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Abstract

We present mathematical expressions for the effective voltage drop due to localized
space charge for the Multi Wire Proportional Chamber and the Drift Tube.
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1 Introduction

The experiments at present high energy
colliders like the LHC use large area
particle detectors of up to several thou-
sand square meters surface at high par-
ticle rates up to a few MHz/cm2. For
this purpose, well known wire cham-
ber geometries like the Multi Wire Pro-
portional Chamber (MWPC) and the
Drift Tube are employed. A high rate
limit of these detectors is given by the
space charge due to the positive ions
moving in the chamber volume. A uni-
form illumination of the detectors re-
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sults in a uniform space charge, which
allows a simple calculation of the ef-
fective voltage drop on the amplifica-
tion wires [1]. In case of localized irra-
diation, the voltage drop is not uniform
across the chamber and the average gas
gain drop due to the space charge is
lower. To calculate the voltage drop in
that case, more detailed mathematical
expressions are needed.

In Ref. [2] a rather demanding method
to calculate the voltage drop in an
MWPC due to irradiation with a rect-
angular, uniform beam is presented.
We prefer to calculate the voltage drop
by integration of Green’s functions for
the relevant geometries. In this pub-
lication we present solutions for the
voltage drop for the MWPC and Drift
Tube geometries. In case of the MWPC
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we assume uniform space charge den-
sities of rectangular or circular shape,
but also a circular space charge with
Gaussian density in radial direction.
For the Drift Tube geometry we as-
sume uniform and Gaussian space
charge distributions along the wire di-
rection. The presented formulas allow
a straight forward evaluation using
numerical integration or summation.

As shown in Ref. [1], the space charge
due to positive ions is uniform in the
entire detector volume in case the count
rate of particles is uniform along the
wires. In case the count rate is concen-
trated along a short section of wire, the
space charge will have limited extend
in wire direction. Nevertheless, in that
case the space charge density can still
be assumed constant to first order.

The effective voltage drop at a given
position along a wire due to a charge
distribution ρ(~x) in the chamber vol-
ume is to first order given by the po-
tential at the wire position due to ρ(~x)
in absence of the wires. Knowing the
Green’s function G of the Laplace
equation for the required boundary
conditions, this voltage drop is there-
fore given by

∆V (x, y, z)

=
1

ε0

∫∫∫

G(x, y, z, x′, y′, z′)

× ρ(x′, y′, z′) dx′ dy′ dz′

(1)

in carthesian coordinates and

∆V (r, φ, z)

=
1

ε0

∫∫∫

G(r, φ, z, r′, φ′, z′)

× ρ(r′, φ′, z′) r′ dr′ dφ′ dz′

(2)

in cylinder coordinates. Since we are
interested in the voltage drop at the
wire position, the coordinates x, y, z
(or r, φ, z, respectively) are defined by
that wire position. In the following sec-
tions we will give the Green’s functions
for the MWPC and Drift Tube geome-
tries together with the resulting formu-
las for the effective voltage drop.

2 Formulas for MWPC

z=d

z=0

x

+HV

y

2b

2a

x

R

a)

b)

a
n
o
d
e
 
w
i
r
e
s

Fig. 1. Multi Wire Proportional Chamber
(MWPC). Positive high voltage is applied
to the amplification wires, while the cath-
ode planes are grounded. a) Chamber cross
section; b) Top view with rectangular and
circular space charge.

Fig. 1 shows a schematic view of an
MWPC. In absence of the wires it rep-
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resents a simple parallel plate geome-
try with two grounded plates at z = 0
and z = d.

2.1 Rectangular Irradiation

For a beam of rectangular shape the
space charge (with density ρ0) in the
MWPC is to first order uniform in the
volume −a < x′ < a, −b < y′ < b
and 0 < z′ < d, as indicated in Fig.
1. The voltage drop can be calculated
using the Green’s function for the par-
allel plate geometry in cartesian coor-
dinates [3,4]

G(x, y, z, x′, y′, z′)

=
1

π2

∞
∫

0

∞
∫

0

dk1 dk2

× cos(k1(x − x′))

× cos(k2(y − y′))

× sinh(kz<) sinh(k(d − z>))

k sinh(kd)

(3)

with k2 = k2
1 +k2

2, z< = min(z, z′) and
z> = max(z, z′). Inserting Eq. (3) into
Eq. (1) and performing the integrations
over x′, y′ and z′ yields [5]

∆V (x, y, z)

=
4ρ0

π2ε0

∞
∫

0

∞
∫

0

dk1dk2

× sin(k1a) sin(k2b)

× cos(k1x) cos(k2y)

× bMWPC(k, z)

k1k2k2
,

(4)

with [6]

bMWPC(k, z) = 1 − cosh(kz)

+ sinh(kz) tanh
kd

2
.

(5)

Because bMWPC(k, z) approaches 1 for
large ki, the integrand in Eq. (4) de-
creases like 1/k2

i . Thus the integration
limits can be chosen such that comput-
ing time can be saved while still ob-
taining precise results. It has been ver-
ified that the voltage drop calculated
according to Eq. (4) matches the one
calculated with Eq. (16) from Ref. [2].
For a, b → ∞ Eq. (4) transforms into

∆V0(z) =
ρ0

2ε0
(zd − z2) , (6)

which can also be derived in a straight
forward way by applying Gauss’ law.
For the traditional MWPC, where the
wires are centered between the cathode
planes, we have z = d/2 and find

∆V0(z) = ρ0d
2/(8ε0) . (7)

In line with Matthieson ([2], Eq. (26))
we define the modifying factor

dm =
∆V (x, y, z)

∆V0(z)
. (8)

Fig. 2a shows that for larger irradi-
ation areas the voltage drop in the
center of that area approaches the case
for uniform irradiation, as expected.
We assumed an MWPC with gap
d = 0.6 cm and a rectangular irradi-
ation spot, where one edge is kept at
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Fig. 2. Value of the modifying factor dm

for a given chamber geometry as a func-
tion of the size of the irradiated area in its
center (a) and as a function of position for
a given size of the space charge density
(b).

2a = 4 cm and the other one is varied
from 0 to 2d. In Fig. 2b we show the
distribution of dm in a detector of that
particular geometry and for a beam
with size 2a × 2b = 2 cm×1 cm.

2.2 Circular Irradiation

For a beam of circular shape the volt-
age drop can be calculated using the
Green’s function for the parallel plate
geometry in cylinder coordinates:

G(r, φ, z, r′, φ′, z′)

=
1

π

∞
∑

m=0

∞
∫

0

dk
Jm(kr) Jm(kr′)

1 + δm0

× sinh(kz<) sinh(k(d − z>))

sinh(kd)

× cos(m(φ − φ′)) ,

(9)

where Jm are the Bessel functions of
the first kind and δij is the Kronecker
delta.

2.2.1 Constant Circular Space Charge
Density

The voltage drop for a constant space
charge density ρ0 in a circular volume
of radius R in the MWPC can be cal-
culated by inserting Eq. (9) into Eq. (2)
and performing the integrations over
0 < r′ < R, 0 < z′ < d and 0 < φ′ <
2π, which yields [7]

∆V (r, z)

=
ρ0 R

ε0

∞
∫

0

dk bMWPC(k, z)

× J1(kR) J0(kr)

k2
.

(10)

The variable bMWPC(k, z) is given by
the same expression (Eq. 5) as for the
rectangular case. Since this variable ap-
proaches 1 for large k, and since the
Bessel functions decrease like 1/

√
k,

the integrand in Eq. (10) decreases like
1/k3. This helps in carefully choosing
an upper integration limit for numeri-
cal integration.
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Fig. 3. Value of dmc for a circular beam
and uniform and gaussian charge densities
for a selected MWPC detector geometry:
a) In the center of the charge densities
as a function of their radial size; b) as a
function of the radial distance for charge
densities with several radii.

For R → ∞, Eq. (10) yields the ex-
pression for uniform irradiation of the
entire detector area, Eq. (6). The value

dmc =
∆V (r, z)

∆V0(z)
(11)

again relates the voltage drop for lo-
calized irradiation to the uniform case
(modifying factor). This value is shown
in Fig. 3a for a specific chamber geom-
etry (d = 0.6 cm). In Fig. 3b we also
show the distributions of the voltage
drop for different radii of space charge
densities in a detector for that particu-
lar geometry.

2.2.2 Gaussian Circular Space
Charge Density

Due to Gaussian beam profiles and/or
electron diffusion the assumption of a
uniform space charge density might not
be valid. Thus we will in this section
consider the voltage drop for a space
charge of Gaussian density in radial di-
rection:

ρ(r′) = ρ0 e−
r′2

R2 . (12)

The total charge contained is as-
sumed to be equal to that of a circu-
lar disc (section 2.2.1) of radius R:
Q = 2πR2dρ0. The charge density in
the center is set to the same value
as for the disc: ρ(r′ = 0) = ρ0. In z-
direction the charge density can be
assumed constant to first order. The
voltage drop can now be calculated by
inserting Eqs. (9) and (12) into Eq. (2)
and performing the integrations over
r′, φ′ and z′, which yields

∆V (r, z)

=
ρ0 R2

2 ε0

∞
∫

0

dk bMWPC(k, z)

× J0(kr)

k
e−

k2R2

4 .

(13)

Because the integrand decreases expo-
nentially with k, for numerical inte-
gration we may choose the upper inte-
gration limit to satisfy k2R2/4 & 10.
Voltage drops in the center of Gaus-
sian charge distributions are plotted to-
gether with the uniform case in Fig. 3.
In general the distributions are wider
and the voltage drop is less strong in
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the center, as compared to that of the
uniform space charge.

3 Formulas for Drift Tube

Fig. 4. Drift tube with space charge over
a length of 2a.

Fig. 4 shows a schematic view of a drift
tube. In absence of the wires it is sim-
ply a grounded cylinder of radius rc.
The Green’s function for this geometry
is given by

G(r, φ, z, r′, φ′, z′)

=
1

rcπ

∞
∑

m=0

∞
∑

n=1

Jm(jmn r′/rc)

(1 + δm0) jmn

× Jm(jmn r/rc)

(Jm+1(jmn))2

× e−
jmn
rc

|z−z′|

× cos m(φ − φ′) ,

(14)

where jmn is the nth zero of Jm, i.e.
Jm(jmn)=0.

3.1 Constant Space Charge Density

For a constant space charge density
ρ0 in the drift tube along a section of
length 2a, the voltage drop can be cal-
culated by inserting Eq. (14) into Eq.

(2) and performing the integrations
over −a < z′ < a, 0 < r′ < rc and
0 < φ′ < 2π, which yields

∆V (r, z)

=
ρ0 r2

c

ε0

∞
∑

n=1

J0(j0n r/rc)

j3
0n J1(j0n)

× bDT(n, z) ,

(15)

with [8]

bDT(n, z) =


























































if |z| < a :

2 − e−
j0n
rc

(a+z) − e
j0n
rc

(z−a)

if z ≥ a :

e
j0n
rc

(a−z) − e
−j0n

rc
(a+z)

if z ≤ −a :

−e
j0n
rc

(z−a) + e
j0n
rc

(a+z) .

(16)

Since the wire of a Drift Tube is sitting
in the center at r = 0, Eq. (15) can be
simplified to [9]

∆V (z) =
ρ0 r2

c

ε0

∞
∑

n=1

bDT(n, z)

j3
0n J1(j0n)

.

(17)

For a → ∞, meaning for uniform irra-
diation over the full length of the tube,
Eq. (17) becomes

∆V0 =
ρ0

4ε0
r2
c (18)

with the modifying factor
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Fig. 5. a) Value of dmt for a uniform space
charge density along a section of length
2a and for a Gaussian charge distribution
along z. b) Distributions of the voltage
drop due to localized space charge densi-
ties of several widths for the two cases.
We chose a tube with rc = 1.5 cm.

dmt =
∆V (z)

∆V0

. (19)

3.2 Gaussian Space Charge Density

We now assume a space charge of
Gaussian density in z-direction

ρ(z′) = ρ0 e−
π z′2

4 a2 , (20)

where the total charge contained is
equal to that of a uniform space charge
along a section of length 2a (section
3.1): Q=2aπr2

cρ0. The charge density
in the center of the Gaussian charge
distribution is set to ρ(z′ = 0) = ρ0. In
r-direction the charge density can be
assumed constant to first order. The

voltage drop can be calculated by in-
serting Eqs. (14) and (20) into Eq.
(2) and performing the integrations
over −a < z′ < a, 0 < r′ < rc and
0 < φ′ < 2π. The result is equal to
Eqs. (15) and (17), but the term de-
pending on z is now given by

bDT(n, z) =


























































if |z| < a :
d+(n, z) [f+(n) − f1(n, z)]
+d−(n, z) [f+(n) + f2(n, z)],

if z ≥ a :
d−(n, z) [f−(n) + f+(n, z)],

if z ≤ −a :
d+(n, z) [f−(n) + f+(n, z)].

(21)

with

d±(n, z) = a e

j0n(j0na2
±πrcz)

πr2
c , (22)

f±(n) = fe

(

πrc ± 2aj0n

2
√

πrc

)

, (23)

f1(n, z) = fe

(

aj0n√
πrc

+

√
πz

2a

)

, (24)

f2(n, z) = fe





πz − 2a2j0n

rc

2a
√

π



 , (25)

where fe is the error function

fe(x) =
2√
π

x
∫

0

e−t2dt . (26)

The expression converges well in the
region 0 ≤ a . rc.

Fig. 5 shows the value of ∆V (z)/∆V0
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for a localized space charge den-
sity and for a selected tube geometry
(rc = 1.5 cm) for the two cases from
section 3.1 and from this section. As
the area of irradiation increases, the
voltage drop in the center of the irra-
diated area approaches ∆V0 from Eq.
(18).

4 Conclusions

The presented formulas allow straight
forward calculation of the effective
voltage drop on the amplification wires
of MWPCs and Drift Tubes due to lo-
calised space charge. To first order the
space charge density can be assumed
constant in the uniformly irradiated
case. As compared to the case where
the whole area of an MWPC is irradi-
ated, the voltage drop in the center of
a localized irradiation area with radius
comparable to the detector thickness
is lower by a factor of about 0.9. The
same is true for the irradiation of a
section of a Drift Tube of length com-
parable to the tube diameter. More
complex cases, where non-uniform,
Gaussian space charge distributions
are assumed, can be calculated as well.

Knowing the voltage drop, one can eas-
ily calculate the gain drop due to a
high particle flux in the detector, if the
gas parameters (primary ionisation, ion
mobility and gas gain) are known.
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[5] In mathematica 5.2 this reads:
dV[x ,y ,z ] := 4*rho/Piˆ2/eps*
NIntegrate[(Sin[k1*a]*Sin[k2*b]*
Cos[k1*x]*Cos[k2*y])/(k1*k2*
(k1ˆ2+k2ˆ2))*b[Sqrt[k1ˆ2+k2ˆ2],z],
{k1,0,limit},{k2,0,limit}]

[6] In mathematica 5.2 this reads:
b[k ,z ] := 1-Cosh[k*z]+Sinh[k*z]*
Tanh[k*d/2]

[7] In mathematica 5.2 this reads:
dV[r ,z ] := rho/eps*NIntegrate[R*
BesselJ[1,k*R]*BesselJ[0,k*r]/kˆ2*
b[k,z],{k,0,limit}]

[8] In mathematica 5.2 this reads:
b[n ,z ] := If[Abs[z]<a,2-Exp[-bzj[0,
n]/R*(a+z)]-Exp[-bzj[0,n]/R*(a-z)],
If[z>=a,Exp[-bzj[0,n]/R*(z-a)]-
Exp[-bzj[0,n]/R*(z+a)],-Exp[-bzj[0,
n]/R*(a-z)]+Exp[bzj[0,n]/R*(z+a)]]]

[9] In mathematica 5.2 this reads: dV[z ]
:= rho/eps*Rˆ2*Sum[1/((bzj[0,n])ˆ3*
BesselJ[1,bzj[0,n]])*b[n,z],{n,1,limit}]
using the BesselZeros package and
bzj[m ,n ]:=BesselJZeros[m,{n,n}][[1]]
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