Gaseous Detectors at the LHC

22 Oct 2014 Christian Lippmann

2nd ECFA High Luminosity LHC Experiments Workshop Aix-les-bains, France, 21 – 23 October 2014

Gas detector geometries

These 3 basic gas detector geometries are widely used at the LHC:

- They are well known devices for many years ...
- ... but several aspects have improved dramatically since their invention
 - 1. Readout electronics (integration, radiation resistance)
 - 2. Understanding and optimization of detector physics effects
 - 3. Improvement in ageing characteristics due to special gases

History and future

- The elimination of gas detectors by solid state detectors is predicted since decades. But reality shows quite the opposite
- Silicon detectors have replaced gas detectors for vertex detection
- Gas detectors are still dominating in the muon systems at large radii
 - to date it totally unrealistic to replace such a system by Si detectors
- The Time Projection Chamber (TPC) for Heavy Ion Physics is unbeatable in terms of radiation length and channel number economy
- Gas detectors have even regained territory that was occupied by other technologies
 - Example: Resistive plate chambers replacing scintillators for triggering and time of flight measurements

Monitored Drift Tubes MDT (Tracking)

- R=15mm
- 370k anode channels
- Ar/CO₂ 93/7 (3 bars)
- <80μm

♦ Transition Radiation Tracker TRT (Tracking)

- R=2mm
- 372k anode channels
- Xe/CO₂/CF₄ 70/10/20
- Xe/CO₂/O₂ 70/27/3
- <150 μm

ATLAS

Cathode Strip Chambers CSC (Tracking)

- h=2.54mm, s=2.54mm
- 67k cathode channels
- Ar/CO₂/CF₄
- <60 μm

Thin Gap Chambers TGC (Trigger)

- h=1.4mm, s=1.8mm
- 440k cathode and anode channels
- n-Pentane /CO₂ 45/55
- <99% in 25ns with single plane</p>

к	P(
	•

Resistive Plate Chambers RPC (Trigger):

- g=2mm, 2mm Bakelite
- 355k channels
- \Box C₂F₄H₂/Isobutane/SF₆ 96.7/3/0.3
- <98% with a single plane in 25ns

- Rectangular 'Drift Tubes' DT (Trigger & Tracking):
 - w=42mm, h=10.5mm
 - 195k anode channels
 - Ar/CO₂ 85/15
 - <250 μm

CMS

- Cathode Strip Chambers CSC (Trigger & Tracking):
 - h=4.25mm, s=3.12mm
 - 211k anode channels for timing
 - 273k cathode channels for position
 - Ar/CO₂/CF₄ 30/50/20
 - <75-150 μm

RPC

- **♦** Resistive Plate Chambers RPC (Trigger):
 - g=2mm, 2mm Bakelite
 - Many k channels
 - $C_2F_4H_2/lsobutane/SF_6 96.5/3.5/0.5$
 - <98% with a single plane in 25ns</p>

Outer Tracker (Tracking):

- R=2.5mm
- 51k anode channels
- $Ar/CO_2/CF_4$ 75/10/15
- <200 µm

LHCb

♦ Muon Chambers (Trigger):

- h=2.5mm, s=2mm
- 125k cathode and anode pads
- Ar/CO₂/CF₄ 40/55/5
- <3ns for two layers

Outer Tracker (Tracking):

- R=2.5mm
- 51k anode channels
- $Ar/CO_2/CF_4$ 75/10/15
- <200 µm

LHCb

♦ Muon Chambers (Trigger):

- **■** h=2.5mm, s=2mm
- 125k cathode and anode pads
- Ar/CO₂/CF₄ 40/55/5
- <3ns for two layers</p>

♦ GEM (Trigger):

- 5k channels
- Ar/CO₂/CF₄ 45/15/40
- <4.5 ns for one triple GEM</p>

RPC

- **♦** Time Of Flight TOF (Trigger & PID)
 - G=0.25mm, 0.4mm glass, 10gaps
 - 160k channels
 - <50ps/10gaps
 - $C_2F_4H_2$ /Isobutane/SF₆ 96.5/3.5/0.5
- Muon System (Trigger)
 - G=2mm, 2mm bakelite
 - Avalanche mode, Isobutane / C₂H₂F₄ / SF₆ 10/89,7/0,3, rel. humidity 37%
 - Ar/Isobutane/C₂F₄H_{2/}SF₆ 49/7/40/4
 - 21k channels

ALICE

- ◆ TPC with wire chambers, cathode pad readout (Tracking & PID)
 - 1.25-2.5mm wire pitch
 - 2 3 mm plane separation
 - 570k Readout Pads
 - Ne/CO₂ 90/10
- **♦** Transition Radiation Detector (Tracking & PID)
 - 1160 k channels
 - Xe/CO₂ 85/15
 - s=5mm, h=3.5mm
- RICH detector (PID)
 - s=2mm, h=2mm
 - Methane
 - 160k channels
- Muon Chambers (Tracking)
 - 1000k channels
 - <100um
 - S=2.5mm, h=2.5mm
 - Ar/CO₂ 80/20

Luminosity Upgrade

High Luminosity LHC:

- 1. After LS2: High luminosity heavy ion collisions:

 Pb—Pb luminosity increases by factor ~10 up to 6 × 10²⁷ cm⁻² s⁻¹
- 2. After LS3: High luminosity pp collisions: pp luminosity increases by factor ~10 up to 5×10^{35} cm⁻² s⁻¹ (lumi levelled)

Currently installed gaseous detectors may run into limitations:

- Occupancy
- Space Charge Effects (Wire Chambers), Voltage Drop (RPCs)
- Ageing
- Ion backflow
- Time resolution

Upgrade options

1. Upgrade without changing detectors

- ATLAS, CMS and LHCB: Largest part of the Muon systems
- ALICE: Replace only electronics for TRD and Muon system
- CMS: New electronics with better trigger capabilities for DT chambers
- R&D: Run RPCs at lower gas gain with new low noise electronics

2. Upgrade by scaling standard geometries

- ATLAS: sMDT (small Muon Drift Tubes) for BME (in LS1) and BIS (in LS2) regions
- ATLAS: sTGCs (small-strip Thin Gap Chambers) for New Small Wheel
- R&D: RPCs with thinner or lower resistivity electrodes

3. Upgrade by introducing novel gas detectors (Micro-Pattern Gas Detectors)

- ATLAS: MicroMegas for New Small Wheel
- ALICE (TPC), CMS (Forward Muon system) and LHCb (Muon system): GEMs

See presentations by R. Santonico, A. Sharma, G. Graziani and M. Abbrescia

C. Lippmann 10

Example: ALICE TPC (1)

- A Time Projection Chamber (TPC) is the perfect detector for HI collisions:
 - almost the whole volume is active
 - minimal radiation length (only field cage and gas)
 - easy pattern recognition (continuous tracks)
 - Particle IDentification from ionization measurements

- ... but there are also limitations:
 - Gating needed to limit Ion BackFlow (IBF), otherwise drift field distortions due to space charge ⇒ rather low trigger rates (< few kHz)
- Can a TPC be operated at HL-LHC with 50 kHz Pb-Pb collision rate?

Example: ALICE TPC (2)

Data taking with TPC at low luminosity until LS2:

- Maximum drift time of electrons in TPC: ~ 100us
- After each trigger: Additional gating grid closure time: 180us
 - Minimize backflow of positive ions into TPC drift volume
 - Minimize space charge to get best possible data quality

Maximum theoretical readout time: 1/280us ≈ 3.5kHz Far to slow for HL-LHC (50 kHz collision rate)

Example: ALICE TPC (3)

Data taking with TPC at 50kHz in after LS2:

time

- **Sating grid** Drift time in **TPC** gating would lead to ess of data grid open
- Maximum drift time of electrons in TPC: ~ 100us
- Interaction rate at HL-LHC: 50 kHz ⇒ Event spacing: ~20us

Events are overlapping due to finite drift time in TPC Gating grid would lead to loss of data No more triggering, continuous read-out Need to minimize ion backflow in different way → GEMs

Example: ALICE TPC (4)

- Strategy: Make use of the intrinsic Ion BackFlow (IBF) suppression in GEM detectors
 - Positive ions are trapped on upper foil
- Optimization of IBF suppression performance:
 - 4-GEM configuration
 - optimisation of operational voltages
- Continuous read-out becomes possible
- Remaining drift-field distortions must be calibrated

Summary & conclusion

Geiger- Müller (1908), 1928 Drift Tube (1968)

1)

G. Charpak, 1968 Multi Wire Proportional Chamber

R. Santonico, 1980
Resistive Plate Chamber

3)

... will at HL-LHC be joined by:

F. Sauli (1997)
Gas Electron Multiplier

I. Giomataris et al. (1996) Micro-mesh gaseous chamber (Micromegas)

C. Lippmann