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DC current model

RPC with a gas gap of thickness b and resistive plate of thickness a
and volume resistivity p = 1/c

VHV z=b

l EO l 0 E=Vn/b

z=0
- z=-a
V=0

A current |, on the surface causes a voltage drop of AV = a*p*l, across
the gas gap.

An avalanche charge Q (pC) at rate R (Hz/cm?) gives a current of |,=R*Q
(A/lcm?),

The resistive plate represents a resistance of a*p (Q cm?2) between gas
gap and metal.

The voltage drop is therefore AV = p*a*l, = p*a*R*Q and the electric field
drops by

AE ., = —p*a/b*R*Q
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Single cell model
M. Abbrescia, RPC2003

resistive anode
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Assumption. 7 1

the plate surface is given by the voltage gq/C which & e
is constant across the cell and decays with the i J
single time constant t. ] |

The voltage drop due to a deposited charge q on . T”IF’ L'l'; f, };'Ill,ff“ }WME}LW dl J'],r
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Comparison of the exact model to the single cell model

Ez(center) [V/mm]

30F = single cell model exact calculation, | .
— field in center of Parameters for this
25} gap (270} comparison:
20}
* trigger RPC
151 e 81 - 10 80
10} *g=2mm
s *p =101 Qcm
«q=50pC
0 4 0 1 2
r [mm]
z=3/2g
The electric field drop in the single ® q 2=1/2g
cell model: =1 [ -
E = U/g = q/Cg = qlg,A o
A ~ 1 mm2 7=-U2n

10/14/2005 C. Lippmann, W. Riegler, A. Kalweit




z=b
Exact calculation

z=0

V=0 z=-a

Without particles traversing the RPC the field in the gas gap is V,;,/b

and the field in the resistive plate is zero.

The charge sitting on the surface of the resistive plate decreases the
field in the gas gap and causes an electric field in the resistive plate.

The electric field in the resistive plate will cause charges to flow in the
resistive material which ‘destroy’ the point charge.

This causes a time dependent electric field E(x,y,z,t) in the gas gap
which adds to the externally applied field E,,.

The electric field in the gas gap due to high rate is then simply given by
superimposing this solution for the individual charges.
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Quasistatic approximation of Maxwell’s equations

Knowing the electrostatic solution for a material with
permittivity €, the dynamic solution for a material with
permittivity € and conductivity o is obtained by replacing €
with € + o /s and performing the inverse Laplace

transform.
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Point charges in media with conductivity

Point Charge in infinite medium of permittivity €,

1 q %q
Ameq 7

Point Charge placed in an infinite medium with permittivity ¢, and
conductivity o at t=0: q(t) = g*O(t) 2 q(s)=q/s

H(r) =

) J' q ."':. S Y . .I. q _t = 1
(:,l|: r. s ) = . — / . o(r, -f-'l — e T = =
Am(ey +0o/s) r dmeq 7 s

Charge is destroyed with characteristic time constant ¢./c.

Point charge on the boundary of an infinite halfspace with permittivity
€4 - 1 q S
O(r) = — — ;‘:
27(cg + 1) 7

Point Charge placed on the boundary of an infinite halfspace with
permittivity €, and conductivity o at t=0.

o 1 q/s | 1 g
olr,s) = —— — = — o(r,t) = _ZeF -
- 2mleot+ear4oafs) o 2m(eo + 1) 7
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Charge sheet in an RPC

Charge sheet with charge density g on the boundary between two media
with permittivity €, and g, and a grounded plate at z=-a and z=b. From the
conditions aE, + bE=0 and -¢,E,+ ¢,E=q we find

V=0
g Ie d

azg + bey fer o
=0

W%

F =

Charge Sheet with charge density q placed in the RPC with resistive
plate of permittivity €, and conductivity o: q(t) = q*O(t) > q(s)=q/s
aqfs

E(s) = , — s E(t) =
aso + b(s1 + o/s)

aq ot asy + bey

T —
| pr—

_e
azqg + beq bo

Current I, on the surface i.e. q(t) = 1,*t > q(s)=l,/s?

11 .-"IISQ oL t —_—c 1l
E(s)=—~ . E{f)=-"(1-e7) "—FEp=22
asg + b(sy + o/s) bo bo

With |, = q*R and o = 1/p this becomes (of course) equal to the DC
model from before.
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Point charge in RPC =D
z=0
Point charge in geometry with €, and ¢, 0
q z g [~ -
E;; s ':) = 3 + - / J (;1'7‘] }\', <) — f"_[k. .:') (H\'T
( 2’?7(5-() + -’:'.'1) {.,.'2 + :2]5 2T Jo v [fl( ) ’ ]
kcosh|k(b — z)|sinh(ka ke k=
fulk,z) = ——JccosMb— Zllsioblke) ) ke
g cosh(kb)sinh(ka) + 21 cosh(ka) sinh{kb) 0+ €1
Point charge placed at position r=0, z=0 at time t=0, permittivity &,
conductivity ¢
_ g : o, @[T ~t/ma(k) gy ot/
Bunat) =g s g zﬂfj Jo(kr) | ik, 2) e falk.2) e/ dk
= g0 + €1 (k) = =g cosgh(kb) sinh(ka) + £1 cosh(ka) sinh(/kh)

Y o cosh(ka)sinh(kb)
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Point charge in RPC
To(k)

14

10+

8 o cgcosh(kb)sinh(ka) 4+ =1 cosh(ka) sinh(kb)
4 - B o cosh(ka)sinh(kb)
2 4 6 k8
=0 - z=b
. aso + bey ! 3 2=0
lim (k) = ———— te i
k—0 bo - .
cq e . + ~a
lim 7 (k) = €0 T £1
h— o

Charge decays with a continuous distribution of time constants between t
(charge sheet in RPC) and 1, (point charge at infinite half space).
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h Method for Monte Carlo Simulations

A single gap RPC of area A = 3*3 cm? is simulated.

For each time step (At) a new number of charges (At*R*A) is distributed
randomly on the surface of the resistive plate.

The z-component of the electric field of all charges in the resistive
plates is calculated at always the same position (center of RPC area,
center of gap or close to electrodes) at all time steps and added to the
applied field: E,; = E, + 2. E,(r,z,t).

All charges are kept until their field contribution has fallen below 10-26
V/ecm (up to 60s for Timing RPC).
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Input Parameters for Timing RPC

z=b

lEO TEZ Box-shaped charge spectra from 0 pC to 2 Q,,
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We use box-shaped charge 632— °
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O°F ° ]

S a4t B

For the average total signal fs— ° ’ E
charge as a function of the HV g2 . * E
we use simulated data. 'E o E
OWJ,E'G' 28 3 32 34 36

10/14/2005 C. Lippmann, W. Riegler, A. Kalweit 12



lo fe .

#ummm Monte Carlo for Timing RPCs
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Fluctuations of the electric field at three different z-positions in the gap.
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Monte Carlo for Timing

RPCs: Results (1)




Monte Carlo for Timing RPCs: Results (2)

Here the total avalanche charge is kept constant as a function of rate:
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The average field reduction
in the gap center is exactly
the same as the one
calculated from the DC
model.
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lo fe .

#ammm Monte Carlo for Timing RPCs: Results (3)

Total avalanche charge changes with the electric field variations with rate:
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Monte Carlo for Timing RPCs: Results (4)

The time resolution for a given electric field can be calculated at all time
steps during a simulation using the analytic formula:

c;=1.28 / ( vp(a-n))

Comparison of timing from DC Modell and from Monte Carlo including
the fluctuations:
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= According to this simulation the field fluctuations have no influence
on the time resolution.
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Exact ‘cured’ solution for point charge in RPC with two plates

Exact solution for the time dependent electric field E, in the gas gap for an
RPC with gap g and two resistive plates g for charge q at —g/2 and —q at g/2.

V=0 z=3/29

® g z=1/2g
EZ + Z:0

® g z=-1/2g

V=0 z=-3/2g
r=0

g - Q9 . N0
- ) - - 5 _+_ - S P~ — ik ~ —tir
f_..:{}“ ‘.f:' — T 4 —_ - - _+_ 2 - £ _t.-‘1_|_“:_1— '-;I‘_‘IEJ‘"“] |:~|+l|;1'.‘ .:If tjralk) _ .r:‘)‘:}‘\“-‘.l-:lf' LTS f!r;\
c(fot &) (FP+(3-22)7 ((FP+(3+2)?)°7 “nJo

2k cosh( % ) cosh(kz) e (k Qee—Fka/2 wshikz) £o t+ 44
= folh,z) = - T =

frlk.z) =

£1 + l: a1 -+ o i i l‘nlll:_ )I\'f-_l ' T 0 + ¢ | T - a (T |_ql]|: I-ff :|
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Summary / Conclusions

We calculate rate effects in RPCs by using the exact time dependend
solutions for the electric field of a point charge on the resistive plate
of an RPC.

The charges decay with a continuous distribution of time constants.
The two limiting cases are a continuous charge sheet (DC Model) and
a point charge at an infinite half space.

We present a Monte Carlo simulation for single gap Timing RPCs with
one resistive plate.

The electric field fluctuates due to the particle flux around a mean
value which is equal to the value derived with the DC Model.

The simulation suggests that these field fluctuations have no
influence on the time resolution for a single gap of the investigated
geometry.
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More on the field fluctuations (1)

Field fluctuations for constant charge per time (Q*R):
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counts

More on the field fluctuations (2)

The mean field reduction (mean In the case of large charges and
value from histograms) is the low rate an influence on the
same for both cases, as timing is visible.
expected.
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