The ALICE Transition Radiation Detector

Dariusz Miśkowiec GSI and EMMI Darmstadt

DPG Frühjahrstagung, Bonn, 16.03.2010, HK 23.1

Outline

- intro and motivation
- construction and installation
- commissioning with cosmics
- ø first pp collisions
- summary and outlook

LHC experiments

physics questions at LHC

ATLAS, CMS, LHCb:

electroweak symmetry breaking origin of mass of quarks and gauge bosons supersymmetric particles CP violation

ALICE:

chiral symmetry breaking origin of mass of hadrons deconfinement hadronization

ALL:

understanding high energy nuclear interactions (input needed for cosmic ray studies)

ALICE programme

mission:

create quark-gluon matter study its properties quantitatively be prepared for unexpected = be versatile

methods:

spectra and correlations of various particles

e.g. heavy quarks (open beauty, upsilon-states) jets in heavy ion environment weakly interacting probes (Z⁰, W[±])

special at LHC:

higher energy density larger system more heavy quarks and jets weak probes W/Z available access to lower x

	SPS	RHIC	LHC
√s _{NN} (GeV)	17	200	5500
dN _{ch} /dy	~450	~850	1500-4000
ε(GeV/fm³)	3	5	15-60
τ _{QGP} (fm/c)	≤2	2-4	≥ 10

ALICE at LHC

ALICE TRD Collaboration

ALICE-TRD-Kollaboration — B. ALBRECHT¹⁰, M. AL HELWI⁸, S. ALTINPINAR⁴, C. ANDREI², A. ANDRONIC⁴, V. ANGELOV⁷, H. APPELSHÄUSER⁶, A. AREND⁶, I. ARSENE⁴, G. AUGUSTINSKI⁴, S. BABLOK¹³ R. BAILHACHE⁶, B. BATHEN¹⁰, C. BAUMANN⁶, I. Bergeanu², A. Bergugi², A. Bernhard⁶, C. Blume⁶, J. BOOK⁶, P. BRAUN-MUNZINGER⁴, H. BÜSCHING⁶ O. BUSCH⁸, V. CĂTĂNESCU², V. CHEPURNOV³, S. Chernenko³, E.S. Conner¹³, P. Constantin⁸, J. DE CUVELAND⁷, T. DIETEL¹⁰, P. DILLENSEGER⁶, B. Dönigus⁴, L. Efimov³, D. Emschermann¹⁰, S. Esumi¹² M. Fasel⁴, O. Fateev³, M. Freudenberger⁴, C. GARABATOS⁴, H. GATZ¹⁰, P. GLÄSSEL⁸, R. GLASOW¹¹⁰, H. Gottschlag¹⁰, R. Grajcarek⁸, H. Grimm¹⁰, J.F. GROSSE-OETRINGHAUS¹⁰, T. GUNJI¹¹, H. HAMAGAKI¹¹, M. HARTIG⁶, G. HARTUNG⁹, A. HERGHELEGIU², J. Henner⁴, M. Heide¹⁰, N. Heine¹⁰, N. Herrmann⁸, D. HUTTER⁷, M. IVANOV⁴, M. KAISER⁶, M. KALISKY¹⁰, R. KEIDEL¹³, A. KÖHLER⁴, C. KLEIN-BÖSING¹⁰, S. Kirsch⁷, J. Klein⁸, M. Kliemant⁶, K. Koch⁸, E. Kofler¹³, A. Köhler⁴, M. Köhler⁴, F. Kramer⁶, T. Krawutschke⁹, D. Krumbhorn⁸, M.J. Kweon⁸, J. Lehnert⁶, H. Leon-Vargas⁶, V. Lindenstruth⁷, P. LÜTTIG⁶, A. MARIN⁴, P. MALZACHER⁴, S. MASCIOCCHI⁴, J. MERCADO⁸, D. MIŚKOWIEC⁴, H. OESCHLER⁵, K. OYAMA⁸, Y. PACHMAYER⁸, Y. PANEBRATSEV³, W.J.

PARK⁴, M. PETRIS², M. PEDOVICI², N. PITZ⁶, A. Pop², S. Radomski⁸, M. Ramm Ler¹⁰, T. Rascanu⁶, P. Reichelt⁶, R. Renfordt⁶, F. Rettig⁷, K. Reygers⁸, H. RICAUD⁵, R. ROMITA⁴, S. SANO¹¹, R. SANTO¹⁰ C. Schiaua², R. Schicker⁸, C.J. Schmidt⁴, S. Schmiederer⁸, B. Schockert¹, S. Schuchmann⁶ S. Schwab⁴, K. Schwarz⁴, K. Schweda⁸, E. Sicking¹⁰. V. Simion², H.K. Soltveit⁸, J. Stachel⁸, A. Steffen⁴, A. TAKAHARA¹¹, M. TSILIS¹, J. ULERY⁶, S. VALLERO⁸, M. VASSILIOU¹, W. VERHOEVEN¹⁰, M. WALTER¹⁰, Y. WANG⁸, K. WATANABE¹², D. WEGERLE⁶, J.P. WESSELS¹⁰, U. WESTERHOFF¹⁰, M. WILDE¹⁰, A. WILK¹⁰, B. WINDELBAND⁸, S. WULFF¹⁰, H. YANG⁸, V. YUREVICH³, and Y. ZANEVSKY³ — ¹University of Athens, Greece — ²NIPNE Bucharest, Romania — ³JINR Dubna, Russia ⁴Gesellschaft f
ür Schwerionenforschung, Darmstadt, Germany — ⁵Technische Universität, Darmstadt, Germany — ⁶Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Germany — ⁷Institut für Informatik / Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Germany ⁸Physikalisches Institut, Universität Heidelberg, Germany — ⁹Fachhochschule Köln, Germany — ¹⁰Institut für Kernphysik, Universität Münster, Germany — ¹¹University of Tokyo, Japan — ¹²University of Tsukuba, Japan — ¹³Fachhochschule Worms, Germany

134 people, 13 institutions

radiator

ALICE TRD, principle of operation

ALICE TRD, physics analyses

electron identification at p_t>1 GeV/c -

J/ψ production, via e+e- decay charm/bottom, via e-hadron correlations charm/bottom, via single electron spectra medium effects, with low-mass dileptons Z0 production, via e+e- decay pi0 production, via γ conversions

improved pt resolution at high pt

jet reconstruction

Iriggering

jet trigger high level trigger

- **/**C \rightarrow Markus Heide, HK 58.5
 - → WooJin Park, HK 23.5
 - → Sedat Altinpinar, HK 62.7
 - → Markus Köhler, HK 62.8
 - → Kathrin Koch, HK 62.4

→ Hermes Leon-Vargas, HK 62.2

→ Jochen Klein, HK 62.3
→ Theodor Rascanu, HK 36.2

Construction and installation

building blocks

first TRD supermodule

supermodule assembly, Heidelberg

first TRD supermodule in ALICE, October 2006

P<mark>G me</mark>eting Bonn, 16-Mar-201<mark>0, D</mark>. Miskowiec, ALICE TRD_Group Report

TRD supermodule

Repo

TOF SI

ALICE

RN ALICE

TRD production scheme for the remaining 17 sm's

TRD implementation

→ pretrigger	Joerg Lehnert	HK 48.4	
→ global tracking unit	Dirk Hutter	HK 30.5	
→ tracking and PID	Markus Fasel	HK 58.4	
detector control	Oliver Busch	HK 36.3	
→ gas system	Nora Pitz	HK 36.51	

present status of the TRD

- all chambers ready
- Supermodules installed and surveyed

misalignment from survey x 20

- operated in Aug-Oct 2008, continuous operation since July 2009 (including the pp at 900 GeV run in Dec 2009)
- GTU trigger (track in TRD) active since 2008
- mean noise 1.18 ADC counts close to theoretical value. However, rare noise events; ongoing effort on reduction

working at CERN - requirements

Commissioning and calibration (krypton, cosmic rays)

cosmic ray events

- Aug-Sep 2008 4 supermodules 0.05 Hz rate
- Aug-Nov 2009 7 supermodules 0.5 Hz rate

55 k tracks 400 k tracks

TRD calibration

TRD calibration with cosmic data

drift velocity trending

chamber gain factor in run 96287

→ TRD calibration, Raphaelle Bailhache, HK 30.3

Local gain calibration using radioactive gas

→ Mustapha Al Helwi, HK 36.8

Local gain calibration using radioactive gas

→ Mustapha Al Helwi, HK 36.8

TRD response to high p_t muons

muons identified via dE/dx in the TPC

Thorsten Heusser, MinJung Kweon, Xianguo Lu, Heidelberg

TRD alignment w.r.t. TPC

→ TRD alignment, Sebastian Huber, HK 58.2

cosmic muons

pp collisions

first collisions in ALICE, Nov 23, 2009

Nov 23, 2009 first collisions seen with ITS

Nov 28, 2009 first LHC physics paper submitted by ALICE, charged particle multiplicity

→ Yvonne Pachmayer, HK 35.1
 → TRD performance, Ionut Arsene, HK 23.4
 → GTU performance, Stefan Kirsch, HK 30.4

first stable collisions in ALICE, Dec 6, 2009

- Dec 6, 2009 beams declared "stable"
- If first collisions seen with TPC and TRD

DPG meeting Bonn, 16-Mar-2010, D. Miskowiec, ALICE TRD Group Report

TRD chamber calibration with pp collision data

- 240 TRD chambers calibrated for gain, drift velocity, time offset
- gain calibration most difficult (requires reconstruction)
- HV adjusted to equalize the parameters in future

→ TRD calibration, Raphaelle Bailhache, HK 30.3

TRD response to pions and electrons

reference pion and electron tracks taken from decays

$$K_S^0 \to \pi^+ \pi^-$$

 $\gamma \rightarrow e^+ e^-$

recognized by vertex and invariant mass

TRD response to pions and electrons

TRD response to identified pions and electrons from pp at 900 GeV (points)

compared to

tests performed with pion and electron beams performed at the PS in 2002 (line)

summary

- TRD 7/18 installed and operational
- the rest to be installed in 2011/2012
- the detector works nicely but requires continuous effort of many people

...and outlook

operating/control/calibration on their way to become automatic

backup

Overview of TRD

electron identification and trigger
 o quarkonia → e+e⁻
 o charm and beauty

- § 540 chambers in 18 supermodules
- total area: 736 m² (3 tennis courts)
- ø gas volume: 27.2 m³ Xe-CO₂
- esolution: (rφ) 400 μm
- Inumber of read out channels: 1.2x10⁶ (30 million pixels)
- Segments in 6.5 μs for L1 trigger
- Solution → water cooling
 Solution → water

Schamber production finished, 8 supermodules in 2009, completion 2010

Brief history of TRD supermodules, as of Nov 2009

	2007	2008	2009
survey		s disass.	repair GSI o ass. Münster O
	assembled in Münster S	insert 5 disass. Sec 0 9 CERN	repair GSI insert
	assembled ເຊັ່ນ in Münster ອີ	repair cosmics CERN/GSI Münster	rt 7
	assembled in Münster	repair insert > 0 CERN Sec 9 0 > 2	y o S A
	ass in N	embled insert 5 % lünster Sec 17 % 0	۵ ۲ ۲
		assembled in Münster	insert ທ Sec 1