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The ALICE Experiment
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The ALICE TRD

The TRD [1]:

See talk HK 35.2 by D.
Emscher.

A drift chamber filled with
Xe, CO2 (15 %).

Electrons produce transition
radiation (TR), which is
absorbed by the heavy gas
mixture.

Ionization electrons drift
towards the anode wires and
create charge avalanches.

Cathode pads are read out at
10 MHz.
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The Importance of TR

With the ALICE TRD we want to identify electrons.

We use the information of the ionization energy loss
and of transition radiation (TR).

Different methods can be used: Likelihood and Neural
Networks (see talk HK 35.5 by A. Wilk).

Methods have to be practised also in the general
ALICE simulations (AliRoot).

One has to understand the momentum dependent TR
performance and to refine simulations.
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The Setup at CERN PS (T9)

B

S1 SD1S2Ch

DC3 DC4

He pipe

DC1 DC2

radiator Pbgl SD2 SD4SD3 S3

Beam of π− and e−, p = 1 to 10 GeV/c;

Trigger: S1, S2, S3 (Scintillators);

Particle Identification: C̆erenkov Detector and Lead
Glass Calorimeter;

Tracking: SD1,..,SD4 (Silicon Detectors);

Magnetic Field up to 0.5 T;

Pipe with Helium to minimize absorption.

Prototype TRD chambers with smaller area.
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Setup at the CERN PS (T9)

View of
magnet,

helium pipe,

radiator,

drift chambers

and one silicon
detector.
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Different Radiator Configurations:
The radiators:

Standard ALICE TRD
Radiator (foam + fibers),

Plexiglas Dummy,

Pure Fiber Radiator (8
mats, about 4 cm thick),

Pure Foam (4.2 cm thick),

Regular1 (N=120,
d1=20µm, d2=500µm),

Regular2 (N=220,
d1=20µm, d2=250µm),

No Radiator (only helium
pipe).

R ohacell© HF 71
(glass  fibre-enforced )

17 µm fibre

R ohacell© HF 71

G lass  fibre laminate
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Example Events
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The ionization energy loss produces a tracklet in the
TRD.

On top of that we find for electrons in some cases TR.

Due to the magnet it is well separated from the track.
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Example Events
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Average signals & charge spectra at 4GeV/c
Sandwich radiator
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Different energy deposit is used to
identify particles:

Ionization energy loss for pions;

Ionization energy loss for
electrons;

Energy deposited by TR for
electrons;

Energy deposited by dE/dx +
TR for electrons;
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Average signals & charge spectra at 4GeV/c
Sandwich radiator
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4GeV/c, sandwich radiator
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Ntr : Number of TR photons detected per electron
event.

Etr : Charge per TR photon.

EtrNtr : Charge deposited by TR per electron.
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Mean Number of Photons & Mean Energy per Electron
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The regular radiators have the highest TR yield.

The fibers and foam have different thicknesses than
the sandwich.

We find some photons also if no radiator is present
(”only pipe”). Possibly synchrotron radiation or
unwanted beam interaction? Has to be subtracted.
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Synchrotron radiation

synchrotron radiation

electron track

The number of photons emitted by synchrotron
radiation by an electron on a track with radius R on
length L is

< Nsync > ≈ 10−2 γ L

R
. (1)

In our case that would be < Nsync > ≈ 0.7 photons
at 5 GeV/c.

More investigations are needed, including spectral
distributions and absorption.
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Data after subtracting background
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Between 1 and 2 GeV/c: onset of TR production.

Then TR yield is essentially flat.

Yield is highest for regular foil radiators.
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Theory of regular foil transition radiators

The differential energy spectrum [2] is given by

dW
dω = 4 α

σ (κ+1)(1− exp(−Nf σ))

×
∞∑

n=1
Θn

(
1

ρ1+Θn
− 1

ρ2+Θn

)2
[1− cos(ρ1 + Θn)]

(2)
with:
α - fine structure constant,
σ - total absorption cross section (foils and gaps),

κ = d2
d1

- ratio of thickness of gaps (d1) and foils (d2),

Nf - the number of foils,

Θn = 2π n−(ρ1+κρ2)
1+κ > 0,

ρi = ω d1
2 c

(
γ−2 + ξ2

1

)
, ξ2

i =ω2
P,iω

2,

ωP = 28.8
√

ρZ
A eV.
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Comparison with Calculation
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Regular Radiator 1:
N=120, d1=0.02mm,
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The TR energy specta:

The theory reproduces the measurements very nicely,
also for the second regular radiator.

No scaling has been done!
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Comparison with Calculation
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The momentum dependence is also reproduced.

For the ALICE TRD sandwich radiators the theory
can only be applied as a parameterization, since the
radiator has no regularity!
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Summary & Outlook

Summary

We measured the momentum dependent transition radiation
yield of the standard ALICE TRD sandwich radiator with
small prototype TRD chambers.

We also tested the fiber and foam components and..

... regular foil radiators.

We find nice agreement with theory.

The theory is very important for the general ALICE simulation
efforts (pion efficiencies).

Outlook

Understanding of background. Synchrotron radiation?

Comparison to Geant4.
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For Further Reading

The ALICE Collaboration.
ALICE TRD Technical Design Report.
CERN/LHCC 2001-021, ALICE TRD 9, 3 October 2001.

C.W. Fabjan and W. Struczinski.
Coherent Emission of Transition Radiation in Periodic
Radiators.
Phys. Lett. B57 (1975), 483-486.

O. Busch et. al.
Transition Radiation Spectroscopy with Prototypes of the
ALICE TRD.
NIM A 522 (2004), 45-49.

C. Lippmann.
http://www-linux.gsi.de/˜lippmann.
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