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Content 


•  ALICE at the LHC


•  Time Projection Chamber principle 


•  The ALICE TPC


•  Experience with the TPC in Run 1 


•  Run 2 consolidation: The RCU2 


•  A continuous read-out TPC: Upgrade for Run 3 
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Heavy-ion collisions at the LHC (1) 


•  A comprehensive heavy-ion programme at the Large Hadron 
Collider (LHC) 

•  1 month of beam time devoted to heavy-ion physics each year

•  colliding the largest available nuclei (Pb) at the highest possible energy 


•  ALICE is the dedicated heavy-ion detector at the LHC
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Heavy-ion collisions at the LHC (2) 


pp LHC design 
 pp ALICE 2012 
 Pb−Pb (design) 
 Pb−Pb (Nov 2011) 


Centre of mass 
energy 


14 TeV 
 8 TeV 
 5.5 ATeV x 208 = 

1144 TeV total


2.76 ATeV x 208 = 

574 TeV total


Luminosity 
 1034 Hz/cm2 
 <1031 Hz/cm2 
 1027 Hz/cm2 
 4×1026 Hz/cm2 


Bunches per beam
 2808 
 1374
 592 
 358 


Bunch spacing
 25 ns 
 50 ns 
 100 ns 
 200 ns 


β* 
 0.5 m
 3 m
 0.5 m
 1 m


Min. bias trigger 
frequency 


109 Hz 
 <108 Hz 
 8000 Hz 
 3200 Hz 


dNch/dη unknown 
 6 
 ~2300 (expected) 
 1600 


•  A comprehensive heavy-ion programme at the Large Hadron 
Collider (LHC) 

•  1 month of beam time devoted to heavy-ion physics each year

•  colliding the largest available nuclei (Pb) at the highest possible energy 


•  ALICE is the dedicated heavy-ion detector at the LHC




C.  Lippmann 5 

A typical Pb--Pb event 


Tracks reconstructed in the ALICE TPC
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ALICE setup (1) 
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Size: 16 x 26 meters 
Weight: 10,000 tons 
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ALICE setup (2) 
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TPC
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What is a TPC? 


1)  A charged particle ionises 
the gas inside a field cage 
with homogeneous E and 
B fields.


2)  The electrons drift to-�
wards the readout �
elements (up to few m).


3)  The projected track�
is registered on readout 
chambers (wire chambers, 
GEMs, …).
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What is a TPC? 


1)  A charged particle ionises 
the gas inside a field cage 
with homogeneous E and 
B fields


2)  The electrons drift to-�
wards the readout �
elements (up to few m).


3)  The projected track�
is registered on readout 
chambers (wire chambers, 
GEMs, …).


4)  The third coordinate is�
reconstructed from the 
drift time.


x 

E 


electron drift 


MWPC or MPGD to 
detect projected 
tracks 

gas volume track of 
charged 
particle 

y 


z 
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Langevin equation for the drift velocity vector with E and B fields
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Why use a TPC? 


•  A TPC is the perfect detector for HI 
collisions … 

•  almost the whole volume is active 

•  minimal radiation length (field cage, gas) 

•  easy pattern recognition (continuos tracks) 

•  PID information from ionization measure-�

ments

•  transverse spread of the drifting electron �

clouds due to diffusion may be minimized�
by choosing a gas mixture with ωτ>1 to-�
gether with parallel B and E fields
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Why use a TPC? 


•  A TPC is the perfect detector for HI 
collisions … 

•  almost the whole volume is active 

•  minimal radiation length (field cage, gas) 

•  easy pattern recognition (continuos tracks) 

•  PID information from ionization measure-�

ments

•  transverse spread of the drifting electron �

clouds due to diffusion may be minimized�
by choosing a gas mixture with ωτ>1 to-�
gether with parallel B and E fields


•  … but there are also limitations:

•  Gating needed to limit space charge in drift 

region ⇒ low trigger rates

•  Demanding calibration 


Principle of gating in TPCs
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ALICE TPC field cage and MWPCs


•  Gas volume ∼92 m3 


•  Material budget 3% X0 
around η=0 


•  72 (=18×2×2) Readout 
chambers: MWPCs with 
cathode pad readout 


E = 400 V/cm 

E 

B 
B 

Outer field cage CO2 gap 

Inner, outer 
readout 

chambers 
(MWPCs) 

Inner 
field 
cage Endplate 

Central drift 
electrode 
(100kV) 

Low mass, high precision field cage 
Detail of one readout chamber


[Nucl.Instrum.Meth. A622 (2010) 316-367] 
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Gas and Front End Electronics (1) 


•  Gas mixture: Ne, CO2 (90-10) with a bit of N2 

•  Low diffusion (“cold gas”) 

•  ωτ=0.32 

•  low Z (low radiation length, low primary ionization) 


•  Maximum electron drift time (250 cm drift) : ∼92 µs

•  Field cage, MWPCs and gas system very leak tight: ∼1 ppm O2 

•  ∼100 ppm H2O added for stability 


[Nucl.Instrum.Meth. A622 (2010) 316-367] 
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Gas and Front End Electronics (2) 


•  Gas mixture: Ne, CO2 (90-10) with a bit of N2 

•  Low diffusion (“cold gas”) 

•  ωτ=0.32 

•  low Z (low radiation length, low primary ionization) 


•  Maximum electron drift time (250 cm drift) : ∼92 µs

•  Field cage, MWPCs and gas system very leak tight: ∼1 ppm O2 

•  ∼100 ppm H2O added for stability 

•  557 568 read out pads and FEE channels

•  1000 time bins ⇒ 557 million voxels

•  PreAmplifier ShAper (PASA) 


•  12 mV/fC, 190 ns FWHM 

•  ALTRO digital chip

•  0.7 ADC mean noise (700 e−) on 

detector (Requirement: 1000 e−) 

A TPC Front End Card holds 8 PASA and 
8 ALTRO chips (4 each on each side) 


[Nucl.Instrum.Meth. A622 (2010) 316-367] 
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The past and the present 


•  Field Cage assembly: 2002 − 2004 

•  MWPC installation: 2005 

•  Electronics installation: 2006 

•  Installation into ALICE L3 magnet: 2007 

•  Commissioning & calibration: 2007 − 2009 

•  Data taking (Run 1): 2009 − 2013 

•  Consolidation during LHC Long Shutdown 1 (LS1) 
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THE TPC IN RUN 1 
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Luminosities and readout rates (1) 


A pp collision at 7 TeV: reconstructed tracks in TPC, 
ITS and other subdetectors


•  pp interaction rates in ALICE:

•  ∼10 kHz for large cross section 

observables, almost no event 
pile up in TPC


•  ≤200 kHz for rare processes, 
acceptable event pile up


•  ≤400 kHz with high beam 
background in 2012 


 

 


•  Maximum TPC readout rates:

•  1 kHz for pp
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Luminosities and readout rates (2) 


A central Pb−Pb collision at 2.76 ATeV: reconstructed 
tracks in the TPC


•  pp interaction rates in ALICE:

•  ∼10 kHz for large cross section 

observables, almost no event 
pile up in TPC


•  ≤200 kHz for rare processes, 
acceptable event pile up


•  ≤400 kHz with high beam 
background in 2012 pp running


•  Pb−Pb interaction rates:

•  ≤10 kHz Pb−Pb collisions


•  Maximum TPC readout rates:

•  ~1 kHz for pp

•  200 Hz for Pb−Pb (central) 
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Calibration overview (1) 


•  The main TPC calibration procedures are 

1.  laser data: drift velocity calibration and alignment 


A reconstructed laser event in the TPC
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Calibration overview (2) 


•  The main TPC calibration procedures are 

1.  laser data: drift velocity calibration and alignment 

2.  gain calibration using short-lived radioactive gas (83Kr) 


•  produces characteristic electron spectrum in the right energy range 

•  result: gain determination to within 1%


Pad-wise gain correction 

map from Kr calibration (C side shown) 
A reconstructed laser event in the TPC
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Calibration overview (3) 


•  The main TPC calibration procedures are 

1.  laser data: drift velocity calibration and alignment 

2.  gain calibration using short-lived radioactive gas (83Kr) 


•  produces characteristic electron spectrum in the right energy range 

•  result: gain determination to within 1%


3.  cosmics and Physics (collisions) tracks: alignment and gain calibration 


Pad-wise gain correction 

map from Kr calibration (C side shown) 
A reconstructed laser event in the TPC


A cosmic muon shower, triggered 
by ACORDE 




C.  Lippmann 26 

Example 1: Field cage imperfections


•  Drifting electrons are deflected from ideal drift path 

•  Imperfections in the field cage 

•  Maximum (very local): δr = 10 mm (shown here); 
δrϕ = 0.8 mm


Example: A side, z=1cm


r direction 
 rϕ
 d

ire
ct
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n
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Example 2: Non--ideal B field


•  Drifting electrons are deflected from ideal drift path 

•  B field shape (homogeneity) and alignment with E field

•  Maximum: δr = 4 mm;

δrϕ = 8 mm (shown here) 


Example: A side, z=1cm
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Transverse momentum resolution 


•  Expected: σ(pT)/pT = 5%�
[ALICE PPR II, 2006 J. Phys. G: 
Nucl. Part. Phys. 32 1295] 


•  Current official number: 
σ(pT)/pT = 20% at 
100GeV/c


•  For next round of pyhsics 
results: σ(pT)/pT < 10% at 
100 GeV/c


•  Ultimately, including also 
the TRD, the resolution can 
reach even 3% at 100 
GeV/c


•  Note: Performance epends 
not only on TPC


Transverse momentum resolution with TPC and silicon 
Inner Tracking System (ITS). Status of the calibration 
which corresponds to the recent physics results.
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PID with the TPC


•  Measured 
Resolution with 
maximum number 
of samples: σdE/dx 
≈ 5%


•  Expected: 5.5% 
[ALICE PPR II, 2006 J. 
Phys. G: Nucl. Part. 
Phys. 32 1295] 


•  Resolution for the 
highest multiplicity 
HI events: σdE/dx ≈ 
6%


•  Expected: 7% 


10 anti-alpha candidates from Pb-Pb collisions (PID using TPC and TOF) 
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TPC UPGRADE FOR RUN 2 
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ALICE TPC Run 2 Upgrades
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RCU2 
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Microsemi smartFusion2 – The 
Perfect Choice? 


•  The Microsemi smartFusion2 
is a brand new device.


›  Only enginering sampled released 
when we started to use it.


•  A few surprises were 
encountered with this new 
device.


›  Especially given our positive 
experience with Actel/Microsemi 
devices 
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Monitoring of Radiation Levels


 On the present RCU we have the 
Reconfiguration Network acting as a 
radiation monitor


 This is an interesting feature to keep for the 
RCU2:

Additional SRAM memory and Microsemi 

proASIC3 250 added to the RCU2 

Not enough user-IOs on the smartFusion2 for this feature 


Low risk – design already done and proven* 

Cypress SRAM – same as used for the latest LHC 

RadMon devices

Extensively characterized in various beams (n,p,mixed) 

and compared/benchmarked to FLUKA MC simulations 
by the CERN EN/STI group


34 
Arild Velure ”Design, implementation and testing of 
SRAM based neutron detectors”, Master Thesis 2011 
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Performance simulation 


35 

July 19th 2011, TPC plenary meeting, Attiq & Magnus

The read-out time does not include:
‣ drift time
‣ back-pressure
‣ inter-event dependencies (e.g. 

MEB)

Time vs. multiplicity
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TPC UPGRADE FOR RUN 3 
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The future 


ALICE upgrade Letter of Intent: Endorsed by LHCC
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time t1 
 time t2>t1 
 time t3>t2 
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The future 


ALICE TPC 
upgrade 
Technical 
Design Report 
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Continuous TPC readout 


•  Goal: Operate TPC at high luminosity 

•  Luminosity for lead collisions: 6×1027 Hz/cm2 


•  Up to 50- kHz interaction rate 

•  Up to 5 events overlapping (shown below) 

•  Inspect all minimum bias events


⇒ 
No gating

⇒ 
Continuous readout (no triggers) 


Example of a time sequence with 3 events overlapping in the drift volume of the TPC 


time t1 
 time t2>t1 
 time t3>t2 
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Upgrade plan 


1.  Keep existing field cage, gas mixture, laser and services

2.  Replace wire planes by GEMs

3.  New readout �

electronics,�
data acquisition �
(DAQ) and�
high-level trigger�
(HLT) 


•  Continuous�
readout 


•  online event �
reconstruction �
and calibration 
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Ion backflow suppression (1) 


•  Challenge: Minimize space charge in drift region!

•  Low ion density in drift region requires


•   low primary ionization nion


•   low gain Geff


•   low ion backflow IB


ntot = nion × IB × Geff

ε = IB × Geff --1


Field ET 


Field EB>ET 
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Ion backflow suppression (2) 


•  Challenge: Minimize space charge in drift region!

•  Goal: IB = 1%, ε = 20 at Geff = 2000 


⇒ Resulting distortions�
(O(cm)) can be corrected


•  Current issue under�
study: Optimisation of�
IB and energy resolution 


ntot = nion × IB × Geff

ε = IB × Geff --1




C.  Lippmann 44 

Read-out (1) 


•  SAMPA schematic
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Read-out (2) 


•  PASA/ALTRO and SAMPA parameters
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Read-out (3) 


•  SAMPA schematic
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Read-out (1) 


•  TPC upgrade organisation 
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time t1 
 time t2>t1 
 time t3>t2 
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Summary 


•  The ALICE TPC is a large 3-dimensional tracking device for 
ultra-high multiplicity events


•  It has been operated successfully with pp, Pb−Pb and p-Pb 
collisions at the LHC


•  The TPC offers powerful particle identification and tracking in 
high multiplicity events


•  For Run 2 we are working on a readout upgrade (RCU2) 

•  The LHCC has endorsed the Letter Of Intent for the upgrade 

of the ALICE central barrel

•  A technical design report for the upgrade of the was 

submitted

•  The TPC will be operated in a continuous mode with GEMs as 

readout detectors



