7-12 June 2021 Paris (France), Sorbonne Université (IN2P3/CNRS/IRFN

65ľ

ALICE Upgrades

LHCP2021 The Ninth Annual Conference on Large Hadron Collider Physics

> C. Lippmann for the ALICE collaboration

Online Main

ALICE in Run 1 and Run 2

Run 1 (2009 – 2013)		
Pb-Pb @ √ <i>s</i> _{NN} = 2.76 TeV		
p-Pb @ √ <i>s</i> _{NN} = 5.02 TeV		
pp @ \sqrt{s} = 0.9, 2.76, 7 and 8 TeV		

- Tracking and PID over large kinematic range
- High resolution vertex reconstruction
- Central barrel: $-0.9 < \eta < 0.9$
- Muon spectrometer: $-4.0 < \eta < -2.5$
- Forward detectors: trigger, centrality, luminosity, reaction plane

ALICE upgrade roadmap (1)

ALICE strategy for Run 3 and Run 4

- 50 kHz Pb-Pb event readout rate (previously ~1 kHz in the central barrel)
- Integrated luminosity targets:

Collision system	Integrated luminosity	Comment	
Pb-Pb @ $\sqrt{s_{\rm NN}}$ = 5 – 5.5 TeV $\mathcal{L}_{\rm Pb-Pb}$ = 13 nb ⁻¹		Plus pp reference data	
p-Pb @ √ <i>s</i> _{NN} = 8 − 8.8 TeV	$L_{p-Pb} = 0.6 \text{ pb}^{-1}$	Plus pp reference data	
рр @ \sqrt{s} = 14 ТеV	L _{pp} = 200 pb ⁻¹	With focus on high multiplicity and rare signals	

Programme is presented in CERN Yellow Report (link) LHC schedule (link), Future high-energy pp programme with ALICE (link)

ALICE upgrade roadmap (2)

ALICE 3: Proposal for a new generation heavy-ion experiment for LHC Run 5

• See slide 36

Runs 3 and 4: Physics goals

Runs 3 and 4: Physics goals

- Heavy-flavour mesons and baryons (down to very low p_{T})
- Charmonium states
- Dileptons from QGP radiation and low-mass vector mesons
- High-precision measurement of light and hyper nuclei

No dedicated trigger possible! → Need minimum-bias readout at highest possible rate

Runs 3 and 4: Implementation (1)

Runs 3 and 4: Physics goals

- Heavy-flavour mesons and baryons (down to very low p_{T})
- Charmonium states
- Dileptons from QGP radiation and low-mass vector mesons
- High-precision measurement of light and hyper nuclei

No dedicated trigger possible! → Need minimum-bias readout at highest possible rate

Implementation

- 1. Untriggered data sample
 - Record all Pb-Pb interactions at 50 kHz through continuous readout
 - Collect a factor 50 100 more min bias data wrt Run 2

→ Continuous readout TPC

Runs 3 and 4: Implementation (2)

Runs 3 and 4: Physics goals

- Heavy-flavour mesons and baryons (down to very low p_{T})
- Charmonium states
- Dileptons from QGP radiation and low-mass vector mesons
- High-precision measurement of light and hyper nuclei

No dedicated trigger possible! → Need minimum-bias readout at highest possible rate

Implementation

- 1. Untriggered data sample
 - Record all Pb-Pb interactions at 50 kHz through continuous readout
 - Collect a factor 50 100 more min bias data wrt Run 2
- 2. Improve tracking efficiency and momentum resolution at low- p_{T}
 - Increase tracking granularity
 - Reduce material thickness
 - Minimise the distance to IP

• \rightarrow New Inner Tracking System ITS2 and Muon Forward Tracker MFT

→ Continuous readout TPC

Runs 3 and 4: Implementation (3)

Runs 3 and 4: Physics goals

- Heavy-flavour mesons and baryons (down to very low p_{T})
- Charmonium states
- Dileptons from QGP radiation and low-mass vector mesons
- High-precision measurement of light and hyper nuclei

No dedicated trigger possible! → Need minimum-bias readout at highest possible rate

Implementation

- 1. Untriggered data sample
 - Record all Pb-Pb interactions at 50 kHz through continuous readout
 - Collect a factor 50 100 more min bias data wrt Run 2
- 2. Improve tracking efficiency and momentum resolution at $low-p_T$
 - Increase tracking granularity
 - Reduce material thickness
 - Minimise the distance to IP
- 3. Preserve particle identification (PID)
- → New Inner Tracking System ITS2 and Muon Forward Tracker MFT
 - → Consolidate and speed-up main ALICE PID detectors

_

Continuous readout TPC

Runs 3 and 4: Implementation (4)

Runs 3 and 4: Physics goals

- Heavy-flavour mesons and baryons (down to very low p_{T})
- Charmonium states
- Dileptons from QGP radiation and low-mass vector mesons
- High-precision measurement of light and hyper nuclei

No dedicated trigger possible! → Need minimum-bias readout at highest possible rate

Implementation

- 1. Untriggered data sample
 - Record all Pb-Pb interactions at 50 kHz through continuous readout
 - Collect a factor 50 100 more min bias data wrt Run 2
- 2. Improve tracking efficiency and momentum resolution at $low-p_T$
 - Increase tracking granularity
 - Reduce material thickness
 - Minimise the distance to IP
- 3. Preserve particle identification (PID)
- New Inner Tracking System ITS2 and Muon Forward Tracker MFT
- Consolidate and speed-up main ALICE PID detectors
- 4. Synchronous data processing (reconstruction, calibration) → New Online/Offline (O²) farm

Continuous readout TPC

Detector upgrades for Run 3

Inner Tracking System 2 (ITS2)

- CMOS pixel, Monolithic Active Pixel Sensor (MAPS) technology
- Improved resolution, less material, faster readout

New Muon Forward Tracker (MFT)

- CMOS pixel, MAPS technology
- Vertex tracker at forward rapidity

New TPC Readout Chambers (ROCs)

- Gas Electron Multiplier (GEM) technology
- New electronics (SAMPA), continuous readout

New Fast Interaction Trigger (FIT) Detector

Centrality, event plane, luminosity, interaction time

Integrated Online-Offline system (O²)

Calibrate and reconstruct minimum-bias Pb-Pb data at 50 kHz

Readout upgrade for all other detectors

• TOF, TRD, MUON, ZDC, calorimeters

Inner Tracking System (ITS2)

Article online (link)

With permission.

ITS2 in CERN Courier

PIXEL. PERFECT A CERN for climate change lical techno

- Largest pixel detector so far
- Article in July/August 2021 issue

ITS2 layout and specifications

- 10 m² active silicon area, 12.5×10⁹ pixels
 - 7 layers (3 inner, 4 outer)
 - 192 staves (48 inner, 144 outer)

	ITS1	ITS2
Distance to IP (mm)	39	22
X₀ (innermost layer) (%)	~ 1.14	~ 0.35
Pixel pitch (μm²)	50 x 425	27 x 29
Spatial resolution (r φ x z) (μ m ²)	11 x 100	5 x 5
Readout rate (kHz)	1	100

→ Improved resolution, less material, faster readout

ITS2 sensors

- Based on the ALPIDE chip (Monolithic Active Pixel Sensor, MAPS)
 - In-pixel amplification, shaping, discrimination and multievent buffers (MEB)
 - In-matrix data sparsification
 - High detection efficiency: > 99%
 - Low fake-hit rate: << 10⁻⁶/pixel/event
 - Radiation tolerant: > 270 krad total ionising dose (TID), > 1.7×10¹² 1 MeV/n_{eq} non-ionising energy loss (NIEL)

~72000 chips ~280 staves

- >10 production sites worldwide

ITS2 timeline

ALICE Upgrades | LHCP2021 | June 11th, 2021 | C. Lippmann | Page 15

Muon Forward Tracker (MFT)

Muon Forward Tracker (1)

B hadron $CT \approx 500 \mu m$ μ^{+} X μ^{-} X

High pointing accurancy

- Matching muon tracks with MFT tracks
- Charm/beauty separation via secondary vertex reconstruction

Muon Forward Tracker (2)

MFT in its final position

High pointing accurancy

- Matching muon tracks with MFT tracks
- Charm/beauty separation via secondary vertex reconstruction

- A new high-resolution Si tracker (2.5 < η < 3.6) based on ALPIDE chips
 - 5 disks, 0.4 m²
- Detector installed in Dec 2020
- Excellent noise performance:
 < 10⁻⁸ fake hits / pixel / event

ALICE Upgrades | LHCP2021 | June 11th, 2021 | C. Lippmann | Page 18

Time Projection Chamber (TPC)

Max. drift time: ~100 µs

Previous detector (Run 1, Run 2):

- 72 MWPCs
- Wire gating grid (GG) to minimize Ion Back-Flow (IBF)
- Rate limitation: few kHz

The upgrade of the ALICE TPC with GEMs and continuous readout (link)

TPC readout chambers

TPC upgrade specifications

- Continuous readout
- Nominal gain = 2000 in Ne-CO₂-N₂ (90-10-5)
- Ion back-flow (IBF) < 1%
- Preserve dE/dx performance
- Stable operation under LHC Run 3 conditions
- → Adopted solution: 4-GEM stack, combination of standard (140 µm) and large hole pitch (280 µm) GEM foils, optimized HV configuration
- → Unprecedented challenges: e.g. distortions from remaining space charge

ALICE Upgrades | LHCP2021 | June 11th, 2021 | C. Lippmann | Page 20

TPC readout electronics

Newly developed FE ASIC SAMPA (130 nm TSMC CMOS)

- 32 channels with preamplifier, shaper and 10 bit ADC
- Readout mode: continuous or triggered
- Also used in the ALICE Muon spectrometer

Front-End Cards (FECs)

- 5 SAMPA chips per FEC (3276 FECs in total)
- Continuous sampling at 5 MHz
- All ADC values read out at 3.3 TB/s
- Readout link: CERN GBT / Versatile link system
- FPGA-based readout card receives the data: Common Readout Unit (CRU)

Excellent noise figure: 670 e⁻ @18 pF on detector

TPC upgrade timeline

Start GEM ROC production

Start installation FEE and services

Transportation to LHC P2

TPC cosmic muon tracks

From TPC installed in cavern

Fast Interaction Trigger

Detector	Purpose	Distance from collision point	Technology	Comment
FDD-A	Measurements of diffractive cross sections and	17 m	BC420 scintillator pads,	To be installed mid July
FDD-C	studies of ultra-peripheral collisions	-19.5 m	wavelength shifters, fibers, Hamamatsu H8409-70 PMTs	Installed
FV0	Min bias and multiplicity triggers, centrality and event plane measurement	3.2 m	EJ-204 <mark>scintillators</mark> , fibers, Hamamatsu R5924-70 PMTs	To be installed end of June
FT0-A	Minimum bias and multiplicity triggers (together	3.3 m	Quartz Cherenkov radiators,	To be installed end of June
FT0-C	with FV0), collision time	-0.8 m	Photonis XP85002/FIT-Q MCP photomultipliers	Installed

ALICE Upgrades | LHCP2021 | June 11th, 2021 | C. Lippmann | Page 25

Online & Offline (O²) processing

30 kHz Pb-Pb Collisions

O² processing

- 50 kHz Pb-Pb collisions \rightarrow ~ 3.5 TB/s continuous raw data flow
- Continuous data flow is chopped into (sub-)time frames on the FLPs
- Data volume reduction in two steps

ITS3 for Run 4 (from 2027)

-

ITS3 material budget

Material budget Si only

- Only about 15% of the total material is silicon!
- Irregularities due to support and services

Removal of water cooling \rightarrow power consumption below 20 mW/cm² (\rightarrow 65 nm technology) **Removal of circuit board** \rightarrow Integrate power and data buses on chip **Removal of mechanical support: Benefit from increased stiffness of bent Si wafers**

04

0.1

0.0

10

20

ITS3 detector concept

Full-size mechanical prototype. 3 layers with carbon foam spacers

New inner layers (3 out of 7) for the ITS

Key ingredients:

- 300 mm wafer-scale chips, 65 nm CMOS process
- thinned down to 20-40 µm, making them flexible
- bent to the target radii
- mechanically held in place by carbon foam ribs

The whole detector will comprise six chips (current ITS2 inner barrel: 432) – and barely anything else!

ALICE Upgrades | LHCP2021 | June 11th, 2021 | C. Lippmann | Page 30

Proof of concept (1)

- Data based on analysis of test beam data using bent, 50 μm thick ALPIDEs from ITS2
- No deviation from flat performance observed
- Important milestone for ITS3

Bent chips just continue to work!

Proof of concept (2)

- Three layers with bent ALPIDEs
- Mimics ITS3 (same radii)

ALICE Upgrades | LHCP2021 | June 11th, 2021 | C. Lippmann | Page 32

FoCal for Run 4

LOI: CERN-LHCC-2020-009

FoCal (from 2027)

prototype

- A new high granularity Forward Calorimeter
 - High-precision inclusive measurement of direct photons and jets
 - Coincident γ-jet and jet-jet measurements
- 7 m from interaction point, 3.4 $\leq \eta \leq 5.8$
- FoCal-E: Si-W electromagnetic calorimeter (w/ pads and 2 high-granularity pixel layers)
- **FoCal-H**: A conventional sampling calorimeter (Cu + scintillating fibres)

Simulated longitudinal shower profile for 2 photons

ALICE Upgrades | LHCP2021 | June 11th, 2021 | C. Lippmann | Page 34

Approximate (x,Q) coverage of various experiments for regions probed by deep inelastic scattering measurements

- A next-generation HI experiment
- Ultra-lightweight silicon tracker: ~12 tracking barrel layers + disks based on CMOS sensors
- New physics opportunities due to improved detector performance + increased luminosity
- Kinematic range down to very low p_T:
 50 MeV/c (central barrel), 10 MeV/c forward (dedicated detector)
- Different options for PID under study
- LOI under preparation

ALICE 3 (from 2032)

Summary

Major ALICE upgrade for Run 3 in its final steps: ITS2, MFT, TPC, FIT, O² and readout electronics

- Last detector installation to be completed in July
- ALICE global commissioning from July
- New upgrade proposals for Run 4: ITS3, FoCal
- Preparation for a new generation, heavy-ion experiment for Run 5 ongoing

Thank you for your attention!

Summary

Major ALICE upgrade for Run 3 in its final steps: ITS2, MFT, TPC, FIT, O² and readout electronics

- Last detector installation to be completed in July
- ALICE global commissioning from July
- New upgrade proposals for Run 4: ITS3, FoCal
- Preparation for a new generation, heavy-ion experiment for Run 5 ongoing

Thank you for your attention!

See also (at this conference):

- Ivan Ravasenga: New ITS commissioning and impact on vertexing in Run 3. Thursday
- Ernst Hellbär: *Reconstruction and TPC calibration in Run* 3. Monday
- Giacomo Contin: Novel detector concepts for ALICE for Run 4 and beyond. Wednesday
- Stefania Bufalino: *PID and tracking with timing detectors in ALICE and LHCb in Run 5.* Tuesday
- Antonio Uras: *Physics prospects for ALICE in Run 5 and beyond*. Monday

Detector performance in Runs 3 and 4

(**GeV/***C*)

0.008

0.006

0.004

Tracking efficiency vs p_T

Momentum resolution vs $\ensuremath{\textbf{p}}_{\ensuremath{\text{T}}}$

ITS2

- Improved tracking efficiency
- Improved tracking resolution
- Pointing accuracy 3 times better in transverse plane (6 times along beam axis)

GEM TPC

- Preserve momentum resolution for TPC+ITS tracks
- Preserve particle identification (d*E*/d*x*)

Performance gain with ITS3

- Pointing resolution 2x better
- Improved tracking efficiency for low momenta

• Improved physics performance for heavy-flavour baryons and low-mass dielectrons