers resembles the geometry of a Resistive Plate Chamber [4].
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Figure 1: The two geometries discussed in this report. The point chargeQ is at positionx′, y′, z′.
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Figure 2: Readout strip geometries discussed in this report. The strips are infinitely long iny
and the gap between the strips is assumed to be zero.

We will use cylindrical coordinates and write the distance between point charge (at~r ′) and
point of observation (at~r) as

R2 = |~r − ~r ′|2 = (x− x′)2 + (y − y′)2 + (z − z′)2 =
= ρ2 − 2ρρ′ cos(φ− φ′) + ρ

′2 + (z − z′)2 =
= P 2 + (z − z′)2.

(1)

2 Potential of a Point Charge in a Condenser Filled by a Homogeneous Dielectric

In this geometry it is no longer possible to represent the potential by a closed analytical ex-
pression. One must use superpositions of particular solutions of the homogeneous potential
equation. These may be infinite series or integrals.
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2.1 Infinite Series Representation

The Eigenfunction expansion of the potential [5] is given by

Φ(ρ, φ, z; ρ′, φ′, z′) =
Q

επD

∞∑
n=1

sin(kn z) sin(kn z′) K0(kn P ) kn =
nπ

D
(2)

whereK0 is the modified Bessel function. This representation does not exist on the lineP = 0
passing through the source point sinceK0 diverges. Convergence will be slow near to this line.
For sufficiently large values ofP , the convergence will be excellent due to the exponential decay
of K0.

2.2 Integral Representation

An integral representation is given by

Φ(ρ, φ, z; ρ′, φ′, z′) =
Q

4πε

[ 1√
P 2 + (z − z′)2

− 1√
P 2 + (z + z′)2

− 1√
P 2 + (2D − z − z′)2

+

∫ ∞

0

dκ J0(κ P ) g(κ; z, z′)
]

(3)

with

g(κ, z, z′) =
e−κ(2D−z+z′) + e−κ(2D+z−z′) − e−κ(2D+z+z′) − e−κ(4D−z−z′)

1− e−2κD
. (4)

This modified integral representation works fine sinceg decreases rather fast with increasingκ,
and this quite independent of the argumentsP , z andz′.

The singularities arising from a possible coalescence of the point of observation with the source
point or with the first image just outside each electrode are accounted for by the first three
terms. The final, fast converging integral is obtained by subtracting the Sommerfeld integrals [6]
corresponding to the first three terms from the common integral representation of the potential
for the plane condensor.

2.3 The Weighting Field of a Strip Electrode

The current induced on an electrodei by a point chargeq moving with velocity~v may be
calculated from Ramo’s theorem [7] and may be expressed as [8]:

Ii = − q ~v ·
~Ei(~r)

Vi
= q ~v · 1

Vi

~∇Φi(~r), (5)

whereVi is the voltage applied to the electrodei generating the electric field~Ei(~r) in the absence
of the chargeq and having all the other electrodes grounded.~Ei(~r) is called the weighting field
[9] and can be derived from a scalar potentialΦi(~r), which we shall call the weighting potential.
We get for0 < z < D :

Φ1(x, z) =
V1

π

[
arctan

(
cot (

zπ

2D
) tanh (π

x + w/2

2D
)
)

− arctan
(

cot (
zπ

2D
) tanh (π

x− w/2

2D
)
) ]

. (6)
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The two components of the weighting field are derived from this as:

E1x = V1
1

2D

[
sin ( zπ

D
)

cosh (π x−w/2
D

)− cos ( zπ
D

)
− sin ( zπ

D
)

cosh (π x+w/2
D

)− cos ( zπ
D

)

]
; (7)

E1z = −V1
1

2D

[
sinh (π x−w/2

D
)

cosh (π x−w/2
D

)− cos ( zπ
D

)
− sinh (π x+w/2

D
)

cosh (π x+w/2
D

)− cos ( zπ
D

)

]
. (8)

3 Potential of a Point Charge for the Three-Layer Problem

In this section the plane condenser comprising three homogeneous isolating dielectric layers
is treated. The configuration is shown in Fig.1. The electrodes are atz = −q < 0 and at
z = p > g > 0. The gas gap corresponds to layer 2 (0 ≤ z ≤ g) with a dielectric constantε2,
the two planes (−q < z < 0), (g < z < p) have a dielectric constantε1, ε3 respectively. The
εi’s represent the full dielectric constants, i.e. they areε0 times the relative dielectric constant.

3.1 Series Representations

In principle also series representations may be derived for the potential in a plane condenser
comprising several homogeneous layers. This has been done before [10][11]. However this
requires to find a large number of roots of a transcendental equation and it must be ensured that
all roots with small values are found! The resulting series converge slowly or not at all (those for
the field components) and must be summed and differentiated numerically. So such an approach
has unfavourable auspices.

3.2 Integral Representation

An integral representation with good convergence for the potential in layer 2 of a point charge
in layer 2 is given by

Φ(ρ, φ, z; ρ′, φ′, z′) =
Q

4πε2

[ 1√
P 2 + (z − z′)2

− (ε1 − ε2)

(ε1 + ε2)
√

P 2 + (z + z′)2

− (ε3 − ε2)

(ε2 + ε3)
√

P 2 + (2g − z − z′)2

+
1

(ε1 + ε2)(ε2 + ε3)

∫ ∞

0

dκ J0(κP )
R(κ, z, z′)

D(κ)

]
, 0 ≤ z ≤ g

(9)

where the denominatorD(κ) is given by

D(κ) = (ε1 + ε2)(ε2 + ε3) (1− e−2κ (p+q))

− (ε1 − ε2)(ε2 + ε3)(e
−2κ p − e−2κ q)

− (ε1 + ε2)(ε2 − ε3)(e
−2κ (p−g) − e−2κ (q+g)) (10)

+ (ε1 − ε2)(ε2 − ε3)(e
−2κg − e−2κ (p+q−g))
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and the numerator is

R(κ; z, z′) =

(ε1 + ε2)
2(ε2 + ε3)

2
[
eκ(−2p−2q+z−z′) + eκ(−2p−2q−z+z′)

]

− (ε1 + ε2)
2 (ε2 − ε3)

2 eκ(−4g−2q+z+z′)

− 4ε1 ε2(ε2 + ε3)
2 eκ(−2q−z−z′) − (ε1 − ε2)

2 (ε2 + ε3)
2 eκ(−2p−z−z′)

− (
ε1

2 − ε2
2
)
(ε2 − ε3)

2 eκ(−4g+z+z′)

+
(
ε1

2 − ε2
2
)
(ε2 + ε3)

2
[
−eκ(−2p−2q−z−z′) + eκ(−2p+z−z′) + eκ(−2p−z+z′)

]

− 4
(
ε1

2 − ε2
2
)

ε2 ε3 eκ(−2p−2q+z+z′) − 4 (ε1 + ε2)
2ε2 ε3 eκ(−2p+z+z′)

+ (ε1 − ε2)
2 (

ε2
2 − ε3

2
)

eκ(−2g−z−z′) + 4 ε1 ε2

(
ε2

2 − ε3
2
)

eκ(2g−2p−2q−z−z′)

+ (ε1 + ε2)
2 (

ε2
2 − ε3

2
) [

−eκ(−2g−2q+z−z′) − eκ(−2g−2q−z+z′) + eκ(−2g−2p−2q+z+z′)
]

+
(
ε1

2 − ε2
2
) (

ε2
2 − ε3

2
) [

eκ(−2g−2q−z−z′) − eκ(−2g+z−z′) − eκ(−2g−z+z′) + eκ(−2g−2p+z+z′)
]
.

(11)

3.3 Computation of the Electric Field Components

The expressions for the electric fields are found from the potentials by derivation. For the radial
electric field componentEρ the integrals contain−κJ1(κρ) in place ofJ0(κρ). Since thisκ is
multiplied by exponentials with negative exponents the convergence may be a bit slower than
that of the integrals of the potential but will still be satisfactory. The very last remark applies
also to the componentEz.

3.4 The Weighting Field in the Gas Gap

The weighting potential in the gas gap for a strip electrode is given by

Φ1(x, z) = V1 ε1
2

π

∫ ∞

0

dκ cos(κ x) sin
(
κ

w

2

)1

κ
F1(κ, z) (12)

The two components of the weighting field are

Ex(x, z) = −V1 ε1
2

π

∫ ∞

0

dκ sin(κ x) sin
(
κ

w

2

)
F1(κ, z) (13)

Ez(x, z) = V1 ε1
2

π

∫ ∞

0

dκ cos(κ x) sin
(
κ

w

2

)
F2(κ, z) (14)

with

F1(κ, z) =

2
D(κ)

[
(ε2 + ε3)

(
e−κ(q+z) − e−κ(2p+q−z)

)
+ (ε2 − ε3)

(
e−κ(2g+q−z) − e−κ(2p+q−2g+z)

) ]

(15)
and

F2(κ, z) =

− 2
D(κ)

[
(ε2 + ε3)

(
e−κ(q+z) + e−κ(2p+q−z)

) − (ε2 − ε3)
(
e−κ(q+2g−z) + e−κ(2p+q−2g+z)

) ]
.

(16)
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The above integrals must be evaluated numerically. If the strip is very wide, the fieldEz in the
center of the strip (x = 0) approaches

Ez =
V1ε1ε3

ε2ε3 q + ε1ε2 p + (ε1ε3 − ε1ε2) g
(17)

independent ofz.
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