Status and future of the ALICE TPC, a high-resolution detector for the highest particle multiplicities

Christian Lippmann for the ALICE TPC collaboration

DPG spring meeting, Dresden, 04–08 Mar 2013

- Heavy-ion collisions at the LHC
- The ALICE experiment at the LHC
- What is a Time Projection Chamber?
- Description of the ALICE TPC
- Data taking
- Calibration: gain, drift velocity and distortions
- Tracking and PID performance
- Outlook: Continuous readout upgrade
- Summary

- Heavy-ion collisions at the LHC
- The ALICE experiment at the LHC
- What is a Time Projection Chamber?
- Description of the ALICE TPC
- Data taking
- Calibration: gain; chift velocity and distortions
- Tracking and PID performance
- Outlook: Continuous readout upgrade
- Summary

Heavy-ion collisions at the LHC (1)

- A comprehensive heavy-ion programme at the Large Hadron Collider (LHC)
 - 1 month of beam time devoted to heavy-ion physics each year
 - colliding the largest available nuclei (Pb) at the highest possible energy
- ALICE is the dedicated heavy-ion detector at the LHC

Heavy-ion collisions at the LHC (2)

- A comprehensive heavy-ion programme at the Large Hadron Collider (LHC)
 - 1 month of beam time devoted to heavy-ion physics each year
 - colliding the largest available nuclei (Pb) at the highest possible energy
- ALICE is the dedicated heavy-ion detector at the LHC

	pp LHC design	pp ALICE 2012	Pb–Pb (design)	Pb-Pb (Nov 2011)
Centre of mass energy	14 TeV	8 TeV	5.5 ATeV x 208 = 1144 TeV total	2.76 ATeV x 208 = 574 TeV total
Luminosity	10^{34}Hz/cm^2	$<10^{31} \text{ Hz/cm}^{2}$	10 ²⁷ Hz/cm ²	4×10 ²⁶ Hz/cm ²
Bunches per beam	2808	1374	592	358
Bunch spacing	25 ns	50 ns	100 ns	200 ns
β*	0.5 m	3 m	0.5 m	1 m
Min. bias trigger frequency	10 ⁹ Hz	<10 ⁸ Hz	8000 Hz	3200 Hz
dN _{ch} /dη	unknown	6	~2300 (expected)	1600

Heavy-ion collisions at the LHC (3)

- A comprehensive heavy-ion programme at the Large Hadron Collider (LHC)
 - 1 month of beam time devoted to heavy-ion physics each year
 - colliding the largest available nuclei (Pb) at the highest possible energy
- ALICE is the dedicated heavy-ion detector at the LHC

	pp LHC design	pp ALICE 2012	Pb–Pb (design)	Pb-Pb (Nov 2011)
Centre of mass energy	14 TeV	8 TeV	5.5 ATeV x 208 = 1144 TeV total	2.76 ATeV x 208 = 574 TeV total
Luminosity	10^{34}Hz/cm^2	$<10^{31} \text{ Hz/cm}^{2}$	10 ²⁷ Hz/cm ²	4×10 ²⁶ Hz/cm ²
Bunches per beam	2808	1374	592	358
Bunch spacing	25 ns	50 ns	100 ns	200 ns
β*	0.5 m	3 m	0.5 m	1 m
Min. bias trigger frequency	10 ⁹ Hz	<10 ⁸ Hz	8000 Hz	3200 Hz
dN _{ch} /dη	unknown	6	~2300 (expected)	1600

A typical Pb-Pb event

- Heavy-ion collisions at the LHC
- The ALICE experiment at the LHC
- What is a Time Projection Chamber?
- Description of the ALICE TPC
- Data taking
- Calibration: gain; chift velocity and distortions
- Tracking and PID performance
- Outlook: Continuous readout upgrade
- Summary

ALICE setup (2)

- Heavy-ion collisions at the LHC
- The ALICE experiment at the LHC
- What is a Time Projection Chamber?
- Description of the ALICE TPC
- Data taking
- Calibration: gain; chift velocity and distortions
- Tracking and PID performance
- Outlook: Continuous readout upgrade
- Summary

What is a TPC?

- A charged particle ionises the gas inside a field cage with homogeneous E and B fields.
- 2) The electrons drift towards the readout elements (up to few m).
- 3) The projected track is registered on readout chambers (wire chambers, GEMs, ...).

What is a TPC?

- A charged particle ionises the gas inside a field cage with homogeneous E and B fields
- 2) The electrons drift towards the readout elements (up to few m).
- 3) The projected track is registered on readout chambers (wire chambers, GEMs, ...).
- 4) The third coordinate is reconstructed from the drift time.

$$\vec{u} = \frac{\mu |\vec{E}|}{(1+\omega^2 \tau^2)} \left[\hat{E} + \omega \tau \left(\hat{E} \times \hat{B} \right) + \omega^2 \tau^2 \left(\hat{E} \cdot \hat{B} \right) \hat{B} \right]$$

Langevin equation for the drift velocity vector with E and B fields

C. Lippmann

Why use a TPC?

- A TPC is the perfect detector for HI collisions ...
 - almost the whole volume is active
 - minimal radiation length (field cage, gas)
 - easy pattern recognition (continuos tracks)
 - PID information from ionization measurements
 - transverse spread of the drifting electron clouds due to diffusion may be minimized by choosing a gas mixture with ωτ>1 together with parallel B and E fields

Why use a TPC?

ALICE

- A TPC is the perfect detector for HI collisions ...
 - almost the whole volume is active
 - minimal radiation length (field cage, gas)
 - easy pattern recognition (continuos tracks)
 - PID information from ionization measurements
 - transverse spread of the drifting electron clouds due to diffusion may be minimized by choosing a gas mixture with ωτ>1 together with parallel B and E fields
- ... but there are also limitations:
 - Gating needed to limit space charge in drift region ⇒ low trigger rates
 - Demanding calibration

Principle of gating in TPCs

- Heavy-ion collisions at the LHC
- The ALICE experiment at the LHC
- What is a Time Projection Chamber?
- Description of the ALICE TPC
- Data taking
- Calibration: gain; chift velocity and distortions
- Tracking and PID performance
- Outlook: Continuous readout upgrade
- Summary

ALICE TPC field cage and MWPCs

C. Lippmann

- Gas volume ~92 m³ ullet
- Material budget 3% X₀ ulletaround $\eta=0$
- 72 (=18×2×2) Readout chambers: MWPCs with cathode pad readout

Detail of one readout chamber

[Nucl.Instrum.Meth. A622 (2010) 316-367]

Gas and Front End Electronics (1)

- Gas mixture: Ne, CO_2 (90-10) with a bit of N_2
 - Low diffusion ("cold gas")
 - ωτ=0.32
 - low Z (low radiation length, low primary ionization)
- Maximum electron drift time (250 cm drift) : ~92 μs
- Field cage, MWPCs and gas system very leak tight: ~1 ppm O₂
- ~100 ppm H₂O added for stability

Gas and Front End Electronics (2)

- Gas mixture: Ne, CO_2 (90-10) with a bit of N_2
 - Low diffusion ("cold gas")
 - ωτ=0.32
 - low Z (low radiation length, low primary ionization)
- Maximum electron drift time (250 cm drift) : ~92 μs
- Field cage, MWPCs and gas system very leak tight: ~1 ppm O₂
- ~100 ppm H₂O added for stability
- 557 568 read out pads and FEE channels
- 1000 time bins \Rightarrow 557 million voxels
- PreAmplifier ShAper (PASA)
 - 12 mV/fC, 190 ns FWHM
- ALTRO digital chip
- 0.7 ADC mean noise (700 e⁻) on detector (Requirement: 1000 e⁻)

A TPC Front End Card holds 8 PASA and 8 ALTRO chips (4 each on each side)

The past and the present

- Field Cage assembly: 2002 2004
- MWPC installation: 2005
- Electronics installation: 2006
- Installation into ALICE L3 magnet: 2007
- Commissioning & calibration: 2007 2009
- Data taking: 2009 2013

C. Lippmann

- Heavy-ion collisions at the LHC
- The ALICE experiment at the LHC
- What is a Time Projection Chamber?
- Description of the ALICE TPC
- Data taking
- Calibration: gain, chift velocity and distortions
- Tracking and PID performance
- Outlook: Continuous readout upgrade
- Summary

Luminosities and readout rates (1)

- pp interaction rates in ALICE:
 - ~10 kHz for large cross section observables, almost no event pile up in TPC
 - ≤200 kHz for rare processes, acceptable event pile up
 - ≤400 kHz with high beam background in 2012

- Maximum TPC readout rates:
 - <u>1 kHz for pp</u>

A pp collision at 7 TeV: reconstructed tracks in TPC, ITS and other subdetectors

Luminosities and readout rates (2)

- pp interaction rates in ALICE:
 - ~10 kHz for large cross section observables, almost no event pile up in TPC
 - ≤200 kHz for rare processes, acceptable event pile up
 - ≤400 kHz with high beam background in 2012 pp running
- Pb-Pb interaction rates:
 - ≤10 kHz Pb-Pb collisions
- Maximum TPC readout rates:
 - ~1 kHz for pp
 - 200 Hz for Pb-Pb (central)

A central Pb-Pb collision at 2.76 ATeV: reconstructed tracks in the TPC

2013 Highlight: pA run

Luminosity up to 10²⁹ Hz/cm² (≤200kHz interaction rate)

General data taking experience (1)

- In general very good experience with operating the detector
 - High accuracy tracking and PID even for highest multiplicity events
 - No space charge effects visible
 - No ageing effects observed
 - none expected, 152µb⁻¹ Pb-Pb collisions integrated so far

General data taking experience (2)

- In general very good experience operating the detector:
 - High accuracy tracking and PID even for highest multiplicity events
 - No space charge effects visible
 - No ageing effects observed
 - none expected, 152µb⁻¹ Pb-Pb collisions integrated so far
- Few problems:
 - Some baseline fluctuations (ion tails) not yet be removed using online processing (ALTRO moving average filter)
 - Use offline correction instead, see also HK 68.1
 - Some damage to electronics due to discharges
 - Removal of HV capacitors in 2011/12
 - Some HV trips (automatic HV ramp down in case of overcurrent)
 - reconsider (or optimize) gas mixture

- Heavy-ion collisions at the LHC
- The ALICE experiment at the LHC
- What is a Time Projection Chamber?
- Description of the ALICE TPC
- Data taking
- Calibration: gain, drift velocity and distortions
- Tracking and PID performance
- Outlook: Continuous readout upgrade
- Summary

Calibration overview (1)

The main TPC calibration procedures are
 1. laser data: drift velocity calibration and alignment

A reconstructed laser event in the TPC

Calibration overview (2)

- The main TPC calibration procedures are
 - 1. laser data: drift velocity calibration and alignment
 - 2. gain calibration using short-lived radioactive gas (83Kr)
 - produces characteristic electron spectrum in the right energy range
 - result: gain determination to within 1%

A reconstructed laser event in the TPC

Pad-wise gain correction map from Kr calibration (C side shown)

C. Lippmann

Calibration overview (3)

- The main TPC calibration procedures are
 - 1. laser data: drift velocity calibration and alignment
 - 2. gain calibration using short-lived radioactive gas (83Kr)
 - produces characteristic electron spectrum in the right energy range
 - result: gain determination to within 1%
 - 3. cosmics and Physics (collisions) tracks: alignment and gain calibration

A reconstructed laser event in the TPC

Pad-wise gain correction map from Kr calibration (C side shown) A cosmic muon shower, triggered by ACORDE

C. Lippmann

Example 1: Field cage imperfections

- Drifting electrons are deflected from ideal drift path
- Imperfections in the field cage
- Maximum (very local): $\delta r = 10 \text{ mm}$ (shown here); $\delta r \phi = 0.8 \text{ mm}$

·φ direction

r direction

Example 2: Non-ideal B field

- Drifting electrons are deflected from ideal drift path
- B field shape (homogeneity) and alignment with E field
- Maximum: δr = 4 mm;
 δrφ = 8 mm (shown here)

- Heavy-ion collisions at the LHC
- The ALICE experiment at the LHC
- What is a Time Projection Chamber?
- Description of the ALICE TPC
- Data taking
- Calibration: gain, chift velocity and distortions
- Tracking and PID performance
- Outlook: Continuous readout upgrade
- Summary

Transverse momentum resolution

Transverse momentum resolution with TPC and silicon Inner Tracking System (ITS). Status of the calibration which corresponds to the recent physics results.

- Expected: $\sigma(p_T)/p_T = 5\%$ [ALICE PPR II, 2006 J. Phys. G: Nucl. Part. Phys. 32 1295]
- Current official number:
 σ (p_T)/p_T = 20% at
 100GeV/c
- For next round of pyhsics results: σ(p_T)/p_T < 10% at 100 GeV/c
- Ultimately, including also the TRD, the resolution can reach even 3% at 100 GeV/c
- Note: Performance epends not only on TPC

PID with the TPC

ALICE

- Measured Resolution with maximum number of samples: σ_{dE/dx} ≈ 5%
- Expected: 5.5% [ALICE PPR II, 2006 J. Phys. G: Nucl. Part. Phys. 32 1295]
- Resolution for the highest multiplicity HI events: σ_{dE/dx}≈ 6%

10 anti-alpha candidates from Pb-Pb collisions (PID using TPC and TOF)

[•] Expected: 7%

- Heavy-ion collisions at the LHC
- The ALICE experiment at the LHC
- What is a Time Projection Chamber?
- Description of the ALICE TPC
- Data taking
- Calibration: gain; chift velocity and distortions
- Tracking and PID performance
- Outlook: Continuous readout upgrade
- Summary

The future

 2013: pPb and Pbp initial state effects, shadowing.

• 2013-14: LHC Long Shutdown 1 (LS

 2015-17: FULL ENERGY !! pp @ 7 TeV, PbPb @ √sNN = 5.5 TeV

• 2018: LHC Long Shutdown 2

• ≥ 2019: HIGH LUMINOSITY 50 kHz PbPb collisions

ALICE UPGRADES

- New vertex detectors
- Faster readout, high level triggers...
- TPC with continuous readout ...

CERN-UHCC-2012-012 (UHCC-1-022) ALICE-DOC-2012-001 6 September 2012

Upgrade of the ALICE Experiment

ALICE upgrade Letter of Intent: Endorsed by LHCC

Continuous readout upgrade

- Goal: Operate TPC at high luminosity
 - Luminosity for lead collisions: 6×10²⁷ Hz/cm²
 - Up to 50–100kHz interaction rate
 - Up to 5–10 events overlapping (shown below)
 - Inspect all minimum bias events
- \Rightarrow No gating
- ⇒ Continuous readout (no triggers)

Example of a time sequence with 3 events overlapping in the drift volume of the TPC

Upgrade plan

- 1. Keep existing field cage, gas mixture, laser and services
- Replace wire planes by GEMs (⇒ See next presentation (HK 80.2)
- 3. New readout electronics, data acquisition (DAQ) and high-level trigger (HLT)
 - Continuous readout
 - online event reconstruction and calibration

Ion backflow suppression (1)

- Challenge: Minimize space charge in drift region!
- Low ion density in drift region requires
 - low primary ionization n_{ion}
 - low gain G_{eff}
 - low ion backflow IB

 $n_{tot} = n_{ion} \times IB \times G_{eff}$ $\varepsilon = IB \times G_{eff} - 1$

Field E_T

Field E_B>E_T

Ion backflow suppression (2)

- Challenge: Minimize space charge in drift region!
- Goal: IB = 0.5%, $\varepsilon = 10$ at $G_{eff} = 2000$
- \Rightarrow Resulting distortions ($\mathcal{O}(\text{cm})$) can be corrected
- Current issue under study: Optimisation of IB
 - Measurements and simulations
 - Direction of studies: Different gas mixtures, 4-GEM configuration

Summary

- The ALICE TPC is a large 3-dimensional tracking device for ultra-high multiplicity events
- It has been operated successfully with pp, Pb-Pb and p-Pb collisions at the LHC
- The TPC offers powerful particle identification and tracking in high multiplicity events
- The LHCC has recently endorsed the Letter Of Intent for the upgrade of the ALICE central barrel
- The upgraded TPC will be operated in a continuous mode with GEMs as readout detectors
- Current issue under study: Ion backflow optimization and readout electronics

ALICE TPC collaboration

Koll 5: ALICE TPC-Kollaboration

JOHAN ALME¹, HARALD APPELSHÄUSER², MESUT ARSLANDOK², MARKUS BALL³, MARTIN BERGER⁴, JIA-CHII BERGER-CHEN⁴, FE-LIX BÖHMER³, PETER BRAUN-MUNZINGER⁵, THEO BRÖKER², PE-TER CHRISTIANSEN⁶, SVERRE DORHEIM³, KORBINIAN ECKSTEIN³, Laura Fabbietti⁴, Dominik Fehlker⁷, Yiota Foka⁵, Ul-RICH FRANKENFELD⁵, CHILO GARABATOS⁵, PIOTR GASIK⁴, PETER GLÄSSEL⁸, TAKU GUNJI⁹, STEFAN HECKEL², HAAVARD HELSTRUP¹, ANDREAS HÖNLE³, MARIAN IVANOV⁵, ALEXANDER KALWEIT¹⁰, RALF KEIDEL¹¹, BERNHARD KETZER³, MARKUS KÖHLER⁵, MA-REK KOWALSKI¹², MIKOLAJ KRZEWICKI⁵, DAG LARSEN⁷, CHRIS-TIAN LIPPMANN⁵, PHILLIP LÜTTIG², MAGNUS MAGER¹⁰, SIL-TRICK REICHELT², RAINER RENFORDT², TUVA RICHERT⁶, KETIL Roeed¹, Dieter Röhrich⁷, Stefan Rossegger¹⁰, Hans Rü-DIGER SCHMIDT¹⁶, BRANO SITÁR¹⁵, JOHANNA STACHEL⁸, HANS KRISTIAN SOLTVEIT⁸, PETER STRMEN¹⁵, IMRICH SZARKA¹⁵, ADAM Szczepankiewicz¹⁰, Attilio Tarantola², Kohei Teresaki⁹, Jo-CHEN THÄDER⁵, KJETIL ULLALAND⁷, DANILO VRANIC⁵, JENS WIECHULA¹⁶ und YORITO YAMAGUCHI⁹ — ¹Faculty of Engineering. Bergen University College, Bergen, Norway — ²Institut für Kernphysik, Johann-Wolfgang-Goethe Universität Frankfurt, Frankfurt, Germany — ³Technische Universität München, Physik Department, Garching, Germany — ⁴Technische Universität München, Excellence Cluster Universe, Garching, Germany — ⁵GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany — ⁶Division of Experimental High Energy Physics, University of Lund, Lund, Sweden —⁷Department of Physics and Technology, University of Bergen, Bergen, Norway — ⁸Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany — ⁹University of Tokyo, Graduate School of Science, Center for Nuclear Study, Tokyo, Japan -¹⁰European Organization for Nuclear Research, Geneva, Switzerland — ¹¹Zentrum fur Techniktransfer und Telekommunikation, Fachhochschule Worms, Worms, Germany — ¹²The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland — ¹³Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark — ¹⁴Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany — ¹⁵Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia -¹⁶Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany