The ALICE Time Projection Chamber

... the World's largest Time Projection Chamber

Czech Techn. Univ Prague, 05.12.2008

Outline

- Time Projection Chambers
 - Introduction
 - Coordinate Measurement and Limitations
 - Particle Identification (dE/dx)
 - TPCs for Heavy Ion Experiments
- The ALICE TPC
 - ALICE Experiment
 - Construction
 - Gas Choice
 - Read Out Electronics
 - Calibration
 - Performance
- Summary

Detector Physics for TPCs

Gas Ionisation by Charged Particles,
 Electron Drift and Diffusion in Gases

- 2) Electron **Drift** and **Diffusion** in Gases,
- 3) Ionisation Amplification (at Anode Wires),
- 4) Signal Creation (Induction),
- 5) Signal Processing in Readout Electronics,
- 6) Coordinate Measurement,
- 7) Ion gates.

All points are described in great detail in e.g. [Blum, Riegler, Rolandi, Particle Detection with Drift Chambers, Second Edition, Springer, 2008]

TPC – The Concept (1)

- Time Projection Chambers (TPCs) are simple but effective particle detectors.
- TPCs consist of:
 - A large volume filled with a gas (or liquid),
 - 2) a field cage
 - providing a uniform electric drift field and

3) at one or two surfaces of the volume **readout elements** (e.g. wire chambers, GEMs, ...).

TPC – The Concept (2)

 The track of a charged particle ionises the gas.
 The electrons drift towards the readout elements.

- 3) The projected track is detected.
- 4) The third coordinate is reconstructed from the drift time.

TPC – The Concept (3)

A magnetic field is applied in order to measure the track curvature and thus the particle momenta.

TPC – The Concept (4)

- A magnetic field is applied in order to measure the track curvature and thus the particle momenta.
- A simple formula: $p_T = 0.3 B R$, where B = magnetic field in Tesla;
 - R = radius of particle track

What is special about TPCs?

- Abilities:
 - 3D coordinate measurement: Tracking of charged particles in high track density environments and
 - PID: Particle Identification through their ionisation energy loss (dE/dx).
- Advantages:
 - Low amount of material leads to low multiple scattering of particles.
 - Easy pattern recognition (continuous tracks).

Coordinate Measurement with TPCs

TPC – 3D Coordinate Measurement

• z coordinate is calculated from **drift time** t and drift velocity $v_{d.}$

A General Equation of Motion (2)

z *coordinate* is measured via the drift time.
The drift of electrons in *E* and *B* fields:

$$\vec{v}_{d} = \frac{\mu}{1 + (\omega\tau)^{2}} \left(\vec{E} + (\omega\tau) \frac{\vec{E} \times \vec{B}}{\left|\vec{B}\right|} + (\omega\tau)^{2} \frac{(\vec{E} \cdot \vec{B})\vec{B}}{\left|\vec{B}\right|^{2}} \right) \quad \mu = \frac{e\tau}{m} \quad \text{particle mobility}$$

$$\omega = \frac{eB}{mc} \quad \text{cyclotron} \quad \text{frequency}$$

ωτ<<1: Drift along *E* field lines.
 ωτ >>1: Drift along *B* field lines.

TPC – 3D Coordinate Measurement

- *z* coordinate is calculated from **drift time** *t* and drift velocity *v_D*;
 x and *y* coordinates are
 - calculated using cathode pads.

TPC – Cathode Pads (1)

If the cathode pads are small, we measure signals on at least two adjacent pads in y direction (along wires). The pulse-height ratio can be used to determine the position of the avalanche with precision much smaller than the pad width w.

TPC – Cathode Pads (2)

- Assume an avalanche and the two signal amplitudes: A_1 and A_2 .
- Width of pads: *w*.
- Then: $A_1 / A_2 = P_0(\lambda) / P_0(\lambda w)$, which can be used to get the avalanche position λ .
- P₀ is called Pad Response Function and can be measured or calculated.

TPC – Pad Response Function

 Pad Response Function for the ALICE TPC (rectangular 4×7.5mm² pads).

Limitations for Coordinate Measurement

- **1) Diffusion** displaces the charge clusters during the long drift.
- 2) Attachment of drifting electrons leads to loss of signal amplitude.
- 3) *ExB* effects: Small misalignment (*E* and *B* not perfectly parallel) displaces the charge clusters during the long drift.
- **4) Field distortions** due to *space charge* in the drift volume.

Limitation 1: Diffusion (1)

- Electrons are drifting along z and scatter on gas molecules.
- As a consequence, their drift velocity deviates from the average due to the random nature of the collisions.
- The diffusion is Gaussian with $\sigma(z)=D\sqrt{z}$, where
 - z = drift length and
 - $D = \text{diffusion coefficient } [\mu m/\sqrt{cm}].$
- Longitudinal (in drift direction) and transverse diffusion can differ.

Limitation 1: Diffusion (2)

 How to reduce diffusion?
 1) Certain additions to the gas mixture (like e.g. CO₂) help reduce the diffusion.

Limitation 1: Diffusion (2)

- How to reduce diffusion?
 - Certain additions to the gas mixture (like e.g. CO₂) help reduce the diffusion.
 - Assume E||B and ωτ >>1:
 Transverse Diffusion is suppressed by a large factor:

$$D(B)/D(0)=\frac{1}{1+\omega^2\tau^2}$$

Limitation 2: Attachment

- The drifting electrons can be absorbed in the gas by the formation of negative ions.
- Need to keep
 O₂ content low!
- <1ppm of O₂
 keeps signal
 loss below
 10% for
 250cm drift.

Limitation 3: ExB Effects

- *ExB* distortions arise from nonparallel *E* and *B* fields.
- It is difficult to build a very big detector (~5m) such that *E* and *B* fields are always perfectly parallel.
- Remaining effects must be corrected for in data.
- In ALICE we use a Laser system to calibrate *ExB* distortions.

Limitation 4: Space Charge

 In high-rate environments charges distort the electric field.

Limitation 4: Space Charge

- In high-rate environments charges distort the electric drift field.
- The gating grid
 - allows electrons to enter anode region only for interesting events
 - and keeps ions
 produced in
 avalanches out of the
 drift region.

Particle Identification with TPCs

Czech Techn. Univ Prague, 05.12.2008

Particle Identification by dE/dx (1) Charged particles loose energy in the gas volume.

Energy loss (Bethe-Bloch)

$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\ln \frac{2mv^2}{J(1-\beta^2)} - \beta^2 - \frac{\delta}{2} \right]$$

mean ionization energy δ

density effect term

Particle Identification by dE/dx (2)

- Energy loss distributions as function of particle momentum.
- Different

 particle species
 can be identified
 in certain regions.

 Image: Measure ments with

 PEP4 TPC.

Particle Identification by dE/dx (3)

- Energy loss distributions as function of particle momentum.
- For ALICE TPC we have so far only cosmic particles that make it through ~50m of rock

(muons) and some secondary electrons and protons.

TPCs for Heavy Ion Experiments

Czech Techn. Univ Prague, 05.12.2008

TPCs for Heavy Ion Experiments

Events in e⁺-e⁻ collisions have rather low densities of charged tracks.

TPCs for Heavy Ion Experiments

- Events in e⁺-e⁻ collisions have rather low densities of charged tracks.
- In heavy ion collisions we need much smaller pad sizes and a large number of pads (ALICE TPC: 570 000).

The ALICE TPC

A rapid 3-dimensional tracking device for ultra-high multiplicity events.

The ALICE Experiment

<u>A Large Ion Collider Experiment</u>

- Search for evidence of quark-gluon plasma in Pb-Pb collisions at the LHC (5.5 TeV per nucleon pair).
- Study properties of p-p collisions (14 TeV).
- Trajectories of thousands of particles (~20 000) produced in central collisions have to be measured and the particles have to be identified.
- To serve these tasks, the largest TPC in the world was built.

Pb-Pb collisions in ALICE

- Pb-Pb collisions
 at 5.5TeV per
 nucleon pair.
- Simulated event
 with cut in theta
 60-62 deg.
- If all tracks
 would be shown,
 the image would
 be yellow ...

The ALICE TPC: Tasks

- Track finding,
- momentum measurement and
- particle identification
- at transverse momenta $0.1 < p_T < 100 \text{GeV/c}$.
- Rate capability:
 - 200 Hz for central Pb-Pb collsions and
 - 1 kHz for p-p collisions.

The ALICE TPC Collaboration

Bergen CERN Darmstadt TU GSI Darmstadt Heidelberg PI Lund Bratislava Copenhagen Frankfurt Heidelberg KIP Krakow

ALICE TPC: Overview

ALICE TPC: Low-Mass Field Cage

 Light composite materials for all four cylinders.

Field Cage Construction (2002-04)

Czech Techn. Univ Prague, 05.12.2008

*ALICE TPC: Central Drift Electrode*Aluminized mylar on 100kV potential.

ALICE TPC: Read Out Chambers

- MWPCs with 2 (3)mm wire spacing,
- 3 different pad sizes.

Read Out Chamber Installation (2005)

Completion ROC Installation (2005)

Czech Techn. Univ Prague, 05.12.2008

The gas mixture for the ALICE TPC

Czech Techn. Univ Prague, 05.12.2008

ALICE TPC - Choosing a Gas

- Basic components could be Ar, Ne, CO_2 , CH_4 , N_2 .
- Different (competing) requirements:
 - Low multiple scattering ($\Rightarrow \text{low } Z$),
 - Low **gas gain** (\Rightarrow high primary ionisation \Rightarrow high Z),
 - Low space charge distortions (\Rightarrow low **primary ionisation** \Rightarrow low *Z*),
 - Low event overlap (\Rightarrow high drift velocity),
 - Low sensitivity to variations in gas composition or ambient conditions.

ALICE TPC Gas: Ne-CO₂-N₂

- ALICE TPC uses **Ne-CO₂-N₂** [90%-10%-5%].
- Advantage: Low diffusion, fast drift, low space charge by primary ionisation.
- Drawback: High gain needed, sensitive to variations of pressure, temperature and to exact composition;
- But: Addition of N_2 reduces this sensitivity.

The ALICE TPC Read Out Electronics

ALICE TPC Electronics (1)

 In Pb-Pb collisions the high occupancy (many consecutive signals per read out pad) is challenging.

ALICE TPC Electronics (2)

- ALICE TPC Read Out Chip (ALTRO):
 - 2 baseline correction circuits, Signal tail cancellation and Zero Supression (to reduce data size save only interesting signals) for 16 channels.

Czech Techn. Univ Prague, 05.12.2008

ALICE TPC Electronics (3) After signal correction in the ALTRO the baseline is nicely restored.

Czech Techn. Univ Prague, 05.12.2008

Czech Techn. Univ Prague, 05.12.2008

Install. of Read Out Electronics (2006)

Czech Techn. Univ Prague, 05.12.2008

Czech Techn. Univ Prague, 05.12.2008

Descent of the TPC into Cavern (2007)

2 hours for descent

Czech Techn. Univ Prague, 05.12.2008

The TPC in the ALICE Cavern (2007)

TPC in ALICE (2007-08)

Czech Techn. Univ Prague, 05.12.2008

Calibration of the ALICE TPC

ALICE TPC - Gain Calibration

ALICE TPC - Laser Calibration (1)

- Can inject
 168 laser
 beams into
 the drift
 volume on
 both sides.
- Can

 calibrate
 distortions
 (*ExB*, Space
 Charge).

ALICE TPC - Laser Calibration (2)

- Stray laser light **extracts electrons from central electrode**.
- Used to calibrate v_d (~2.65cm/µs, pressure dependent, precision 10⁻⁴) and analyse **pad-by-pad** variations.

60

ALICE TPC: Cosmics Event

Performance (Preliminary)

- Systematic effects on position resolution before (after) calibration:
 - ExB Effects: Δy<3mm (<0.3mm)</p>
 - Drift velocity: Δz~50mm (1mm)
 - Alignment: $\sigma_v = \sigma_z = 0.15$ mm (0.1mm)
- Momentum resolution (from cosmic tracks):
 - σ(p_T) = 3% at 2GeV/c
 - σ(p_T) = 10% at 10GeV/c
- dE/dx Resolution (from cosmic tracks):
 - $\sigma(dE/dx) = 6\%$

- TPCs are quite simple constructions which allow to take "3D photographs" of particle tracks.
- It also allows particle identification via the characteristic energy loss.
- A strong magnetic field is used to bend the particle tracks (spectrometer) and on top reduces the diffusion over the long drift paths.
- The largest existing TPC is installed into the ALICE experiment.
- A lot of calibration data (Kryton, Laser, Cosmics) was taken in dedicated run periods in 2007 and 08.
- The start of LHC is now delayed until summer 2009.
- The ALICE TPC is ready for collisions.