

Detector Physics of Resistive Plate Chambers

Christian Lippmann (CERN), Werner Riegler (CERN)

Simulation Input

- Primary ionization: HEED (Igor Smirnov)
- Townsend, attachment coefficient: IMONTE (Steve Biagi)
- Diffusion, drift velocity: MAGBOLTZ 2 (Steve Biagi)
- Avalanche fluctuations: Werner Legler (Die Statistik der Elektronenlawinen in elektronegativen Gasen bei hohen Feldstaerken und bei grosser Gasverstaerkung, 1960)
- Space Charge Field: CERN-OPEN-2001-074, "Static electric fields in an infinite plane condensor with one or three homogeneous layers"

Gas Parameters

15.11.2002; IEEE NSS

Christian Lippmann

Efficiency and Time Resolution

- At threshold crossing: space charge effect has no influence (for very fast amplifiers)
- Measurements: open symbols
- 7GeV pions (9.13 clusters/mm), 20fC threshold, 200ps amplifier peaking time, 1fC noise, T=296.15K and p=970mb

Include Space Charge Effect

Example Avalanche

15.11.2002; IEEE NSS

Christian Lippmann

Charge Spectra

- Simulated avalanches at HV=3kV, p=1013mb, single gap RPC
- Supression Factor 10⁷ !!

Reminder: Wire Tube/ Wire Chamber

- 1/r field geometry
 - Space charge region very short (<100V)</p>
 - 1.5 orders of magnitude jump to limited streamer region

Timing RPC: Long Space Charge Mode

- Homogeneous (applied) electric field
- Proportional Region is below Threshold
- Very long space charge Region (>700V)
- Charge grows first exponentially, then linearly with HV (which is also an experimental fact)

Ratio Q_{ind}/Q_{tot}

- For avalanches where no space charge effect is present we expect: $\frac{Q_{ind}}{Q_{tot}} = \frac{E_w}{\alpha}$
 - Indicator for a strong space charge effect present for E > 7.5kV/mm

15.11.2002; IEEE NSS

Christian Lippmann

Conclusion

•	We have applied standard detector physics simulations to Timing RPCs and find good agreement with measurements for efficiency, time resolution and charge spectra.
•	The operational mode of timing RPCs is strongly influenced by a space charge effect.
٠	The suppression factor is huge (10^7) .
٠	Details on our work:
	■ CERN-EP-2002-024
	NIM A481(2001) 130-143
	■ CERN-EP-2002-046
	$\blacksquare CFRN_OPFN_2001_074$