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Introduction (1)

•  In addition to tracking and calorimetry,  Particle 

IDentification (PID) is a crucial aspect of most particle and 
nuclear physics  experiments, e.g. at the CERN LHC
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LHC and experiments (1)
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LHC and experiments (2)
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LHC and experiments (3)

A Higgs candidate event
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LHC and experiments (4)


ALICE p-Pb event display


Please identify all particles! J 
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Particles (1)


•  There are more than 
200 particles described 
in the particle physics 
booklet


•  Do we have to identify 
all those in a detector 
system?
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Particles (2)

•  Table shows all known 

particles with mean 
lifetime sufficiently 
large to travel more 
than 10 μm (at GeV 
energies) before they 
decay
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Particles (3)

•  Table shows all known 

particles with mean 
lifetime sufficiently 
large to travel more 
than 10 μm (at GeV 
energies) before they 
decay


•  Neutrinos interact only 
weakly: Not directly 
observed in a detector




Particle identification; C. Lippmann
 10


Particles (4)

•  Table shows all known 

particles with mean 
lifetime sufficiently 
large to travel more 
than 10 μm (at GeV 
energies) before they 
decay


•  Neutrinos interact only 
weakly: Not directly 
observed in a detector


•  Many particles decay 
after <0.5 mm and don’t 
even leave beam pipe
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Particles (5)

•  Table shows all known 

particles with mean 
lifetime sufficiently 
large to travel more 
than 10 μm (at GeV 
energies) before they 
decay


•  Neutrinos interact only 
weakly: Not directly 
observed in a detector


•  Many particles decay 
after <0.5 mm and don’t 
even leave beam pipe


•  Few survive longer, but 
are quite rare
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Particles (6)

•  Table shows all known 

particles with mean 
lifetime sufficiently 
large to travel more 
than 10 μm (at GeV 
energies) before they 
decay


•  Neutrinos interact only 
weakly: Not directly 
observed in a detector


•  Many particles decay 
after <0.5 mm and don’t 
even leave beam pipe


•  Few survive longer, but 
are quite rare


•  By far the most 
frequent: e±, μ±, γ, π±, K
±, K0, p±, n
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Particles (7)

•  Table shows all known 

particles with mean 
lifetime sufficiently 
large to travel more 
than 10 μm (at GeV 
energies) before they 
decay


•  Neutrinos interact only 
weakly: Not directly 
observed in a detector


•  Many particles decay 
after <0.5 mm and don’t 
even leave beam pipe


•  Few survive longer, but 
are quite rare


•  By far the most 
frequent: e±, μ±, γ, π±, K
±, K0, p±, n


•  Also light nuclei (d, t, α) 
may be produced in 
heavy ion collisions!
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Introduction (2)

•  In addition to tracking and calorimetry,  Particle 

IDentification (PID) is a crucial aspect of most particle and 
nuclear physics  experiments, e.g. at the CERN LHC


•  Mainly 8 particles have to be distinguished inside the 
detector system: e±, μ±, γ, π±, K±, K0, p±, n


•  Particle identification techniques are based on the 
interactions of particles with matter

•  strong interaction (hadrons) and

•  electromagnetic interactions (if charged particle)


•  The electromagnetic interaction of a charged particle with 
a medium can be derived from the treatment of its 
electromagnetic interaction with that medium, where the 
interaction is mediated by a corresponding photon


•  The processes that occur are ionization, Bremsstrahlung, 
Cherenkov radiation, and transition radiation
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Particle Identification techniques


•  I. PID by difference in interaction


•  II. PID by mass determination

•  II. a) Ionization measurements


•  II. b) Time-of-flight measurements


•  II. c) Cherenkov ring imaging


•  II. d) Transition radiation imaging


•  III. PID in a tracking system
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I. PID by difference in interaction
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I. PID by difference in interaction


•  Experiments are often divided into a few main 
components,  stacked in layers, where each 
component tests for a specific set of particle 
properties


•  Particles are identified (e±, μ±, γ), or at least 
assigned to families (charged or neutral hadrons), 
by the characteristic signatures they leave in the 
detector


•  The individual hadrons can not be distinguished

•  Examples: ATLAS, CMS
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A typical high energy physics 
experiment
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Example 1: ATLAS works like this
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Example 2: CMS as well
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Now we know how to build a 
detector


http://www.atlas.ch/photos/lego.html
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II. PID by mass determination
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II. PID by mass determination

•  Charged hadrons (π, K, p) have identical interactions 

with a typical detector (as the one shown before) and 
are all effectively stable


•  However, their identification can be crucial

•  Example:







•  In order to identify charged hadrons it is necessary to 
determine their charge and mass
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Like a slice out of a ATLAS or CMS, but with the addition of 
2 Ring Imaging Cherenkov detectors


Example: Hadron ID in LHCb with 2 RICH detectors
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Example: PID by mass determination in ALICE
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How to measure the mass?


•  Since the mass can not be measured directly, it 
has to be deduced from other variables. These 
are in general the momentum p and the velocity 
β = v /c, where one exploits the basic 
relationship







•  The resolution in the mass determination is
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II. PID by mass determination (3)

•  The momentum is obtained by measuring the 

curvature of the track in the magnetic field: 
p ≈ 0.3 � B � r




•  The particle velocity β is obtained by:


a)  measurement of the energy deposit by 
ionization,


b)  time-of-flight (TOF) measurements,

c)  detection of Cherenkov radiation or

d)  detection of transition radiation
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II. a) Ionization measurements
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II. a) Ionization measurements

•  Fast charged particles passing through matter  

loose energy while they undergo a series of 
inelastic Coulomb collisions with the atomic 
electrons of the material




•  The (restricted) average 

energy loss per unit path 
length (upper limit for 
energy transfer in a single collision is Ecut):
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Charge deposit

•  ⟨dE/dx⟩ becomes visible in a detector as the 

average number of electron/ion pairs (or 
electron/hole pairs for semiconductors) ⟨NI⟩ along 
the length x :








•  W is the average energy spent for the creation of 

one electron/ion (electron/hole) pair.



•  Gaseous or solid state counters can provide 

signals with pulse height proportional to the 
number of electrons ⟨NI ⟩.
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Ionization: Separation power


•  Left: Typical ionization signal as a function of momentum in 
a detector (here a TPC) and particle separation as a function 
of momentum for a gaseous detector


•  Right: Separation power: 
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Energy loss fluctuations


•  The actual energy loss 
fluctuates according to a 
distribution with a long 
tail (Landau tail) due to 
δ-electrons


•  The distribution of the 
charge deposit looks 
accordingly


•  The mean value is a bad 
estimator for the 
ionization signal


•  How can we do better?
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Measurement of the energy deposit


•  In general NR pulse height measurements are 
performed along the particle track




•  Usually one uses the truncated mean:









•  ⟨RA⟩ approximates very well the most probable 

value of the distribution of the energy deposit. 
Its distribution is Gaussian
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Example: ALICE TPC

•  Excellent PID 

at low momen- 
tum (< 1 GeV/c)


•  Up to 159 
ionisation 
measurements 
per track


•  a = 0.6 (truncated 
mean)


•  5 % resolution 
in pp collisions


•  In highest multi- 
plicity (Pb-Pb collisions) 6% due to overlapping tracks and 
baseline fluctuations
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ALICE TPC: PID at low momenta


•  Momentum window of 50MeV/c width
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II. b) Time-of-flight measurements
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II. b) Time-of-flight measurements

•  Time-of-flight (TOF) measurements yield the 

velocity of a charged particle by measuring the 
flight time t = t1 - t0 over a given distance L along 
the track trajectory


•  One can calculate the mass m from measured 
values of L, t and p :






•  Separation power for two particles A and B:
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Separation power


•  Important to optimize resolution in the flight

time measurement!
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Example: ALICE TOF

TOF system


For each track, 
measure the track 

length L and the 
flight time t !
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ALICE TOF performance (1)


•  TOF β versus p in data from Pb-
Pb collisions


•  e, pi, K, p and d are clearly visible

•  Particles outside those bands are 

tracks wrongly associated with a 
TOF signal
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ALICE TOF performance (2)


•  Example of TOF mass fit for 
particle identification


•  In this case we use it to study 
deuteron production in Pb-Pb 
collisions at the LHC


•  TOF β-p performance in Pb-Pb 
run 2011


•  e, pi, K, p and d are clearly visible

•  Particles outside those bands are 

tracks wrongly associated with a 
TOF signal.
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Combining TPC and TOF PID (1)
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Combining TPC and TOF PID (2)


Light Anti-Nuclei identification 
by combination of TPC and 
TOF PID
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II. c) Cherenkov ring imaging
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II. c) Cherenkov ring imaging

•  Cherenkov radiation is a shock wave resulting 

from a charged particle moving through a 
material faster than the velocity of light in the 
material


•  Cherenkov radiation propagates with a 
characteristic angle with respect to the particle 
track ΘC , that depends on the particle velocity:





•  n = refractive index of material

•  Cherenkov radiation is only emitted above a


threshold velocity
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RICH technique


•  RICH detectors resolve the 
ring shaped image of the 
focused Cherenkov radiation 
and allow measurement of 
the Cherenkov angle ΘC 




•  The particle mass can be determined as


•  All Cherenkov detectors at the LHC are RICH 
devices
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Separation power (1)

•  The Cherenkov angle is determined 

by Np.e.  measurements of the 
angles of emission of the single 
Cherenkov photons


•  The separation power is approximately given by





•  with the angular resolution







•  In typical counters          varies between 0.1 and 5 mrad
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Separation power (2)

•  Note the similarity of the formula for the separation 

power:






with the one for time-of-flight measurements:







•  In the case of a RICH there is an additional factor 

of                    , which allows to adjust the detector 
configuration in order to achieve the desired momentum 
coverage




Particle identification; C. Lippmann
 49


Cherenkov detectors

•  In general, Cherenkov detectors contain a 

radiator through which charged particles pass (a 
transparent dielectric medium) and a photon 
detector


•  The number of photoelectrons (Np.e.) detected 
can be approximated as






•  with L= path length of particle through radiator 

and N0 the quality factor or figure of merit 
containing the light transmission, collection and  
detection efficiencies
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Like a slice out of a ATLAS or CMS, but with the addition of 2 Ring 
Imaging Cherenkov detectors with 3 different radiators


Example: LHCb RICH (1)
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Example: LHCb RICH (2)


•  Cherenkov angles and achievable separation as 
a function of momentum with the 3 different 
materials used in the LHCb RICH system
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Example: LHCb RICH (3)


LHCb RICH1
 LHCb HPD photon detectors
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Example: LHCb RICH (4)


LHCb RICH1
 LHCb HPD photon detectors
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Example: LHCb RICH (5)

LHCb RICH 1, C4F10 radiator 
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II. d) Transition radiation imaging
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II. d) Transition radiation imaging

•  Transition radiation (TR) can 

be produced when a fast 
charged particle crosses an 
inhomogeneous medium


•  For highly-relativistic 
charged particles 
(γ > 1000), the spectrum of 
the emitted radiation extends into the X-ray domain


•  TR production probability is only about α = 1/137 per 
boundary. Thus many boundaries are added: e.g. about 
100 foils to produce ≈ 1 photon

•  Can also use irregular radiator structures (foam, fibers)


•  Conversion leads to large energy deposit compared to the 
average energy deposit via ionization


•  In momentum range 1 < p < 10 GeV/c only electrons 
produce TR è electron identification!
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Example: ALICE TRD


1.  Electrons crossing radiator produce TR photons

2.  Xe gas mixture: efficient TR photon absorption

3.  TR signal plus ionization creates larger pulses for e than for e.g. π
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Summary (1)

•  Leptons and photons may be identified by the way 

they interact

•  In order to identify charged hadrons (π, K, p), their


mass has to be determined

•  This is done by measuring momentum and velocity

•  The velocity can be determined by 4 different means, 

each applicable in a certain momentum region

•  The Cherenkov imaging is the most flexible method, 

as it allows to tune the response of the detector by 
varying the refractive index (and the length of the 
radiator), and makes accessible also very high 
momenta (>100 GeV/c)
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Summary (2)
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Summary (3)


•  See also http://arxiv.org/abs/1101.3276
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III. PID in a tracking system
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V0's (1)
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V0's (2)

•  V0's can be reconstructed from the kinematics of their 

decay products, without needing to identify the π or p.


“Armenteros Podolanski plot”
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Kaon ID through kink topology


•  Charged Kaons may decay in a high- resolution 
tracking system:






•  In that case they can be identified through the 

characteristic “kink” topology (see next slide).



•  The Kaon identification process is then reduced 

to the finding of kinks in the tracking system.
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Kaon kink examples in ALICE 
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Tau Identification


•  Tau Leptons have a lifetime of 0.29ps

•  They decay into many final states

•  Decay products are seen in detector

•  Accurate vertex detectors detect that they 

come from secondary vertex (about 0.5mm



