Data Analysis 000000 Comparison with Theory 000 Summary & Outlook

Transition Radiation Spectroscopy with Prototypes of the ALICE TRD Results from a Beam Test at CERN from 2004

Christian Lippmann

Department KP1 Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany

DPG Spring Meeting, March 2005

bmb+f - Förderschwerpunkt ALICE Großgeräte der physikalischen Grundlagenforschung

C. Lippmann, DPG Berlin, March 2005

ALICE TRD Beam Test Analysis

Data Analysis

Comparison with Theory 000 Summary & Outlook

Outline

- Introduction
 The ALICE TRD
 - Beam Test Setup
- Data Analysis
 - Example Events
 - Fixed Momentum
 - Momentum Dependence
- 3 Comparison with Theory
 - The Theory
 - Fixed Momentum
 - Momentum Dependence
- 4 Summary & Outlook

Image: Image:

→ Ξ > < Ξ >

Introduction • 0 0 0 0 0 Data Analysis

Comparison with Theory 000 Summary & Outlook

The ALICE Experiment

ALICE TRD Beam Test Analysis

Data Analysis

Comparison with Theory 000 Summary & Outlook

The ALICE TRD

The TRD [1]:

- See talk HK 35.2 by D. Emscher.
- A drift chamber filled with Xe, CO₂ (15%).
- Electrons produce transition radiation (TR), which is absorbed by the heavy gas mixture.
- Ionization electrons drift towards the anode wires and create charge avalanches.
- Cathode pads are read out at 10 MHz.

C. Lippmann, DPG Berlin, March 2005

Data Analysi 000000 Comparison with Theory 000 Summary & Outlook

The Importance of TR

- With the ALICE TRD we want to identify electrons.
- We use the information of the ionization energy loss and of transition radiation (TR).
- Different methods can be used: Likelihood and Neural Networks (see talk HK 35.5 by A. Wilk).
- Methods have to be practised also in the general ALICE simulations (AliRoot).
- One has to understand the momentum dependent TR performance and to refine simulations.

・ロト ・ 日 ト ・ モ ト ・ モ ト

- Beam of π^- and e^- , p = 1 to 10 GeV/c;
- Trigger: S1, S2, S3 (Scintillators);
- Particle Identification: Čerenkov Detector and Lead Glass Calorimeter;
- Tracking: SD1,..,SD4 (Silicon Detectors);
- Magnetic Field up to 0.5 T;
- Pipe with Helium to minimize absorption.
- Prototype TRD chambers with smaller area.

Data Analysis 000000 Comparison with Theory

Summary & Outlook

Setup at the CERN PS (T9)

View of

- magnet,
- helium pipe,
- radiator,
- o drift chambers
- and one silicon detector.

イロト イボト イヨト

C. Lippmann, DPG Berlin, March 2005

Data Analysis 000000 Comparison with Theory

Summary & Outlook

Different Radiator Configurations:

The radiators:

- Standard ALICE TRD Radiator (foam + fibers),
- Plexiglas Dummy,
- Pure Fiber Radiator (8 mats, about 4 cm thick),
- Pure Foam (4.2 cm thick)
- Regular1 (N=120, d1=20μm, d2=500μm).
- Regular2 (N=220, d1=20µm, d2=250µm)
- No Radiator (only helium pipe).

Data Analysis 000000 Comparison with Theory

.....

.....

イロト イポト イヨト イヨト

Summary & Outlook

1

nan

Different Radiator Configurations:

The radiators:

- Standard ALICE TRD Radiator (foam + fibers),
- Plexiglas Dummy,
- Pure Fiber Radiator (8 mats, about 4 cm thick),
- Pure Foam (4.2 cm thick),
- Regular1 (N=120, d1=20μm, d2=500μm)
- Regular2 (N=220, d1=20µm, d2=250µm)
- No Radiator (only helium pipe).

Data Analysis 000000 Comparison with Theory

Summary & Outlook

nan

Different Radiator Configurations:

The radiators:

- Standard ALICE TRD Radiator (foam + fibers),
- Plexiglas Dummy,
- Pure Fiber Radiator (8 mats, about 4 cm thick),
- Pure Foam (4.2 cm thick),
- Regular1 (N=120, d1=20μm, d2=500μm),
- Regular2 (N=220, d1=20µm, d2=250µm)
- No Radiator (only helium pipe).

イロト イポト イヨト イヨト

Data Analysis 000000 Comparison with Theory

Summary & Outlook

nan

Different Radiator Configurations:

The radiators:

- Standard ALICE TRD Radiator (foam + fibers),
- Plexiglas Dummy,
- Pure Fiber Radiator (8 mats, about 4 cm thick),
- Pure Foam (4.2 cm thick),
- Regular1 (N=120, d1=20μm, d2=500μm),
- Regular2 (N=220, d1=20µm, d2=250µm)
- No Radiator (only helium pipe).

イロト イポト イヨト イヨト

Data Analysis 000000 Comparison with Theory

Summary & Outlook

nan

3

Different Radiator Configurations:

The radiators:

- Standard ALICE TRD Radiator (foam + fibers),
- Plexiglas Dummy,
- Pure Fiber Radiator (8 mats, about 4 cm thick),
- Pure Foam (4.2 cm thick),
- Regular1 (N=120, d1=20μm, d2=500μm),
- Regular2 (N=220, d1=20µm, d2=250µm)
- No Radiator (only helium pipe).

イロト イポト イヨト イヨト

Data Analysis 000000 Comparison with Theory

Summary & Outlook

Different Radiator Configurations:

The radiators:

- Standard ALICE TRD Radiator (foam + fibers),
- Plexiglas Dummy,
- Pure Fiber Radiator (8 mats, about 4 cm thick),
- Pure Foam (4.2 cm thick),
- Regular1 (N=120, d1=20μm, d2=500μm),
- Regular2 (N=220, d1=20μm, d2=250μm),

Data Analysis 000000 Comparison with Theory

Summary & Outlook

nan

1

Different Radiator Configurations:

The radiators:

- Standard ALICE TRD Radiator (foam + fibers),
- Plexiglas Dummy,
- Pure Fiber Radiator (8 mats, about 4 cm thick),
- Pure Foam (4.2 cm thick),
- Regular1 (N=120, d1=20μm, d2=500μm),
- Regular2 (N=220, d1=20μm, d2=250μm),
- No Radiator (only helium pipe).

イロト イポト イヨト イヨト

Data Analysis

Comparison with Theory

Summary & Outlook

Example Events

• The ionization energy loss produces a tracklet in the TRD.

• On top of that we find for electrons in some cases TF

• Due to the magnet it is well separated from the trac

C. Lippmann, DPG Berlin, March 2005

Data Analysis

Comparison with Theory 000 Summary & Outlook

Example Events

- The ionization energy loss produces a tracklet in the TRD.
- On top of that we find for electrons in some cases TR.
- Due to the magnet it is well separated from the track.

C. Lippmann, DPG Berlin, March 2005

Data Analysis

Comparison with Theory 000 Summary & Outlook

Average signals & charge spectra at $4 \, \text{GeV}/\text{c}$

Different energy deposit is used to identify particles:

- Ionization energy loss for pions;
- Ionization energy loss for electrons;
- Energy deposited by TR for electrons;
- Energy deposited by dE/dx + TR for electrons;

Data Analysis

Comparison with Theory 000 Summary & Outlook

Average signals & charge spectra at $4 \, \text{GeV}/\text{c}$

Different energy deposit is used to identify particles:

- Ionization energy loss for pions;
- Ionization energy loss for electrons;
- Energy deposited by TR for electrons;
- Energy deposited by dE/dx + TR for electrons;

Data Analysis

Comparison with Theory 000 Summary & Outlook

Average signals & charge spectra at $4 \, \text{GeV}/\text{c}$

Different energy deposit is used to identify particles:

- Ionization energy loss for pions;
- Ionization energy loss for electrons;
- Energy deposited by TR for electrons;
- Energy deposited by dE/dx + TR for electrons;

Data Analysis

Comparison with Theory 000 Summary & Outlook

Average signals & charge spectra at $4 \, \text{GeV}/\text{c}$

Different energy deposit is used to identify particles:

- Ionization energy loss for pions;
- Ionization energy loss for electrons;
- Energy deposited by TR for electrons;
- Energy deposited by dE/dx + TR for electrons;

Data Analysis

Comparison with Theory

Summary & Outlook

4 GeV/c, sandwich radiator

- N_{tr}: Number of TR photons detected per electron event.
- E_{tr}: Charge per TR photon.
- E_{tr}N_{tr}: Charge deposited by TR per electron.

• The regular radiators have the highest TR yield.

9 10

p [GeV/c]

- The fibers and foam have different thicknesses than the sandwich.
- We find some photons also if no radiator is present ("only pipe"). Possibly synchrotron radiation or unwanted beam interaction? Has to be subtracted.

9 10 p [GeV/c]

下 正正下

C. Lippmann, DPG Berlin, March 2005

ALICE TRD Beam Test Analysis

- 4 □ + 4 □

3

• The number of photons emitted by synchrotron radiation by an electron on a track with radius *R* on length *L* is

$$< N_{sync} > \approx 10^{-2} \frac{\gamma L}{R}$$
 (1)

- In our case that would be $< {\it N_{sync}} > \approx~0.7$ photons at 5 GeV/c.
- More investigations are needed, including spectral distributions and absorption.

Data Analysis ○○○○○● Comparison with Theory

Summary & Outlook

Data after subtracting background

- Between 1 and 2 GeV/c: onset of TR production.
- Then TR yield is essentially flat.
- Yield is highest for regular foil radiators.

C. Lippmann, DPG Berlin, March 2005

ALICE TRD Beam Test Analysis

< A

- E

Data Analysis 000000 Comparison with Theory $\bullet \circ \circ$

Summary & Outlook

Theory of regular foil transition radiators

The differential energy spectrum [2] is given by

$$\frac{dW}{d\omega} = \frac{4\alpha}{\sigma(\kappa+1)} (1 - \exp(-N_f \sigma)) \\ \times \sum_{n=1}^{\infty} \Theta_n \left(\frac{1}{\rho_1 + \Theta_n} - \frac{1}{\rho_2 + \Theta_n}\right)^2 [1 - \cos(\rho_1 + \Theta_n)]$$
(2)

with: α

 σ

Nf

- fine structure constant,
 - total absorption cross section (foils and gaps),
- $\kappa = rac{d_2}{d_1}$ ratio of thickness of gaps (d_1) and foils (d_2) ,
 - the number of foils,

$$\Theta_n \qquad = \frac{2\pi n - (\rho_1 + \kappa \rho_2)}{1 + \kappa} > 0, \\ \rho_i \qquad = \frac{\omega d_1}{2\epsilon} \left(\gamma^{-2} + \xi_1^2 \right), \quad \xi_i^2 = \omega_{P_i}^2 \omega^2$$

$$\omega_P = 28.8 \sqrt{\rho_A^Z} \text{ eV}.$$

ヘロト 人間ト 人注ト 人注ト

 Jaction
 Data Analysis
 Comparison with Theory
 Summary & Outlook

 D0
 000000
 0●0
 00

Comparison with Calculation

The TR energy specta:

- The theory reproduces the measurements very nicely, also for the second regular radiator.
- No scaling has been done!

< 17 ▶

< ∃ >

-

Data Analysis

Comparison with Theory ○○● Summary & Outlook

Comparison with Calculation

- The momentum dependence is also reproduced.
- For the ALICE TRD sandwich radiators the theory can only be applied as a parameterization, since the radiator has no regularity!

C. Lippmann, DPG Berlin, March 2005

ALICE TRD Beam Test Analysis

イロト イボト イヨト

Data Analysis

Comparison with Theory 000 Summary & Outlook ●○

Summary & Outlook

Summary

- We measured the momentum dependent transition radiation yield of the standard ALICE TRD sandwich radiator with small prototype TRD chambers.
- We also tested the fiber and foam components and..
- ... regular foil radiators.
- We find nice agreement with theory.
- The theory is very important for the general ALICE simulation efforts (pion efficiencies).

Outlook

Understanding of background. Synchrotron radiation

Comparison to Geant4.

C. Lippmann, DPG Berlin, March 2005

Data Analysis

Comparison with Theory 000 Summary & Outlook ●○

Summary & Outlook

Summary

- We measured the momentum dependent transition radiation yield of the standard ALICE TRD sandwich radiator with small prototype TRD chambers.
- We also tested the fiber and foam components and..
- ... regular foil radiators.
- We find nice agreement with theory.
- The theory is very important for the general ALICE simulation efforts (pion efficiencies).

Outlook

Understanding of background. Synchrotron radiation

Comparison to Geant4.

C. Lippmann, DPG Berlin, March 2005

Data Analysis

Comparison with Theory 000 Summary & Outlook ●○

Summary & Outlook

Summary

- We measured the momentum dependent transition radiation yield of the standard ALICE TRD sandwich radiator with small prototype TRD chambers.
- We also tested the fiber and foam components and..
- ... regular foil radiators.
- We find nice agreement with theory.
- The theory is very important for the general ALICE simulation efforts (pion efficiencies).

Outlook

Understanding of background. Synchrotron radiation

C. Lippmann, DPG Berlin, March 2005

Data Analysis

Comparison with Theory 000 Summary & Outlook ●○

Summary & Outlook

Summary

- We measured the momentum dependent transition radiation yield of the standard ALICE TRD sandwich radiator with small prototype TRD chambers.
- We also tested the fiber and foam components and..
- ... regular foil radiators.
- We find nice agreement with theory.
- The theory is very important for the general ALICE simulation efforts (pion efficiencies).

Outlook

• Understanding of background. Synchrotron radiation?

• Comparison to Geant4.

Data Analysis

Comparison with Theory 000 Summary & Outlook ●○

Summary & Outlook

Summary

- We measured the momentum dependent transition radiation yield of the standard ALICE TRD sandwich radiator with small prototype TRD chambers.
- We also tested the fiber and foam components and..
- ... regular foil radiators.
- We find nice agreement with theory.
- The theory is very important for the general ALICE simulation efforts (pion efficiencies).

Outlook

• Understanding of background. Synchrotron radiation?

• Comparison to Geant4.

C. Lippmann, DPG Berlin, March 2005

Data Analysis

Comparison with Theory 000 Summary & Outlook ●○

Summary & Outlook

Summary

- We measured the momentum dependent transition radiation yield of the standard ALICE TRD sandwich radiator with small prototype TRD chambers.
- We also tested the fiber and foam components and..
- ... regular foil radiators.
- We find nice agreement with theory.
- The theory is very important for the general ALICE simulation efforts (pion efficiencies).

Outlook

- Understanding of background. Synchrotron radiation?
- Comparison to Geant4.

Data Analysis

Comparison with Theory 000 Summary & Outlook ●○

Summary & Outlook

Summary

- We measured the momentum dependent transition radiation yield of the standard ALICE TRD sandwich radiator with small prototype TRD chambers.
- We also tested the fiber and foam components and..
- ... regular foil radiators.
- We find nice agreement with theory.
- The theory is very important for the general ALICE simulation efforts (pion efficiencies).

Outlook

- Understanding of background. Synchrotron radiation?
- Comparison to Geant4.

Data Analysis

Comparison with Theory

Summary & Outlook ○●

For Further Reading

- The ALICE Collaboration. ALICE TRD Technical Design Report. CERN/LHCC 2001-021, ALICE TRD 9, 3 October 2001.
- C.W. Fabjan and W. Struczinski. Coherent Emission of Transition Radiation in Periodic Radiators.

Phys. Lett. B57 (1975), 483-486.

O. Busch et. al.

Transition Radiation Spectroscopy with Prototypes of the ALICE TRD. *NIM A* 522 (2004), 45-49.

C. Lippmann.

http://www-linux.gsi.de/~lippmann.

イロト イポト イヨト イヨト

