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RPC PET

¢ RPCs are attractive for Positron Emission
Tomography (PET) because of their [1]

m Cost effectiveness and
m Time resolution.

¢ 511keV photons interact in the RPC material. .
Essentially the charge deposited by the Anninlation
Compton electrons is detected.
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¢ RPCs are attractive for Positron Emission
Tomography (PET) because of their [1]

m Cost effectiveness and
m Time resolution.

¢ 511keV photons interact in the RPC material. .
Essentially the charge deposited by the Anninlation
Compton electrons is detected.

¢ Two observations can not be properly explained:

1. Time resolution is worse for photons as compared to particle beams [2]:
e o~ 90ps for 511 keV photons (single gap RPC).
e o ~ 50ps for particle beams (single gap RPC).

e Possible Reason: The larger statistical variance of the primary charge that results
from the photon interaction.
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RPC PET

¢ RPCs are attractive for Positron Emission
Tomography (PET) because of their [1]

m Cost effectiveness and
m Time resolution.

¢ 511keV photons interact in the RPC material. .
Essentially the charge deposited by the Anninlation
Compton electrons is detected.

¢ Two observations can not be properly explained:

1. Time resolution is worse for photons as compared to particle beams [2]:
e o~ 90ps for 511 keV photons (single gap RPC).
e o ~ 50ps for particle beams (single gap RPC)

e Possible Reason: The larger statistical variance of the primary charge that results
from the photon interaction.

2. Time resolution with 511 keV photons essentially independent of HV (See e.g. Fig.
8.24. In [3]).
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A Simulation of RPC Performance @

¢ A fast simulation procedure with the following input:

1. Distibution of the number of primary electrons (N) in gas gap due to the photon
interactions.

2. RPC Time Response data: Threshold crossing times (mean and r.m.s.) for given
HV and number of primary electrons).
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1. Distibution of the number of primary electrons (N) in gas gap due to the photon
interactions.

2. RPC Time Response data: Threshold crossing times (mean and r.m.s.) for given
HV and number of primary electrons).

1. The photon interaction (including secondaries) is simulated with FLUKA.
m Lowest particle transport threshold for Electrons and Photons: 1 keV.
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A Simulation of RPC Performance @

¢ A fast simulation procedure with the following input:

1. Distibution of the number of primary electrons (N) in gas gap due to the photon
interactions.

2. RPC Time Response data: Threshold crossing times (mean and r.m.s.) for given
HV and number of primary electrons).

1. The photon interaction (including secondaries) is simulated with FLUKA.
m Lowest particle transport threshold for Electrons and Photons 1 keV.

2. The detector response is simulated with the ,1.5D“ Monte Carlo [4]:
m  Monte Carlo Avalanche Simulation.
Contains Space Charge Effect and Diffusion. T L k. l U -

Full Monte Carlo in longitudinal direction. C.

Transversal diffusion enters by assuming
that space charge is situated in disks of
certain transveral size. £k,
m  Assumptions: ! /;\
e All charge deposited in one spot. -

e Only avalanches started in about 2/3 of the gas gap reach the threshold.

RPC2007 - 15.02.2008 Christian Lippmann 9



1) FLUKA simulation of Photon Interactions

Setup similar to the one described in [2]:

A'“""”‘Qfmm __ Glas;nm The gas gap of 0.3mm is divided into

two volumes of 0.2mm and 0.1mm.
The reason is that only avalanches
started in about 2/3 of the gas gap
reach the threshold.

511 keV Photon
E— Gas mixture: C,F,H,/ i-C,H,,/ SF,
(85/5/10)

Number of interest:
Energy deposit spectrum in the two
~ - Gas volumes event by event.

<>
0.2+0.1mm
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Aluminum 2mm

511 keV Photon

Glass 3mm

Photon Interactions (3)

¢ Particle currents in the gas:
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Comparison of Glas and Alu Interactions
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2) Monte Carlo Simulation of RPC Response

¢ Simulate 5000 events for each setting:

HV = 2.6, 2.8, 3.0, 3.2kV (Electric fields 8.67, 9.33, 10.0, 10.67 kV/mm)

Number of primary electrons =1, 2, 4, 10, 30, 60, 100, 250, 500, 1000, 2000, 10000.
Avalanches always start at anode with given number of electrons.

Save threshold (20fC) crossing time (mean and r.m.s.) for each event.
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2) Monte Carlo Simulation of RPC Response

¢ Simulate 5000 events for each setting:

m HV =26, 2.8, 3.0, 3.2kV (Electric fields 8.67, 9.33, 10.0, 10.67 kV/mm)
m Number of primary electrons =1, 2, 4, 10, 30, 60, 100, 250, 500, 1000, 2000, 10000.
m Avalanches always start at anode with given number of electrons.
m Save threshold (20fC) crossing time (mean and r.m.s.) for each event.
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Time Response for different Primary
Electron Numbers

¢ Fixed Number of Electrons (schematic plot):

A 4 electrons
10 electronslv 1 electron
30 electrons—*$ ¢

time
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Time Response for Different Primary
Electron Numbers

¢ Fixed Number of Electrons (schematic plot):

A 4 electrons
10 electronslv 1 electron
30 electrons—*$ ¢

|
¢ Varying Number of Electrons (schematic plot): tlime
A
varying electron
number $
|
time
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Result: RPC Performance for 511keV Photons

¢ Simulated time resolution is better for photons than for MIPs. This is
contradicting the measurements.

¢ Simulated time resolution improves with increasing HV (as expected).
This is also contradicting the measurements.
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A Closer Look to the Distribution of the
Primary Electron Number

¢ Distribution of Primary Electron Number (N) for Particles:
m Most Probable Value of 1 with long tail.
m N<10is very likely!

¢ Distribution of N for Photons:
m Most Probable Value of 9 to 10 with long tail.
m N<9is rather unlikely!

¢ However at N<10 the variation of threshold crossing time is strongest!
¢ Thus, a better timing resolution must be expected for Photons.
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Multiplication Coefficient in the Presence
of a Strong Space Charge Effect (1)

¢ Different analytic models for RPC response assume a weakening of the
effective Townsend coefficient by the Space Charge Effect: a=a(n).

¢ The different approaches were compared in RPC2005 (A. Mangiarotti [5]).

¢ Inthese models the space charge

effect takes effect only at rather = ——— -
large avalanche sizes. < e
S Taken
| S o7 from [5].
¢ In RPC2003 it was however shown ,
that the space charge effect is 0.5 El“";::t';::'
already present at the threshold M. Abbrescia
level [6]. 03 P. Fonte
G. Aielli
0.1 S
¢ What dependency is calculated by the i _im: ! i .ims B L
detailed 2D simulation (presented at multiplicatiﬂn n(;{)

RPC2003 [4,6])?
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The Effective Townsend Coefficient
within the Avalanche [4]

[ a) t=0.95ns; 19690147 electrons | [ b) t=1.0ns; 30202750 electrons | [c) t=1.1ns; 60820147 electrons |

(a-n) [1/em]
(e=m) [1/cm]

The effective Townsend Coefficient ranges from +3000/cm to —6000/cm!
RPC2007 - 15.02.2008
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Multiplication Coefficient in the Presence
of a Strong Space Charge Effect (2)

¢ We calculate the mean effective Townsend coefficient in the avalanche
using the 2D Monte Carlo:

m Contains longitudinal and transversal Space Charge Effect and Diffusion.

¢ We find that the effective Townsend coefficient decreases rapidly!

1EI T T T T T T
0.3_—'5_ ] ]
[=]
2 08— —
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E o M
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Multiplication Coefficient in the Presence
of a Strong Space Charge Effect (3)

¢ We calculate the mean effective Townsend coefficient in the avalanche
using the 2D Monte Carlo:

m Contains longitudinal and transversal Space Charge Effect and Diffusion.

¢ We find that the effective Townsend coefficient decreases rapidly!

¢ This is backed also by an early measurement [7].

EI. T T T T T [ T T T T [ T T T T [ T T T T [ 71T ] -'.O\
o.ai 4 aer \
o i ] 10.6*- \\\* //
% 0.5_— — gg k\_‘___kr_______,
= T - 04
‘a . mmmmm |
S 04 .
s f . 02-  Measurement (from [7])
02 2D Simulation - o0z 0r g 0s i 2w
N ——
- 1., Abb. 6. Durch Raumladung geschwiichter Ionisationskoeffi-
00 R ; S '2 SR !3 — .'i' — '5 1 ix10 zient a(n). Ermittelt aus einer Statistik in Methylal nach
Number of electrons Scarumponn ® (Versuchsdaten im Text).
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Evolution of the Mean Effective Townsend
i

Coefficient

¢ Inthe final stage of the avalanche strong attachment dominates!
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Summary and Conclusions

¢ Timing RPCs (with ~0.3mm gaps) are attractive as photon detectors for
PET.

¢ We simulated 511keV photon interactions and secondaries production in
a single gap RPC (0.3mm gap) using FLUKA.

¢ We simulated the RPC time response to 511keV photons.

¢ The simulated time resolution of ~37ps (at 10kV/mm) does not confirm
the measured results, which are much worse (~90ps).

¢ The fact that the measured time resolution does not change with HV
indicates that the detector intrinsic resolution is dominated by other
effects.

¢ The decrease of the effective Townsend coefficient (due to the space
charge effect) with growing avalanche size starts already at the threshold
level, different from what is widely assumed in analytic models.
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FLUKA simulation

cm
E R A R R
- Glas
emb +— PET gas
Aluminum

Photon beam
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511 keV Photon
Aluminum 2mm

]

Glass 3mm

Energy Deposit (2)

¢ 0.2mm layer: Most probable=145eV
¢ 0.1mm layer: Most probable=75eV
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Slide Added after the workshop @
(on March 14, 2008)

¢ After discussions at the workshop it turns out that the following
statements should be added:

m The plot on slide 23 has log scale on the X axis.
m The plots on slides 25/26 have linear scale.
m This makes them hard to compare ....

¢ Inthe conclusions (slide 28) we should thus conclude:

m The development of the effective Townsend coefficient (due to the space charge
effect) with growing avalanche size differs from what is widely assumed in
analytic models, becoming strongly negative in the final stage of an avalanche.
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