UNICOR correlation analysis package

Dariusz Miśkowiec, GSI Darmstadt

- Ioop over events
 Ioop over events
- Ill two-track histograms ...multidimensional
- store histograms on root file ...in an eternally readable format

Why same analysis for different experiments?

- correlation analysis is to 90% experiment-independent
- methods developed within one experiment can be applied to the others
- analysis can be tested against known experiment
- ø better comparison between experiments

analysis scheme

implementation of experiment-independence (inspired by the Alice ESD/AOD dilemma)

Why multidimensional histograms?

Example: HBT correlation function in 8-dim histogram

tru/mix/rot	3 bins
centrality	5 bins
pair y	4 bins
pair phi wrt. event plane	8 bins
pair pt	7 bins
q-polar angle	8 bins
q-azimuthal angle	16 bins
q-magnitude	64 bins

P. Danielewicz's dream: two-particle tensor. Complete info, like pair ntuple -- but binned. 27,525,120 bins, 210 MB. Too big?

for comparison: traditional way of histogramming

array of histograms, same size, less convenient handling

DHN class

(441 lines of code, here essentials of header file)

class DHN : public TH1D {

```
public:
DHN() : TH1D(), fNdim(0)
                                          {printf("DHN object created\n");}
 DHN(Char t *nam, Int t ndim, TAxis **ax); // constructor from scratch
 DHN(Char t *filename, Char t *name); // constructor from file
virtual ~DHN()
                                           {printf("DHN object %s deleted\n",GetName());}
 Int t GetNdim() const
                                          {return fNdim;}
 TAxis *GetAxis(Int t i) const
                                          {return (TAxis*) &fAxis[i];}
 Int t Fill(Double t *xx, Double t y=1); // fill histo
 Int t Fill (Double t x0, Double t x1, ...); // fill histo
 Int t Write() const;
                                         // save histo and axis on file
 // project along (integrate over) one axis
 DHN *ProjectAlong(char *nam, Int t dim, Int t first=-1, Int t last=-1);
 // project on 1-dim histogram
 TH1D *ProjectOn(char *nam, Int t dim, Int t *first=0, Int t *last=0) const;
 // project on 1-dim histogram
 TH1D *ProjectOn(char *nam, Int t dim, Double t *first, Double t *last);
 // project on 2-dim histogram
 TH2D *ProjectOn(char *nam, Int t dim0, Int t dim1, Int t *first=0, Int t *last=0) const;
protected:
```

Int t	fNdim;	11	number	of	dimensions
TAxis	fAxis[fMaxNdim];	11	axes		

some results

3	CERES/SPS	PbAu	158 AGeV	exp	24k
3	ALICE/LHC	рр	sqrt(s)=10 TeV	'sim	0.4-2M
3	CBM/SIS300	AuAu	25 AGeV	sim	44k

disclaimer:

- no (serious) particle identification
- no two-track cut

CERES global variables

ALICE global variables

ALICE singles

ALICE HBT correlations (projections)

-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8

1.5

2

2.5

3

q-theta

0.5

pair y

ALICE HBT correlations

10 TeV pp pythia. Track cuts: neg, ncsl 120, dca, pid.

ALICE HBT correlations 10 TeV pp pythia. Track cuts: neg, ncsl 120, pid.

D. Miskowiec, 24.09.2008

CERES HBT correlations (denominator by rotating)

newest addition: ALICE high pt correlations

(thanks Jason Ulery)

ALICE high pt correlations, projections on dphi 10 TeV pythia pp. 0.5 M events

summary of UNICOR features

- experiment independent
- uses multidimensional histograms
- simple (2000 lines of code)

- can quickly yield simple physics results (two-pion HBT, pt-fluctuations, high pt correlations)
- not intended to compete with sophisticated analyses (but can be compared to them in simple cases)

backup

United Generators project at GSI, 2005-2008

CBM global variables

CERES singles

3

CBM singles

CERES correlations (projections)

UNICOR correlation analysis package, PWG4 28-Oct-2008

2.8 2.9

2.5

3

q-theta

pair y

CBM correlations (projections)

CBM correlations (denominator by event mixing)

cbm-interac150-199.root/cnn

pt fluctuation intro, CERES data

Pb+Au at 158 GeV per nucleon

Georgios Tsiledakis

CBM pt-fluctuations

why experiment-independence

For example, typical HBT analysis involves:

