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Exact solutions for electric fields of charges in RPCs

Monte Carlo simulations

Analytic expressions for rate effects
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DC current model

RPC with a gas gap of thickness b and resistive plate of thickness a 
and  volume resistivity ρ = 1/σ

E0=VHV/b

A current I0 on the surface causes a voltage drop of ∆V = a*ρ*I0 across 
the gas gap.

An avalanche charge Q (pC) at rate R (Hz/cm2) gives a current of I0=R*Q 
(A/cm2).

The resistive plate represents a resistance of a*ρ (Ω cm2) between gas 
gap and metal.

The voltage drop is therefore ∆V = ρ*a*I0 = ρ*a*R*Q and the electric field 
drops by 

∆Egap = –ρ*a/b*R*Q
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Single cell model
M. Abbrescia, RPC2003

Assumption: 

The voltage drop due to a deposited charge q on 
the plate surface is given by the voltage q/C which 
is constant across the cell and decays with the 
single time constant τ.
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Comparison of the exact model to the single cell model

Parameters for this 
comparison:

• trigger RPC
• ε1 = 10 ε0
• g = 2 mm
• ρ = 1010 Ωcm
• q = 50pC

The electric field drop in the single
cell model:
E = U/g = q/Cg = q/ε0A
A ≈ 1 mm2
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Exact calculation

Without particles traversing the RPC the field in the gas gap is VHV/b 
and the field in the resistive plate is zero.

The charge sitting on the surface of the resistive plate decreases the 
field in the gas gap and causes an electric field in the resistive plate.

The electric field in the resistive plate will cause charges to flow in the 
resistive material which ‘destroy’ the point charge.

This causes a time dependent electric field E(x,y,z,t) in the gas gap 
which adds to the externally applied field E0.

The electric field in the gas gap due to high rate is then simply given by 
superimposing this solution for the individual charges.
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Quasistatic approximation of Maxwell’s equations

Knowing the electrostatic solution for a material with 
permittivity ε, the dynamic solution for a material with 
permittivity ε and conductivity σ is obtained by replacing ε
with ε + σ /s and performing the inverse Laplace
transform.
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Point charges in media with conductivity

Point Charge in infinite medium of permittivity ε1

Point Charge placed in  an infinite medium with permittivity ε1 and 
conductivity σ at t=0: q(t) = q*Θ(t) q(s)=q/s

Charge is destroyed with characteristic time constant ε1/σ.

Point charge on the boundary of an infinite halfspace with permittivity 
ε1

Point Charge placed on the boundary of an infinite halfspace with 
permittivity ε1 and conductivity σ at t=0.
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Charge sheet in an RPC 

Charge sheet with charge density q on the boundary between two media 
with permittivity ε1 and ε0 and a grounded plate at z=-a and z=b. From the 
conditions aE1 + bE=0 and -ε1E1+ ε0E=q we find

Charge Sheet with charge density q placed in the RPC with resistive 
plate of permittivity ε1 and conductivity σ:  q(t) = q*Θ(t) q(s)=q/s

Current I0 on the surface i.e. q(t) = I0*t q(s)=I0/s2

With I0 = q*R and σ = 1/ρ this becomes (of course) equal to the DC 
model from before.
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Point charge in RPC

Point charge in geometry with ε0 and ε1

Point charge placed at position r=0, z=0 at time t=0, permittivity ε1,
conductivity σ
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Point charge in RPC
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Charge decays with a continuous distribution of time constants between τ
(charge sheet in RPC) and τ1 (point charge at infinite half space).
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Method for Monte Carlo Simulations

A single gap RPC of area A = 3*3 cm2 is simulated.

For each time step (∆t) a new number of charges (∆t*R*A) is distributed 
randomly on the surface of the resistive plate.

The z-component of the electric field of all charges in the resistive 
plates is calculated at always the same position (center of RPC area, 
center of gap or close to electrodes) at all time steps and added to the 
applied field: Etot = E0 + ∑ Ez(r,z,t).

All charges are kept in memory until their field contribution has fallen 
below 10-26 V/cm (up to 60s for Timing RPC).
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Input Parameters for Timing RPC

We use box-shaped charge 
spectra from 0 pC to 2 times the 
average total signal charge.

For the average total signal 
charge as a function of the HV 
we use simulated data. 

• HV = 3kV ⇒ E0 = 100 kV / cm
• ε1 = 8 ε0
• a = 3 mm
• b = 0.3 mm
• ρ = 1012 Ωcm
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Monte Carlo for Timing RPCs

2

Fluctuations of the electric field at three different z-positions in the gap.
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Monte Carlo for Timing RPCs: Results (1)

Position and charge 
fluctuations contribute to the 
field variations. The average 
field reduction is the same in 
both cases.

2

The field fluctuations at the 
three different z-positions 
in the gas gap. The mean 
values are the same 
everywhere. Close to the 
resistive plate the r.m.s. is 
the largest.
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Monte Carlo for Timing RPCs: Results (2)

Here the total avalanche charge is kept constant for all rates:

The average field reduction 
in the gap center is exactly 
the same as the one 
calculated from the DC 
model.
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Monte Carlo for Timing RPCs: Results (3)

Total avalanche charge decreases as the electric field decreases with rate:

The average field 
reduction in the gap center 
is exactly the same as the 
one calculated from the 
DC model.
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Monte Carlo for Timing RPCs: Results (4)

The (local) threshold crossing time and the time resolution for a given 
electric field can be calculated at all time steps during a simulation 
using the analytic formulas:

t0 = ln(Qthr) / ( vD(α-η) )         and        σt = 1.28 / ( vD(α-η) ) .

Monte Carlo:

⇒ According to this simulation the field fluctuations have a small
influence on the time resolution.

Comparison to DC Modell:
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Analytic Formulas for Mean and Standard Deviation (1)

In RPC2005 Gonzalez-Diaz et al. proposed to use Campbell’s theorem in 
order to arrive at an analytic expression for the average field drop and 
the variation.

The theorem states that for a signal 

where an is from a random amplitude distribution and tn are random
(exponentially distributed) times with an average frequency ν, the 
average and standard deviation of E(t) are

and                                              .
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Analytic Formulas for Mean and Standard Deviation (2)

The theorem cannot be applied to our exact solution, since the signal 
shape is not constant.

We can however approximate the situation by assuming

This gives an electric field at time t of

where qn, rn and tn are the charge, position and time of event n. 
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Analytic Formulas for Mean and Standard Deviation (3)

Applying Campbell’s theorem with a flux Φ of particles (ν = r*2π*Φ) we
find the average field in the gap of

This shows that the choice of τ2 for the overall time constant 
guarantees that the model is giving the correct average DC drop. For 
the relative variance we get

with an effective area of



12/14/2005 C. Lippmann, W. Riegler, A. Kalweit 21

Comparison to Monte Carlo

Monte Carlo with exact solution 
leads to lower standard 
deviations of the field values
than analytic calculation.

Monte Carlo with 

leads to good agreement of the 
field values with the analytic
calculation.

The continuous time constant makes a difference!!
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Summary / Conclusions

We calculate rate effects in RPCs by using the exact time dependend 
solutions for the electric field of a point charge on the resistive plate 
of an RPC.

The charges decay with a continuous distribution of time constants. 
The two limiting cases are a continuous charge sheet (DC Model) and 
a point charge at an infinite half space.

We present a Monte Carlo simulation for single gap Timing RPCs with 
one resistive plate.

The electric field fluctuates due to the particle flux around a mean 
value which is equal to the value derived with the DC Model.

The simulation suggests that these field fluctuations have little 
influence on the time resolution for a single gap of the investigated 
geometry.

An analytic calculation using Campbell’s theorem (Gonzalez-Diaz et 
al., RPC2005) can be used to approximate rate effects.


