

Das ALICE Experiment als Beispiel für eine "Teilchenidentifikationsmaschine"

Christian Lippmann, CERN

DPG Schule über Beschleuniger- und Hochenergiephysik 6. - 10. Juli 2009

- Unterschiede zwichen Hochenergie- und Schwerionenphysik am LHC
- Einführung in ALICE
- Ausgewählte Detektorelemente:
 - 1) Zeitprojektionskammer (TPC),
 - 2) Übergangsstrahlungsdetektor (TRD),
 - 3) Flugzeitdetektor (TOF).
- Zusammenfassung

Hochenergie- und Schwerionenphysik

- Um 1935 war die Situation der Kern- und Elementarteilchenphysik recht übersichtlich. Man kannte
 - zwei schwere Teilchen, die Bestandteile der Atomkerne:
 - Protonen und Neutronen
 - zwei leichte Teilchen
 - Elektron und Neutrino (nur postuliert)
 - Und die jeweiligen Antiteilchen.
- Dann wurden in kosmischer Höhenstrahlung und später an Beschleunigern (nach 1959) eine ganze Schar neuer Teilchen entdeckt.
- Heute kennt man mehrere Hundert Elementarteilchen.

htlp://pag.lbl.gov

~ 180 Selected Particles

D, W, Z, Q, E, M, 3, Ve, Vm, V3, TC, TO, y, fo (660), g(20), w (782), y' (1558), to (380), Qo (380), \$(1020), ha (1170), ba (1235), $\alpha_1(1260), f_2(1270), f_1(1285), \gamma(1295), \pi(1300), \alpha_2(1320),$ 10 (1370), 1, (1420), w (1420), y (1440), a, (1450), g (1450), $f_{0}(1500), f_{2}(1525), \omega(1650), \omega_{3}(1670), \pi_{2}(1670), \phi(1680),$ g3 (1690), g (1700), fo (1710), TC (1800), \$ (1850), \$ (2010), a4 (2040), f4 (2050), f2 (2300), f2 (2340), K¹, K°, K°, K°, K°, K° (892), K, (1270), K, (1400), K* (1410), Ko (1430), Ko (1430), K* (1680), K2 (1770), K3 (1780), K2 (1820), K4 (2045), Dt, D°, D' (2007), $\mathbb{D}^{*}(2010)^{t}, \mathbb{D}_{a}(2420)^{\circ}, \mathbb{D}_{a}^{*}(2460)^{\circ}, \mathbb{D}_{a}^{*}(2460)^{t}, \mathbb{D}_{s}^{t}, \mathbb{D}_{s}^{*t}, \mathbb{D}_{s$ Ds, (2536)*, Ds, (2573)*, B*, B°, B*, Bs, Bc, ye (15), J/4(15), X (0 (1P), X (1P), X (1P), W (25), W (3770), W (4040), W (4160), ψ (4415), r (15), X to (1P), X ta (1P), X ta (1P), r (25), X to (2P), X32 (2P), T (35), T (45), T (10860), T (11020), p, n, N(1440), N(1520), N(1535), N(1650), N(1675), N(1680), N(1700), N(1710), N(1720), N(2130), N(2220), N(2250), N(2600), A(1232), A(1600), A (1620), A (1700), A (1905), A (1910), A (1920), A (1930), A (1950), $\Delta(2420), \Lambda, \Lambda(1405), \Lambda(1520), \Lambda(1600), \Lambda(1670), \Lambda(1690),$ Λ (1800), Λ (1810), Λ (1820), Λ (1830), Λ (1890), Λ (2100), $\Lambda(2110), \Lambda(2350), \Sigma^{+}, \Sigma^{\circ}, \Sigma^{-}, \Sigma(1385), \Sigma(1660), \Sigma(1670),$ $\Sigma(1750), \Sigma(1775), \Sigma(1915), \Sigma(1940), \Sigma(2030), \Sigma(2250), \Xi^{\circ}, \Xi^{\circ},$ \equiv (1530), \equiv (1690), \equiv (1820), \equiv (1950), \equiv (2030), Ω , Ω (2250), $\Lambda_{c_1}^{\dagger}, \Lambda_{c_2}^{\dagger}, \Sigma_{c_1}(2455), \Sigma_{c_2}(2520), \Xi_{c_1}^{\dagger}, \Xi_{c_2}^{\circ}, \Xi_{c_1}^{\circ}, \Xi_{c_2}^{\circ}, \Xi_{c_1}(2645)$ $\Xi_{c}(2780), \Xi_{c}(2815), \Omega_{c}^{\circ}, \Lambda_{L}^{\circ}, \Xi_{L}^{\circ}, \Xi_{L}^{\circ}, tt$

18

- Von diesen hunderten Teilchen haben nur 14 eine "Lebensdauer" $c\tau > 0.5mm$, dass heisst sie können in einem Detektor gemessen werden c = Lichtgeschwindigkeit, $\tau =$ Lebensdauer).
- Von diesen 14 Teilchen sind die folgenden 8 am weitaus häufigsten:
 - 1. Elektron/Positron: e⁻ / e⁺
 - 2. Muonen: $\mu^{-/} \mu^{+}$
 - **3.** Photonen: *γ*
 - 4. **Pionen:** π^+ / π^-
 - 5. Geladene Kaonen: K⁻ / K⁺
 - 6. Neutrale Kaonen: K⁰
 - 7. (Anti-)protonen: p⁺/p⁻
 - 8. (Anti-)neutonen: n
- In einem Hochenergiephysik- oder Schwerionenexperiment sollten alle diese Teilchen gemessen und identifiziert werden können.

- Wir werden zwischen zwei Arten von Experimenten Unterscheiden:
 - ATLAS und CMS sind Hochenergiephysik-Experimente
 - ALICE ist ein **Schwerionen-Experiment**

Ziele von Hochenergiephysikexperimenten

- Erzeugung neuer Teilchen
- Bestätigung fundamentaler Theorien
- Man verwendet möglichst hohe Energien
- Beispiel: Die Suche nach dem Higgs Teilchen am LHC
 - Zerfall beispielsweise in 4 Muonen
 - Diese müssen nachgewiesen werden
 - ⇒ Der Detektor muss in allen Raumrichtungen Muonen nachweisen können.

Ziele von Experimenten mit Schwerionen (1)

- Kollision von vergleichsweise großen Objekten im Beschleuniger:
 - Schwerionen (beispielsweise Kerne von Bleiatomen)
- Kurzzeitig soll ein sehr hochenergetisches
 Plasma quasifreier Quarks und Gluonen erzeugt werden.

- Auf diese Weise sollen verschiedene grundlegende Fragen beantwortet werden, z.B.:
 - Was passiert, wenn man Materie auf das bis zu 100000fache der Temperatur im Innern der Sonne heizt?
 - Warum wiegen Protonen und Neutronen 100 mal so viel wie die Quarks aus denen sie bestehen?
 - Können Quarks in den Protonen und Neutronen befreit werden?

Quark-"Confinement"

Mit zunehmendem Abstand bleibt die Kraft zwischen den Quarks konstant.

Versucht man zwei Quarks auseinanderzubringen, so muss man so viel Energie aufwenden, dass daraus irgendwann ein neues Quark-Antiquark Paar erzeugt wird

Quark-Gluon-Plasma

Quarks eingeschlossen in farbneutrale Hadronen

Freie Quarks und Gluonen im Quark-Gluonen-Plasma

Vergleich von Schwerionen- und Hochenergiephysik Experimenten

	Hochenergiephysik	Schwerionenphysik
Ziel	 Erzeugung neuer Teilchen Bestätigung fundamentaler Theorien 	 Erzeugung neuartiger Materiezustände (hohe Temperaturen und Energiedichten)
Primäre Stosspartner	 Möglichst fundamental, möglichst hohe Energie 	- Hohe Nukleonenanzahl, verschiedene Energien
Erzeugte Sekundärteilchen	 - Überschaubare Menge (<100) - Hohe Impulse 	Sehr grosse Menge (>1000)Niedrige Impulse
Anforderung an Detektor	 Messung möglichst im gesamten Raumwinkel- bereich Hohe Granularität (Anzahl Messpunkte im Raum) 	 Messung teilweise nur in begrenztem Raumwinkel- bereich Sehr hohe Granularität Wenig Material

Hochenergiephysik Ereignis

- Woher wissen wir, dass f
 ür kurze Zeit ein Quark-Gluon-Plasma (QGP) entstanden ist?
- Wir verwenden "Sonden", wie zum Beispiel das sogenannte J/Ψ-Teilchen, welches im QGP zerfällt.
- Wenn sich die Eigenschaften (Masse, Häufigkeit) des J/Ψ- ändern, so erlaubt dies Rückschlüsse auf das QGP.

- 2 wichtige Zerfälle:
 - $J/\Psi \to e^+ e^- (0.73\%)$
 - $J/\Psi \to \mu^{+} \mu^{-} (0.73\%)$
- Die Elektronen und Myonen unterliegen nicht der starken Wechselwirkung
- Auf ihrem Weg durch das QGP werden sie deshalb nicht abgelenkt

Ziel ist also das Auffinden von $e^+ e^-$ - Paaren und $\mu^+ \mu^-$ - Paaren.

Einführung ALICE

- ALICE ist das eigens der Schwerionenphysik gewidmete Experiment am LHC:
 - Blei-Blei Kollisionen bei 5.5 TeV pro Nukleonenpaar.
 - Detaillierte Studien der *Hadronen*, *Elektronen*, *Muonen* und *Photonen*, die in den Kollisionen produziert werden.
- ALICE besteht aus <u>18 verschiedenen Detektorsystemen</u>.
 - Von diesen werden 3 in diesem Vortrag beschrieben.
- Jedes davon hat eine bestimmte Aufgabe
 - Spurverfolgung ("Tracking")
 - Identifikation bestimmter Teilchen in bestimmten
 Impulsbereichen
- ALICE benutzt alle bekannten Methoden zur Teilchenidentifikation
- Von diesen werden ebenfalls 3 in diesem Vortrag beschrieben.

1) ALICE TPC (Time Projection Chamber)

Wie funktioniert eine **TPC** (1)

- TPC = Zeitprojektionskammer
- Eine TPC ist ein einfacher, aber sehr effektiver Teilchendetektor
- Man braucht
 - Ein mit Gas gefülltes Volumen
 - Ein homogenes elektrisches Feld
 - Ein dazu paralleles, homogenes magnetisches Feld
 - Ausleseelemente an einer oder mehreren Oberflächen des Volumens

- Ein geladenes Teilchen ionisiert auf dem Flug durch die TPC das Driftgas
- 2. Die freigesetzten Elektronen driften zu den Ausleseelementen
- 3. Die projizierte Teilchenspur wird detektiert
- Die dritte Raumkoordinate wird über die Driftzeit berechnet

24

Wie funktioniert eine TPC (3)

- Das Magnetfeld sorgt dafür, dass die Teilchenspuren gebogen sind, so dass sich der Impuls des Teilchens berechnen lässt
 - $p_T = 0.3 B R$, mit B = Magnetifeldstärkein Tesla; R = Radius der
 - Teilchenspur in m
- Bonus: Im Allgemeinen verringert das Magnetfeld auch die Diffusion der driftenden Elektronen!

1. 3D Koordinatenmessung von Teilchenspuren

- Hohe Granularität
- Kontinuierliche Teilchenspuren
- Wenig Material ⇒ wenig Streuung (Ablenkung der Teilchenspuren)
- Teilchenidentifikation über den spezifischen Energieverlust (d*E*/d*x*)

• Beide Punkte werden im Folgenden näher beschrieben

Koordinatenmessung mit einer TPC (1)

 Die z-Koordinate wird anhand der Driftzeit t und der Driftgeschwindigkeit V_d berechnet.

Х

Koordinatenmessung mit einer TPC (2)

Die Drift von Elektronen in E und B Feldern:

ωτ <<1: Drift entlang *E*-Feldlinien.
 ωτ >>1: Drift entlang *B*-Feldlinien.

Koordinatenmessung mit einer TPC (3)

- Die Ausleseebene ist in "Pads" unterteilt
- Die driftenden Elektronen werden an Anodendrähten in Lawinen multipliziert
- Elektrische Signale werden auf 2 oder 3 nebeneinanderliegenden Pads induziert.
- Das Verhältnis der Signalhöhen wird verwandt, um die Position der Teilchenspur mit Präzision besserer als der Padgröße w zu bestimmen.

- Annahme: 2 Signalamplituden A₁ und A₂.
- Padbreite w.
- Die Funktion A₁ / A₂ = P₀(λ) / P₀(λ w), kann verwendet werden, um die Signalposition λ zu bestimmen.
- P₀ (Pad Response Function) ist eine Funktion, die gemessen oder berechnet werden kann.

Teilchenidentifizierung mit einer TPC (1)

 Geladene Teilchen deponieren Energie im Gasvolumen der TPC.

Energy loss (Bethe-Bloch)

$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\ln \frac{2mv^2}{J(1-\beta^2)} - \beta^2 - \frac{\delta}{2} \right]$$

- mass of electron
- Z, V charge and velocity of incident particle
- J mean ionization energy
- δ density effect term

Teilchenidentifizierung mit einer TPC (2)

- Der Energieverlust ist abhängig vom Teilchenimuls
- In bestimmten Impulsbereichen können verschiedene Teilchen auseinandergehalten werden

Die ALICE **TPC**

- Die größte jemals gebaute TPC
 - L=5 m
 - Ø = 5 m
 - 90m³
- Driftgas: Ne/CO₂/N₂ (86/9.5/4.5%)
- Driftzeit: 92 μs
- Ausleseelektronik mit
 ~570 000 Kanälen
 (⇒ ~570 Mio Pixel)

Installation der ALICE TPC

Run: 60824 Event: 136 Timestamp: 2008-09-25 21:27:59

Teilchenidentifizierung mit der ALICE TPC

 Bisher nur Messungen mit kosmischer Strahlung

resolution: measured 5.7%

 Da das ALICE Experiment unter der Erde liegt, erreichen nur Muonen die TPC

Koordinatenmessung mit der ALICE TPC

- Bisher nur Messungen mit kosmischer Strahlung
- Die erreichte Impulsauflösung wird sich durch bessere Kalibrierung noch verbessern
 Die erreichte
 Wird sich durch
 Wird sich durch

transverse momentum resolution, B=0.5 T

10

p (GeV)

2) ALICE TRD (Transition Radiation Detector)

Der ALICE TRD (1)

- TRD = Übergangsstrahlungsdetektor
- Aufgabe in ALICE:
 - Schnelle Elektronen identifizieren (Pion Rejection Factor 100)
 - Koordinatenmessung zusammen mit der TPC
 - "Trigger" auf schnelle Elektronen (Startet die Auslese von ALICE im Falle interessanter Ereignisse)

- Es handelt sich um einen Gasdetektor, ähnlich der TPC
 - geladene Teilchen ionisieren das Driftgas
 - die freigesetzten Elektronen driften, werden multipliziert und ein Signal wird auf Auslesepads induziert
- Zusätzlich wird von schnellen Elektronen (und nur von diesen) sogenanne Übergangsstrahlung erzeugt

Der ALICE TRD (2)

Nur Elektronen erzeugen die Übergangsstrahlung

Christian Lippmann

- Übergangsstrahlung entsteht, wenn ein geladenes, hochrelativistisches Teilchen die Grenzfläche zweier Medien mit unterschiedlichen Dielektrizitätskonstanten ε passiert. Die Wellenlänge dieser Strahlung liegt typischerweise im Bereich des Röntgenspektrums.
- Anschauliche Erklärung:
 - Ein geladenes Teilchen erzeugt im Medium der anderen Dielektrizitätskonstanten eine Spiegelladung.
 - Zusammen mit der sich n\u00e4hernden Teilchenladung stellt diese einen ver\u00e4nderlichen Dipol dar. Dieser ver\u00e4nderliche Dipol strahlt Photonen ab.

Übergangsstrahlung für Teilchenidentifizierung (1)

- Signalamplitude als Funktion der Driftzeit
- Simulation ohne Berücksichtigung der Übegangsstrahlung

Übergangsstrahlung für Teilchenidentifizierung (2)

- Signalamplitude als Funktion der Driftzeit
- Rote Linie: Simulation <u>mit</u> Übergangsstrahlung

<u>Der Unterschied in</u>
 <u>den</u>
 <u>Signalamplituden</u>
 <u>und in der</u>
 <u>Signalform wird</u>
 <u>Verwendet um</u>
 <u>Elektronen von</u>
 <u>Pionen zu</u>
 <u>unterscheiden.</u>

Der ALICE TRD (3)

- 540 Auslesekammern in
 - 18 Supermodulen
 - mit je 6 Ebenen
- Driftgas: Xe/CO₂ (85/15)

adiator

> 1 Mio Auslesekanäle

- Gesucht werden in der Datenflut versteckte schnelle Elektronenpaare (Erinnerung: $J/\Psi \rightarrow e^+ e^-$)
- Dafür stehen <7µs zur Verfügung

Der ALICE TRD Trigger (2)

1. Während die Signale noch aufgenommen werden (während der Driftzeit) werden die Daten nach schnellen Elektronenkandidaten durchsucht

 Die Daten der 6 Ebenen werden in einer "Global Tracking Unit" kombiniert. Elektronenpaare werden gesucht

ALICE TRD Ausleseelektronik (1)

 TRAP chip: Teilchenspuren untersuchen mit 4 CPUs (Prozessoren)

ALICE TRD Konstruktion

Der ALICE TRD (4)

- Eine viertel Million CPUs direkt auf dem Detektor durchsuchen eine unglaubliche Datenmenge nach Elektronen!
- Das Bild zeigt nur einen sehr kleinen Teil aller geladenen Teilchen im ALICE Detektor bei einer zentralen Blei-Blei Kollision

- Daten aus TRD (4 Supermodule eingebaut) und TPC
- TRD "Trigger" Entscheidung

3) ALICE TOF (Time Of Flight Detector)

- Teilchenidentifizierung über die Messung der Flugzeit
 - Geschwindigkeit des Teilchens aus Flugzeit (gemessen im TOF Detektor) und Flugstrecke (gemessn in der TPC)
 - Masse des Teilchens aus Impuls (gemessen in der TPC)
 - Die Masse identifiziert das Teilchen!
- Die Zeitauflösung des Detektors muss sehr gut sein!
- Gemessene Zeitauflösung im ALICE Experiment: <100 ps (=10⁻¹⁰s)
- ~160 000 elektronische Auslesekanäle

Der ALICE TOF (2)

Über RPCs

- Gasionisation
- b) Lawinenentwicklung, Raumladungseffekte
 - Ionen driften langsamer als Elektonen
 -) Ladungen in den Elektrodenplatten beeinflussen elektrisches Feld

2D- Simulation: Elektrisches Feld

Das Raumladungsfeld erreicht die Größenordnung des exteren angelegten Feldes! Christian Lippmann

2D- Simulation: Elektronendichte

Im Endstadium der Lawine gibt es extrem starke Elektronenanlagerung.

Ereignis im ALICE TOF

 Gemessenes Muon, Sommer 2008

Flugzeit-Auflösung

TOF resolution: σ_{TOF} ~ 190 ps including all contributions poor time-slewing correction not aligned geometry

$$\sigma_{\rm TOF} = \sqrt{2} \ \sigma_{\rm t}$$

single-hit resolution: $\sigma_{\rm t} \sim$ 130 ps

ALICE im Sommer 2008

- Hauptaufgabe des Detektors ist die Identifizierung von Teilchen
- In ALICE werden alle bekannten Teilchenidentifizierungsmethoden verwendet
- Drei Subdetektoren wurden vorgestellt:
 - Die **TPC** misst die Spuren der geladenen Teilchen und identifiziert sie über den charakteristischen Energievelust
 - Der TRD misst ebenfalls Teilchenspuren und identifiziert Elektronen über die charakteristische Übergangsstrahlung
 - Der TOF identifiziert Teilchen über ihre exakt gemessene Flugzeit

Backup slides

 Pad Response Function for the ALICE TPC (rectangular 4×7.5mm² pads).

Limitations for Coordinate Measurement

- **1) Diffusion** displaces the charge clusters during the long drift.
- 2) Attachment of drifting electrons leads to loss of signal amplitude.
- **3)** *ExB* effects: Small misalignment (*E* and *B* not perfectly parallel) displaces the charge clusters during the long drift.
- **4) Field distortions** due to *space charge* in the drift volume.

Limitation 1: Diffusion (1)

- Electrons are drifting along *z* and scatter on gas molecules.
- As a consequence, their drift velocity deviates from the average due to the random nature of the collisions.
- The diffusion is Gaussian with $\sigma(z)=D\sqrt{z}$, where
 - z = drift length and
 - $D = \text{diffusion coefficient } [\mu m / \sqrt{cm}].$
- Longitudinal (in drift direction) and transverse diffusion can differ.

How to reduce diffusion?

- 1) Certain additions to the gas mixture (like e.g. CO₂) help reduce the diffusion.
- **2)** Assume $E||B and \omega \tau >>1$: Transverse Diffusion is suppressed by a large factor:

$$D(B)/D(0) = \frac{1}{1 + \omega^2 \tau^2}$$

Limitation 1: Diffusion (2)

- The drifting electrons can be absorbed in the gas by the formation of negative ions.
 Signal loss
- Need to keep
 O₂ content low!
- <1ppm of O₂
 keeps signal
 loss below
 10% for
 250cm drift.

- *ExB* distortions arise from nonparallel *E* and *B* fields.
- It is difficult to build a very big detector (~5m) such that *E* and *B* fields are always perfectly parallel.
- Remaining effects must be corrected for in data.
- In ALICE we use a Laser system to calibrate *ExB* distortions.

Limitation 4: Space Charge

 In high-rate environments charges distort the electric field.

Limitation 4: Space Charge

- In high-rate environments charges distort the electric drift field.
- The gating grid
 - allows electrons to enter anode region only for interesting events
 - and keeps ions
 produced in
 avalanches out of the
 drift region.

77

The gas mixture for the ALICE TPC

- Basic components could be Ar, Ne, CO_2 , CH_4 , N_2 .
- Different (competing) requirements:
 - Low multiple scattering $(\Rightarrow \text{low } Z)$,
 - Low **gas gain** (\Rightarrow high primary ionisation \Rightarrow high Z),
 - Low space charge distortions (\Rightarrow low **primary ionisation** \Rightarrow low *Z*),
 - Low event overlap (\Rightarrow high **drift velocity**),
 - Low sensitivity to variations in gas composition or ambient conditions.

- ALICE TPC uses $Ne-CO_2-N_2$ [90%-10%-5%].
- Advantage: Low diffusion, fast drift, low space charge by primary ionisation.
- Drawback: High gain needed, sensitive to variations of pressure, temperature and to exact composition;
- But: Addition of N_2 reduces this sensitivity.