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Abstract

The resistive plates in RPCs cause a drop of the electric field in the gas gap at high particle rates or large gas
gain, which affects efficiency and time resolution. This effect is typically estimated by assuming the particle flux
to be a DC current that causes a voltage drop when it passes through the resistive plate. In an improved model
by Abbrescia (Nucl. Instr. Meth. A 533 (2004) 7), the fluctuation of the field in the gas gap is modelled by
assuming that the avalanche partially discharges a small capacitor which gets recharged with a time constant
characteristic for the given RPC. In our approach, the effect is calculated by using the exact analytic solution for
the time dependent electric field of a point charge sitting on the surface of a resistive plate in an RPC. This is—by
definition—the best possible approximation to reality. The solution is obtained using the quasi-static approximation
of Maxwell’s equations. The formulas are presented as integral representations with ’cured’ integrands, which
allow easy numerical evaluation for Monte Carlo simulations. The solutions show that the charges in RPCs are
’destroyed’ with a continuous distribution of time constants which are related in a very intuitive way to some
limiting cases. Using these formulas we present a Monte Carlo simulation of rate effects, proving the applicability of
this approach. Finally, we compare the Monte Carlo results to analytical calculations, similar to the ones proposed
by Gonzalez-Diaz et al. (see proceedings of this conference).

1. Introduction
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Fig. 1. RPC geometry. We use a resistive layer of thick-
ness a = 3 mm, a gap width of b = 0.3 mm, permittivities
ε1 = 8ε0, ε2 = ε0 and resistivity ρ = 1/σ = 1012 Ωcm. A
point charge Q is situated at r = z = 0.

In this report we investigate the geometry from
Fig. 1. Before the passage of a particle the electric

field in the gas gap is given by E0 = VHV /b and the
electric field in the resistive plate (with resistivity
ρ) is zero. When a charge Q is put on the surface of
the electrode, the resulting electric field in the re-
sistive plate will cause charges to flow and ’destroy’
the charge, which causes a time dependent electric
field in the gas gap. Using the quasi-static approx-
imation of Maxwell’s equations we obtain this so-
lution from a static solution [1]. Assuming a point
charge Q at position r = 0, z = 0 on the boundary
of two infinite half-spaces of dielectric permittivi-
ties ε1 and ε2, the z-component of the electric field
in the half space at z > 0 is given by [2]
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Ez(r, z) =
Q

2π(ε1 + ε2)

z

(r2 + z2)
3
2

(1)

In case the half-space z < 0 has permittivity ε1

and conductivity σ = 1/ρ and we put the charge
in place at t = 0 we have to replace ε1 by ε1 + σ/s
and Q by Q/s and perform the inverse Laplace
transform, giving

Ez(r, z, t) =
Q

2π(ε1 + ε2)

z

(r2 + z2)
3
2

e−
t

τ1 , (2a)

with τ1 =
ε1 + ε2

σ
. (2b)

The charge and the electric field are therefore ’de-
stroyed’ with the time constant τ1 which is about
0.8 s for our parameters. In another example we
place a charge sheet with density q at position z =
0 in the RPC from Fig. 1. This causes a static elec-
tric field of

Ez =
aq

aε1 + bε2
. (3)

Giving the plate at z < 0 a conductivity σ and
placing the charge sheet at t = 0 we replace ε1

by ε1 + σ/s and q by q/s and perform the inverse
Laplace transform, giving

Ez(t) =
a q

aε1 + bε2
e−

t

τ2 , (4a)

with τ2 =
aε1 + bε2

bσ
, (4b)

where τ2 is about 1.6 s for our parameters. Assum-
ing now that a constant DC current I0 feeds the
charge sheet (i.e. q(t) = I0t, q(s) = I0/s2) we ob-
tain after the inverse Laplace transform instead of
Eq. 4a

Ez(t) = ρ
a

b
I0 (1 − e−

t

τ2 ) . (5)

For t → ∞ and after replacing I0 with Q Φ, where
Φ is the particle flux per area and Q is the avalanche
charge, we find that the DC current leads to a static
electric field of

Ez = ρ
a

b
Φ Q . (6)

2. Solution for the point charge

The static solution for Ez, z > 0 for a point
charge Q at r = 0, z = 0 (See Fig. 1) is obtained
from Eqs. 56 and 61 (N21) in [3] by replacing q →

a, g → b, p → b and taking the derivative with
respect to z, which gives

Estat
z (r, z) =

Q

2π(ε1 + ε2)

z

(r2 + z2)
3
2

+
Q

2π

∫

∞

0

J0(kr) [f1(k, z) − f2(k, z)] dk

(7)

with f1(k, z) =

k cosh[k(b − z)] sinh(ka)

ε2 cosh(kb) sinh(ka) + ε1 cosh(ka) sinh(kb)

and f2(k, z) =
ke−kz

ε1 + ε2
.

For k → ∞ the integrand decays as e−2bk
− e−2ak,

so for numerical evaluation the integration limit
∞ can be replaced by 10a+b

a b . Giving the resistive
plate a conductivity σ and placing the charge Q at
t = 0 we get the solution

Edyn
z (r, z, t) =

Q

2π(ε1 + ε2)

z

(r2 + z2)
3
2

e
−t

τ1

+
Q

2π

∫

∞

0

[ J0(kr) f1(k, z) e
−t

τ(k)

− J0(kr) f2(k, z) e
−t

τ1 ] dk

(8)

with

τ(k) =
ε2 cosh(kb) sinh(ka) + ε1 cosh(ka) sinh(kb)

σ cosh(ka) sinh(kb)
(9)

and τ1 from Eq. 2b. The solution consists of a term
giving the point charge at two infinite half-spaces
(See Eq. 2a), decaying with a single time constant
τ1 and a term due to the presence of the grounded
plates which decays with a distribution of time
constants τ(k). It is easily shown that τ(∞) = τ1,
τ(0) = τ2 and τ1 < τ(k) < τ2. The solution is tab-
ulated and used for a Monte Carlo simulation (See
section 3).

In order to calculate the spread of the charge in
the resistive layer we need also the solution for Ez ,
z < 0 (not given here) and calculate the time de-
pendent charge density ρ(r, z, t) by using the rela-
tion ∇(εE) = ρ, which gives

ρ(r, t) = δ(z) Q δ(r) e−
t

τ1

+ δ(z)
Q

2π

∫

∞

0

J0(kr) k (e−
t

τ(k) − e−
t

τ1 )
(10)

At t = 0 we have the charge Q at the surface of
the resistive plate which decays according to τ1 for
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t > 0. In addition the charge spreads on the surface
according to the second term.

3. Monte Carlo simulation
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Fig. 2. Example field fluctuations at two positions in the

gas gap of an RPC as in Fig. 1 at 3 kV applied voltage and
at Φ = 600 Hz/cm2 .

In a Monte Carlo simulation we can calculate at
all times t at a certain position in the gas gap (r =
0, z0) the sum of the z-components of the electric
fields of all charges on the surfaces of the resistive
plates:

EMC
z (t) =

∑

n

QnEdyn
z (rn, z0, t − tn) . (11)

Here the Qn are given by the total signal charges of
the avalanches that created the charges at position
rn and at time tn and Edyn

z is given by Eqn. 8. We
simulate a single gap RPC of area A = 3 × 3 cm2.
For each time step a new number of charges (t Φ A)
is distributed randomly on that area. EMC

z (t) is
calculated at always the same position in the cen-
ter of the RPC area. It has been verified that a fur-
ther increase of the simulated detector area, which
considerably increases computing time, does not
improve precision. All charges are kept in memory
until their field contributions are negligible, which
can take up to 60 s for our parameters. To obtain
the avalanche charge Qn we use as an approxima-
tion box-shaped charge spectra from 0 to 2 Qav,
where Qav is the average total signal charge. Qav

however also depends on the rate itself and must

be obtained using an iterative approach. As start-
ing values for the different applied voltages we use
the simulated values from Fig. 11a in Ref. [4].

An example of the field fluctuations is shown in
Fig. 2. Histograms of the field values at the center
of the gap at different particle fluxes are shown
in Fig. 3a. Position and charge fluctuations both
contribute to the field fluctuations. Fig. 3b shows
that the average field reduction is exactly the same
as the one calculated from the DC model (Eq. 6).

4. Average and standard deviation
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Fig. 3. a) Histograms of the field fluctuations at differ-
ent particle fluxes for a single gap timing RPC as in Fig.
1 at 3 kV applied high voltage. The lines are Gaus func-
tions with mean and sigma values calculated as described
in section 4. b) Average field reductions taken from the
histograms (open symbols) compared to calculations using
Eq. 6 (broken line). The filled symbols and straight line
correspond to the case where the avalanche charge does

not depend on the flux.
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In [5] it was prosed to use Campbell’s theorem
in order to arrive at an analytic expression for the
average field drop and the variation. The theo-
rem states that for a signal E(t) =

∑

n anf(t −
tn), where an is from a random amplitude dis-
tribution and tn are random (exponentially dis-
tributed) times with an average frequency ν, the
average and standard deviation of E(t) are E =
νa

∫

f(t)dt and (∆E)2 = νa2
∫

f(t)2dt. The theo-
rem cannot be applied to the exact solution (Eq.
7) since the signal shape is not constant. We can
however approximate the situation by assuming
Edyn

z ≈ Q Estat0
z e−t/τ2 with Estat0

z = Estat
z /Q.

This gives an electric field at time t of

E(t) =
∑

n

Qn Estat0
z (rn, z) e−

t−tn

τ2 (12)

where Qn, rn and tn are the charge, position and
time of event n. Applying Campbell’s theorem with
a flux Φ of particles (ν = r2πΦ) we find the average
field drop in the gap:

E = ν QEstat0
z

∫

∞

0

e−
t

τ2 dt

= Φ Q

∫

∞

0

2 r π Estat0
z (r, z) dr τ2

= ρ
a

b
ΦQ .

(13)

This shows that the choice of τ2 for the overall
time constant guarantees that the model gives the
correct average drop (compare to Eq. 6). For the
variance of the field fluctuation we get

∆E(z)2 = ν Q2 (Estat0
z )2

∫

∞

0

e−
2t

τ2 dt

= Φ Q2
τ2

2

∫

∞

0

2rπ[Estat0
z (r, z)]2dr

(14)

so the relative variation can be written as

∆E(z)

E
=

1
√

2Φτ2A(z)

√

1 +
(∆Q)2

Q
2 (15)

with an effective area of

A(z) =
[
∫

∞

0
2rπEstat0

z (r, z)dr]2
∫

∞

0
2rπEstat0

z (r, z)2dr
. (16)

For our parameters we obtain in the center of the
gap an effective area of A(0.15 mm) = 5.67mm2

and for our box-shaped charge spectrum we find

(∆Q)2/Q
2

= 1/3. In Fig. 3a we include Gaus func-
tions around mean values from Eq. 13 and with sig-

mas calculated from Eq. 15 as ∆E(z)
E0

. This sigma
value is always larger than the r.m.s. from the
Monte Carlo histograms, as is shown in the follow-
ing table:

Φ [Hz/cm2] 20 100 200 300 400 500 600

∆E(z)
E0

(MC) [%] 0.33 0.52 0.58 0.66 0.67 0.70 0.66

∆E(z)
E0

(Analytic) [%] 0.35 0.64 0.78 0.85 0.88 0.90 0.91

The difference is explained by the complex dis-
tribution of time constants in the exact solution
(Eq. 8), which does not enter in Eq. 15. Still, us-
ing the analytic expression from Eq. 15 we can get
a good order of magnitude estimate for the field
fluctuations.

5. Conclusion

We have calculated the field drop and field fluc-
tuations in a single gap RPC by using the analytic
expression for the field of a point charge sitting on
the surface of a resistive plate. The charge decays
with different time constants distributed between
the case of a point charge on the boundary of two
infinite half spaces and the case of a charge sheet
in the investigated RPC geometry. Approximating
the solution and using Campbell’s theorem, an ap-
proximate analytic expression for the field fluctu-
ation was given.

ˇ
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