

Status and future of the ALICE TPC, a high-resolution detector for the highest particle multiplicities

Christian Lippmann

Content

- ALICE at the LHC
- Time Projection Chamber principle
- The ALICE TPC
- Experience with the TPC in Run 1
- Run 2 consolidation: The RCU2
- A continuous read-out TPC: Upgrade for Run 3

Heavy-ion collisions at the LHC (1)

- A comprehensive heavy-ion programme at the Large Hadron Collider (LHC)
 - 1 month of beam time devoted to heavy-ion physics each year
 - colliding the largest available nuclei (Pb) at the highest possible energy
- ALICE is the dedicated heavy-ion detector at the LHC

Heavy-ion collisions at the LHC (2)

- A comprehensive heavy-ion programme at the Large Hadron Collider (LHC)
 - 1 month of beam time devoted to heavy-ion physics each year
 - colliding the largest available nuclei (Pb) at the highest possible energy
- ALICE is the dedicated heavy-ion detector at the LHC

	pp LHC design	pp ALICE 2012	Pb–Pb (design)	Pb-Pb (Nov 2011)
Centre of mass energy	14 TeV	8 TeV	5.5 ATeV x 208 = 1144 TeV total	2.76 ATeV x 208 = 574 TeV total
Luminosity	10^{34}Hz/cm^2	$<10^{31} \text{ Hz/cm}^{2}$	10 ²⁷ Hz/cm ²	4×10 ²⁶ Hz/cm ²
Bunches per beam	2808	1374	592	358
Bunch spacing	25 ns	50 ns	100 ns	200 ns
β*	0.5 m	3 m	0.5 m	1 m
Min. bias trigger frequency	10 ⁹ Hz	<10 ⁸ Hz	8000 Hz	3200 Hz
dN _{ch} /dη	unknown	6	~2300 (expected)	1600

A typical Pb-Pb event

Tracks reconstructed in the ALICE TRE

ALICE setup (2)

What is a TPC?

- A charged particle ionises the gas inside a field cage with homogeneous E and B fields.
- 2) The electrons drift towards the readout elements (up to few m).
- 3) The projected track is registered on readout chambers (wire chambers, GEMs, ...).

What is a TPC?

- A charged particle ionises the gas inside a field cage with homogeneous E and B fields
- 2) The electrons drift towards the readout elements (up to few m).
- 3) The projected track is registered on readout chambers (wire chambers, GEMs, ...).
- 4) The third coordinate is reconstructed from the drift time.

$$\vec{u} = \frac{\mu |\vec{E}|}{(1+\omega^2 \tau^2)} \left[\hat{E} + \omega \tau \left(\hat{E} \times \hat{B} \right) + \omega^2 \tau^2 \left(\hat{E} \cdot \hat{B} \right) \hat{B} \right]$$

Langevin equation for the drift velocity vector with E and B fields

Why use a TPC?

- A TPC is the perfect detector for HI collisions ...
 - almost the whole volume is active
 - minimal radiation length (field cage, gas)
 - easy pattern recognition (continuos tracks)
 - PID information from ionization measurements
 - transverse spread of the drifting electron clouds due to diffusion may be minimized by choosing a gas mixture with ωτ>1 together with parallel B and E fields

Why use a TPC?

ALICE

- A TPC is the perfect detector for HI collisions ...
 - almost the whole volume is active
 - minimal radiation length (field cage, gas)
 - easy pattern recognition (continuos tracks)
 - PID information from ionization measurements
 - transverse spread of the drifting electron clouds due to diffusion may be minimized by choosing a gas mixture with ωτ>1 together with parallel B and E fields
- ... but there are also limitations:
 - Gating needed to limit space charge in drift region ⇒ low trigger rates
 - Demanding calibration

Principle of gating in TPCs

ALICE TPC field cage and MWPCs

- Gas volume ~92 m³ ullet
- Material budget 3% X₀ ulletaround $\eta=0$
- 72 (=18×2×2) Readout chambers: MWPCs with cathode pad readout

Detail of one readout chamber

[Nucl.Instrum.Meth. A622 (2010) 316-367]

Gas and Front End Electronics (1)

- Gas mixture: Ne, CO_2 (90-10) with a bit of N_2
 - Low diffusion ("cold gas")
 - ωτ=0.32
 - low Z (low radiation length, low primary ionization)
- Maximum electron drift time (250 cm drift) : ~92 μs
- Field cage, MWPCs and gas system very leak tight: ~1 ppm O₂
- ~100 ppm H₂O added for stability

Gas and Front End Electronics (2)

- Gas mixture: Ne, CO_2 (90-10) with a bit of N_2
 - Low diffusion ("cold gas")
 - ωτ=0.32
 - low Z (low radiation length, low primary ionization)
- Maximum electron drift time (250 cm drift) : ~92 μs
- Field cage, MWPCs and gas system very leak tight: ~1 ppm O₂
- ~100 ppm H₂O added for stability
- 557 568 read out pads and FEE channels
- 1000 time bins \Rightarrow 557 million voxels
- PreAmplifier ShAper (PASA)
 - 12 mV/fC, 190 ns FWHM
- ALTRO digital chip
- 0.7 ADC mean noise (700 e⁻) on detector (Requirement: 1000 e⁻)

A TPC Front End Card holds 8 PASA and 8 ALTRO chips (4 each on each side)

The past and the present

- Field Cage assembly: 2002 2004
- MWPC installation: 2005
- Electronics installation: 2006
- Installation into ALICE L3 magnet: 2007
- Commissioning & calibration: 2007 2009
- Data taking (Run 1): 2009 2013
- Consolidation during LHC Long Shutdown 1 (LS1)

THE TPC IN RUN 1

Luminosities and readout rates (1)

- pp interaction rates in ALICE:
 - ~10 kHz for large cross section observables, almost no event pile up in TPC
 - ≤200 kHz for rare processes, acceptable event pile up
 - ≤400 kHz with high beam background in 2012

- Maximum TPC readout rates:
 - <u>1 kHz for pp</u>

A pp collision at 7 TeV: reconstructed tracks in TPC, ITS and other subdetectors

Luminosities and readout rates (2)

- pp interaction rates in ALICE:
 - ~10 kHz for large cross section observables, almost no event pile up in TPC
 - ≤200 kHz for rare processes, acceptable event pile up
 - ≤400 kHz with high beam background in 2012 pp running
- Pb-Pb interaction rates:
 - ≤10 kHz Pb-Pb collisions
- Maximum TPC readout rates:
 - ~1 kHz for pp
 - 200 Hz for Pb-Pb (central)

A central Pb-Pb collision at 2.76 ATeV: reconstructed tracks in the TPC

Calibration overview (1)

The main TPC calibration procedures are
 1. laser data: drift velocity calibration and alignment

A reconstructed laser event in the TPC

Calibration overview (2)

- The main TPC calibration procedures are
 - 1. laser data: drift velocity calibration and alignment
 - 2. gain calibration using short-lived radioactive gas (83Kr)
 - produces characteristic electron spectrum in the right energy range
 - result: gain determination to within 1%

A reconstructed laser event in the TPC

Pad-wise gain correction map from Kr calibration (C side shown)

Calibration overview (3)

- The main TPC calibration procedures are
 - 1. laser data: drift velocity calibration and alignment
 - 2. gain calibration using short-lived radioactive gas (83Kr)
 - produces characteristic electron spectrum in the right energy range
 - result: gain determination to within 1%
 - 3. cosmics and Physics (collisions) tracks: alignment and gain calibration

A reconstructed laser event in the TPC

Pad-wise gain correction map from Kr calibration (C side shown) A cosmic muon shower, triggered by ACORDE

Example 1: Field cage imperfections

- Drifting electrons are deflected from ideal drift path
- Imperfections in the field cage
- Maximum (very local): $\delta r = 10 \text{ mm}$ (shown here); $\delta r \phi = 0.8 \text{ mm}$

·φ direction

r direction

Example 2: Non-ideal B field

- Drifting electrons are deflected from ideal drift path
- B field shape (homogeneity) and alignment with E field
- Maximum: δr = 4 mm;
 δrφ = 8 mm (shown here)

Transverse momentum resolution

Transverse momentum resolution with TPC and silicon Inner Tracking System (ITS). Status of the calibration which corresponds to the recent physics results.

- Expected: $\sigma(p_T)/p_T = 5\%$ [ALICE PPR II, 2006 J. Phys. G: Nucl. Part. Phys. 32 1295]
- Current official number:
 σ (p_T)/p_T = 20% at
 100GeV/c
- For next round of pyhsics results: σ(p_T)/p_T < 10% at 100 GeV/c
- Ultimately, including also the TRD, the resolution can reach even 3% at 100 GeV/c
- Note: Performance epends not only on TPC

PID with the TPC

- Measured Resolution with maximum number of samples: σ_{dE/dx} ≈ 5%
- Expected: 5.5% [ALICE PPR II, 2006 J. Phys. G: Nucl. Part. Phys. 32 1295]
- Resolution for the highest multiplicity HI events: σ_{dE/dx}≈ 6%
- Expected: 7%

TPC UPGRADE FOR RUN 2

ALICE TPC Run 2 Upgrades

ALICE TPC Run 2 Upgrades

- We make a «simple» Upgrade!
- Splits a «slow» parallell bus:
- > Doubles the speed!
- Upgrades the RCU -> RCU2
- New «state of the art» System on Chip FPGA – Microsemi smartFusion2
- > Faster, bigger, better in radiation!
- First flashbased FPGA with SERDES

Microsemi smartFusion2 – The Perfect Choice?

- The Microsemi smartFusion2 is a brand new device.
- Only enginering sampled released when we started to use it.
- A few surprises were encountered with this new device.
- Especially given our positive experience with Actel/Microsemi devices

SmartFusion2 Family Reliability

- Single Event Upset (SEU) Immune
 - Zero FIT FPGA Configuration Cells
- Junction Temperature: 125°C Military Temperature, 100°C – Industrial Temperature, 85°C – Commercial Temperature
- Single Error Correct Double Error Detect (SECDED) Protection on the Following:
- Ethernet Buffers
- CAN Message Buffers
- Cortex-M3 Embedded Scratch Pad Memory (eSRAMs)
- USB Buffers
- PCIe Buffer
- DDR Memory Controllers with Optional SECDED Modes
- Buffers Implemented with SEU Resistant Latches on the Following:
- DDR Bridges (MSS, MDDR, FDDR)
- Instruction Cache
- MMUART FIFOs
- SPI FIFOs
- NVM Integrity Check at Power-Up and On-Demand
- No External Configuration Memory Required—Instant-On, Retains Configuration When Powered Off

Security

· Design Security Features (Available on all Devices)

- Intellectual Property (IP) Protection Through Unique Security Features and Use Models New to the PLD Industry
- Encrypted User Key and Bitstream Loading, Enabling Programming in Less-Trusted Locations
- Supply-Chain Assurance Device Certificate
- Enhanced Anti-Tamper Features
- Zeroization

Low Power

Low Static and Dynamic Power

Flash*Freeze Mode for Fabric

- Power as low as 13 mW/Gbps per lane for SERDES devices
- Up to 50% lower total power than competing SoC devices

High-Performance FPGA

- Efficient 4-Input LUTs with Carry Chains for High-Performance and Low Power
- Up to 236 Blocks of Dual-Port 18 Kbit SRAM (Large SRAM) with 400 MHz Synchronous Performance (512 x 36, 512 x 32, 1 kbit x 18, 1 kbit x 16, 2 kbit x 9, 2 kbit x 8, 4 kbit x 4, 8 kbit x 2, or 16 kbit x 1)
- Up to 240 Blocks of Three-Port 1 Kbit SRAM with 2 Read Ports and 1 Write Port (micro SRAM)
- High-Performance DSP Signal Processing
- Up to 240 Fast Mathblocks with 18 x 18 Signed Multiplication, 17 x 17 Unsigned Multiplication and 44-Bit Accumulator

Monitoring of Radiation Levels

Arild Velure "Design, implementation and testing of SRAM based neutron detectors", Master Thesis 2011

ALICE On the present RCU we have the **Reconfiguration** Network acting as a radiation monitor This is an interesting feature to keep for the RCU2: Additional SRAM memory and Microsemi proASIC3 250 added to the RCU2 Not enough user-IOs on the smartFusion2 for this feature Low risk - design already done and proven* Cypress SRAM – same as used for the latest LHC **RadMon devices**

Extensively characterized in various beams (n,p,mixed) and compared/benchmarked to FLUKA MC simulations by the CERN EN/STI group

34

Performance simulation

Measurement (2010)

Simulation for RCU2 and DDL2

C. Lippmann

35

TPC UPGRADE FOR RUN 3
The future

 2013: pPb and Pbp initial state effects, shadowing.

• 2013-14: LHC Long Shutdown 1 (LS

 2015-17: FULL ENERGY !! pp @ 7 TeV, PbPb @ √sNN = 5.5 TeV

• 2018: LHC Long Shutdown 2

• ≥ 2019: HIGH LUMINOSITY 50 kHz PbPb collisions

ALICE UPGRADES

- New vertex detectors
- Faster readout, high level triggers...
- TPC with continuous readout ...

CERN-UHCC-2012-012 (UHCC-4-022) ALICE-DOC-2012-001 6 September 2012

Upgrade of the ALICE Experiment

ALICE upgrade Letter of Intent: Endorsed by LHCC

CE

400 kHz (pp)

ALICE Upgrade Strategy for Runs 3 + 4

TPC Upgrade with GEMs

2. Fast data readout

- Upgrade of readout and online systems
- Continuous data readout of the TPC
- Online data compression based on clusters and tracks

The future

ALICE TPC upgrade Technical Design Report CERN-LHCC-2013-020 (ALICE-TDR-016) ALICE Time Projection Chamb echnical Design Report for the Upgra ALICE Technical Design Report

March 3rd, 2014 ALICE

Upgrade of the **T**ime **P**rojection **C**hamber

Technical Design Report

Continuous TPC readout

- Goal: Operate TPC at high luminosity
 - Luminosity for lead collisions: 6×10²⁷ Hz/cm²
 - Up to 50- kHz interaction rate
 - Up to 5 events overlapping (shown below)
 - Inspect all minimum bias events
- \Rightarrow No gating
- ⇒ Continuous readout (no triggers)

Example of a time sequence with 3 events overlapping in the drift volume of the TPC

Upgrade plan

- 1. Keep existing field cage, gas mixture, laser and services
- 2. Replace wire planes by GEMs
- 3. New readout electronics, data acquisition (DAQ) and high-level trigger (HLT)
 - Continuous
 readout
 - online event reconstruction and calibration

Ion backflow suppression (1)

- Challenge: Minimize space charge in drift region!
- Low ion density in drift region requires
 - low primary ionization n_{ion}
 - low gain G_{eff}
 - low ion backflow IB

 $n_{tot} = n_{ion} \times IB \times G_{eff}$

 $\varepsilon = IB \times G_{eff} - 1$

Field E_B>E_T

Field E_T

Ion backflow suppression (2)

- Challenge: Minimize space charge in drift region!
- Goal: IB = 1%, $\varepsilon = 20$ at $G_{eff} = 2000$
- ⇒ Resulting distortions (O(cm)) can be corrected
- Current issue under study: Optimisation of IB and energy resolution

 $n_{tot} = n_{ion} \times IB \times G_{eff}$

Read-out (1)

SAMPA schematic

Read-out (2)

PASA/ALTRO and SAMPA parameters

		RUN 1 (measured)	RUN 3 (requirement)
Signal polarity		Pos	Neg
Detector capacitance (range)	(pF)	12 - 33.5	12 - 33.5
S:N ratio for MIPs (IROC)		14:1	20:1
(OROC $6 \times 10 \text{ mm}^2 \text{ pads}$)		20:1	30:1
(OROC $6 \times 15 \text{ mm}^2 \text{ pads}$)		28:1	30:1
MIP signal	(fC)	$1.5 - 3^{14}$	2.1 - 3.2
System noise (at 18.5 pF, incl. ADC)		670 e	670 e
PASA conversion gain (at 18 pF)	(mV/fC)	12.74	20 (30)
PASA return to baseline	(ns)	< 550	< 500
PASA average baseline value	(mV)	100	100
PASA channel-to-channel baseline variation (σ)	(mV)	18	18
PASA shaping order		4	4
PASA peaking time	(ns)	160	160 (80)
PASA crosstalk		$< 0.1 \%^{15}$	< 0.2 ~%
PASA integrated non-linearity		0.2 %	<1%
ENC (PASA only, at 12 pF)		385 e	385 e
ADC voltage range (differential)	(V)	2	2
ADC linear range (differential)	(fC)	160	100 (67)
ADC number of bits		10	10
ADC sampling rate	(MHz)	10 (2.5, 5, 20)	10 (20)
Power consumption (analog & digital)	(mW/ch)	35	< 35

Read-out (3)

SAMPA schematic

Read-out (1)

TPC upgrade organisation

C. Lippmann

400 kHz (pp)

ALICE Upgrade Strategy for Runs 3 + 4

TPC Upgrade with GEMs

2. Fast data readout

- Upgrade of readout and online systems
- Continuous data readout of the TPC
- Online data compression based on clusters and tracks

Summary

- The ALICE TPC is a large 3-dimensional tracking device for ultra-high multiplicity events
- It has been operated successfully with pp, Pb-Pb and p-Pb collisions at the LHC
- The TPC offers powerful particle identification and tracking in high multiplicity events
- For Run 2 we are working on a readout upgrade (RCU2)
- The LHCC has endorsed the Letter Of Intent for the upgrade of the ALICE central barrel
- A technical design report for the upgrade of the was submitted
- The TPC will be operated in a continuous mode with GEMs as readout detectors