EPS Conference on High Energy Physics Venice, Italy 5-12 July 2017

A continuous-readout TPC for the ALICE upgrade

8th Jul 2017 Christian Lippmann on behalf of the ALICE collaboration

ALICE experiment (1)

• The dedicated heavy-ion experiment at CERN LHC

C. Lippmann @ EPS-HEP, Venice, 5-12 July 2017

ALICE experiment (2)

- Excellent performance in RUN1 (2009 2013) and RUN2 (2015-now)
- Time Projection Chamber (TPC) is main device for tracking and PID in central barrel

ALICE upgrade strategy (1)

- Motivation: Focus on high-precision measurements of rare probes at low p_T
 - Low signal-to-background ratio prevents selection with hardware trigger
 - Need to record large sample of events
- Strategy: Read out all Pb-Pb interactions at maximum interaction rate of 50 kHz
 - Factor 50 improvement with respect to now
- When: 2nd LHC Long Shutdown (LS2): 2019 & 2020

ALICE upgrade strategy (2)

- High-rate capability → Increased statistics
- Example: Low-mass di-leptons after background subtraction

ALICE TPC overview

- Diameter: 5 m, length: 5 m
- Gas: Ne–CO₂–N₂, Ar–CO₂ in 2015 and 2016
- Max. drift time: ~100 μs
- 18 sectors on each side
- Inner and outer read out chambers: IROC, OROC
- Current detector (RUN1, RUN2):
 - 72 MWPCs
 - ~550 000 cathode pads
 - Wire gating grid (GG) to block lon BackFlow (IBF)
 - Rate limitation: few kHz

- Typical trigger rate in Pb-Pb: ~500 Hz
- Triggered operation with gating grid (GG)
- Ion backflow (IBF) suppression with gating grid: 10⁻⁵
- Electron drift time: 100 μs + fixed closure time of the GG: 200 μs (400 μs for Ar mixture)
 - Intrinsic limitation of the readout rate to few kHz

Drift time in TPC

- 50 kHz Pb–Pb collisions with the goal to inspect them all!
- Average event spacing: ~20µs → average pileup: 5 events
- Triggered operation does not make sense
- Minimize IBF without the use of a gating grid

Continuous read-out with GEMs (Gas Electron Multiplier)

Continuous read-out with GEMs (Gas Electron Multiplier)

GEM stack configuration (1)

Quadruple GEM stack in S-LP-LP-S configuration

- Combination of Standard (S) and Large Pitch (LP) GEM foils
- Highly optimized HV configuration
- Result of intensive R&D

GEM stack configuration (2)

Quadruple GEM stack in S-LP-LP-S configuration

- Combination of Standard (S) and Large Pitch (LP) GEM foils
- Highly optimized HV configuration
- Result of intensive R&D

Requirements for GEM readout system:

- Nominal gain = 2000 in Ne-CO₂-N₂ (90-10-5)
- IBF < 1 % (→ ε = 20)
- Energy resolution: $\sigma_{\rm E}$ / E < 12% for ⁵⁵Fe
- Stable operation under LHC RUN3 conditions

R&D highlights (1)

• IBF and energy resolution have to be optimized in parallel

R&D highlights (2)

Conservative operational limits: IBF < 1 %, local energy resolution < 12 % for ⁵⁵Fe

R&D highlights (3)

Extended operational range: IBF < 2 %, energy resolution < 14 %

GEM foil QA (1)

Multi-stage quality assurance (QA) using traffic light system (Bad / HV ok / Good)

1. Basic QA at CERN

- Reject malfunctioning foils as early as possible
- Fast feedback to the producer

GEM foil QA (2)

Multi-stage quality assurance (QA) using traffic light system (Bad / HV ok / Good)

- 1. Basic QA at CERN
 - Reject malfunctioning foils as early as possible
 - Fast feedback to the producer
- 2. Advanced QA
 - Hole size distributions
 - Gain uniformity prediction

Inner hole diameter

GEM hole cross-section

GEM foil QA (3)

Multi-stage quality assurance (QA) using traffic light system (Bad / HV ok / Good)

- 1. Basic QA at CERN
 - Reject malfunctioning foils as early as possible
 - Fast feedback to the producer
- 2. Advanced QA
 - Hole size distributions
 - Gain uniformity prediction

GEM hole cross-section

GEM foil QA (4)

Multi-stage quality assurance (QA) using traffic light system (Bad / HV ok / Good)

- 1. Basic QA at CERN
 - Reject malfunctioning foils as early as possible
 - Fast feedback to the producer
- 2. Advanced QA
 - Hole size distributions
 - Gain uniformity prediction
- 3. Further QA steps at the framing and assembly sites
 - Continuous quality monitoring after each production step

ROC production

ROC characterization (1)

Final ROC characterization:

- ✓ Gas tightness (< 0.5 ml/h)
- ✓ Gain curve
- ✓ Gain uniformity (<20 %)</p>
- \checkmark IBF uniformity (IBF < 1 %, uniformity < 20%)
- ✓ Full X-ray irradiation for more than 6h (10 nA/cm² pad-plane current)

✓ First production ROCs meet requirements

ROC characterization (2)

✓ First production OROC meets requirements

ROC characterization (3)

✓ First production IROC meets requirements

Readout strategy

- Read all ADC values (no compression)
- Radiation hard data and control link: CERN GBT system
- Online data correction (baseline fluctuations, common mode effect) and cluster finding in CRU (FPGA based readout card)

Readout electronics (1)

- On the Front-End Card (FEC): New FE ASIC SAMPA (130 nm TSMC CMOS):
 - Positive or negative input
 - Programmable conversion gains and peaking times
 - Readout modes: triggered or continuous
 - Digital Signal Processing (can be bypassed)

Readout electronics (2)

- On the Front-End Card (FEC): New FE ASIC SAMPA (130 nm TSMC CMOS):
 - Positive or negative input
 - Programmable conversion gains and peaking times
 - Readout modes: triggered or continuous
 - Digital Signal Processing (can be bypassed)

SAMPA requirements:

- Signal-to-noise ratio: 20:1 for IROC and 30:1 for OROC
- System noise (ENC): 670 e
- Conversion gain: 20 mV/fC
- Shaper peaking time: 160 ns
- Preamplifier saturation limit: > 10 nA
- ADC: 10 bit (ENOB>9.2), 5 MSPS

System integration

• Front End Card prototypes (Rev 0a) on a GEM read-out chamber

C. Lippmann @ EPS-HEP, Venice, 5-12 July 2017

System noise

Performance in beam test

- Successful beam test at CERN PS in May 2017
- Example: Particle identification performance at 2 GeV/c

C. Lippmann @ EPS-HEP, Venice, 5-12 July 2017

Summary and outlook

- Major upgrade of the ALICE experiment for installation in 2019/20
- **Continuous TPC readout** to inspect 50 kHz Pb–Pb collisions
- New TPC readout chambers based on quadruple GEM stacks
- Required performance (ion backflow, energy resolution, stability) achieved
- Extensive QA on produced GEM foils
- ROC assembly started
- New electronics for continuous readout
- Successful system tests

TPC team at the T10 beam line at CERN PS in May 2017

MORE

Approval of the Technical Design Report (TDR)

Readout chambers:

- Engineering Design Review (EDR)
- Readout Final Design Review
 ✓ Final design approved
- Production Readiness Review (PRR) ✓ Start of mass production

Front End Electronics:

- Rev 0 schematic review
- Rev 0 layout review
- Rev 1 schematic review
- Rev 1 layout review
- EDR
- PRR

Installation:

- Start of readout chamber installation
- Start of FEE installation

Milestones

June 2015

November 2015 June 2016

March 2017

May 2016 July 2016 March 2017 April 2017 October 2017 August 2018

April 2019 August 2019

ROC assembly flow

FEE assembly flow

