ALICE soft physics summary Dariusz Miskowiec, GSI / EMMI / CERN

charged particles identified hadrons femtoscopy elliptic flow fluctuations

Pb+Pb @ sqrt(s) = 2.76 ATeV

2010-11-08 11:30:46 Fill : 1482 Run : 137124 Event : 0x00000000D3BBE693

ALICE commissioning, calibration, and data taking

slide by Hannes Wessels and Boris Hippolyte

ALICE data sets

year	system	energy (TeV)	trigger	# events / 106 or int. lumi	
2009	рр	0.9	min bias	0.3	
2009	рр	2.36	min bias	0.04 (no stable beams)	
2010	рр	0.9	min bias	8	
2010	рр	7.0	min bias	800	
			high multiplicity	50	
			muons	50	
2010	PbPb	2.76	min bias	30	
2011	рр	2.76	min bias	70	
			rare triggers	20 nb ⁻¹	
2011	рр	7.0	min bias	~700 (ongoing)	
			rare triggers	2 ps ⁻¹ (ongoing)	
2011	PbPb	2.76	central	5-20 (planned)	
			centr. 30-50%	25 (planned)	
			rare triggers	3-6 µb⁻¹ (planned)	

ALICE physics publications

	arxiv date	system	energy (TeV)	observable	published in
1	28/11/09	рр	0.9	charged particle dN/deta	EPJC 65(2010)111
2	18/04/10	рр	0.9, 2.36	charged particle dN/deta, mult. distr.	EPJC 68(2010)89
3	20/04/10	рр	7	same	EPJC 68(2010)345
4	28/06/10	рр	0.9, 7	antiproton/proton ratio	PRL 105(2010)072002
5	03/07/10	рр	0.9	pion HBT	PRD 82(2010)052001
6	05/07/10	рр	0.9	charged particle pt spectra	PLB 693(2010)53
7	17/11/10	PbPb	2.76	charged particle dN/deta	PRL 105(2010)252301
8	17/11/10	PbPb	2.76	charged particle v2	PRL105(2010)252302
9	05/12/10	PbPb	2.76	charged particle RAA	PLB 696(2011)30
10	08/12/10	PbPb	2.76	centrality dependence of Nch	PRL106(2011)032301
11	15/12/10	рр	0.9	K0, phi, lambda, cascade	EPJC 71(2011)1594
12	17/12/10	PbPb	2.76	pion HBT	PLB 696(2011)328
13	19/01/11	рр	0.9, 7	pion HBT	arXiv:1101.3665v1
14	21/01/11	рр	0.9	pion, kaon, proton	EPJC 71(2011)1655
15	02/05/11	рр	7	J/Psi	arXiv:1105.0380v1
16	19/05/11	PbPb	2.76	charged particle v3, v4,v5	arXiv:1105.3865v1
17	12/09/11	PbPb	2.76	angular correlations	arXiv:1109.2501v1

charged particle production

charged-particle production: collision energy dependence

charged-particle production: comparison with models

PRL 105 (2010) 252301

higher yield than expected (by most)

centrality determination

- Solution VZERO covers -3.7< η <-1.7 and 2.8< η <5.1, signal ~ multiplicity
- fit function: a Ncoll + b Npart sources, each source producing particles following a negative binomial distribution
- Sentrality resolution better than 1%

charged-particle production: centrality dependence

~2 times more particles than at RHIC, same centrality dependence

charged-particle production: centrality dependence

PRL 106 (2010) 032301

general trend reasonably reproduced by majority of the models individual differences larger than the difference between the two groups

identified particles

hadron identification

identified hadron spectra

mean p_T of identified hadrons

<p_>> ~20% higher than at RHIC

identified hadron spectra: blast wave fit

identified hadron spectra: comparison with hydro

M. Floris, QM2011

harder spectra and less protons than predicted by hydro; suggests a lower chemical freeze-out temperature T_{ch}

same in thermal model; but lower T_{ch} there excluded by Ξ and Ω

"antimatter" production

HBT

see talks by	
→ Adam Kisiel	(Tue 10:50)
→ Lukasz Graczykowski	(Tue 16:05)
→ Tom Humanic	(Tue 16:25)

first question to LHC: HBT radius

5 Three Questions to the LHC

The QGP predicted by statistical QCD is the ultimate state of matter to be studied in high energy nuclear collisions. This is a speculative endeavor, since it is not clear to what extent such collisions can produce something to be called matter. We therefore close our survey with three questions to the next generation of experiments which might help us in finding an answer to this fundamental enigma.

If an increase of collision energy indeed leads to the production of a hotter bubble of deconfined primordial matter, then this must expand more in order to reach the hadronization temperature, and hence the source size for hadron emission must become larger. In particular, it is expected to increase as a power of the hadron multiplicity, since this in turn grows with the initial energy density [24]. So far, from AGS to RHIC, the source size for hadron emission, as determined by Hanbury-Brown–Twiss (HBT) methods [25] used in astrophysics, has not shown a significant increase [26]. This "HBT-puzzle" has been accounted for in terms of the relative role of meson and baryon production [27], but at LHC energies, a clear increase of the source volume is predicted. Such an increase seems necessary in a model-independent way, if the concept of hot primordial fireball production in nuclear collisions is to make any sense.

Helmut Satz, "The Quark-Gluon Plasma", Student Day Lecture, Goa, Dec 2010

growth with energy reasonably well described by models tuned to RHIC data, containing early flow, cross-over, realistic EOS, and resonances

k_⊤ dependence – sign of transverse flow

in pp, a similar k_T dependence develops with increasing multiplicity

neutral kaon HBT

see talk by Tom Humanic (Tue 16:25)

flow

see talks by
→ Masato Sano (Sat 11:00)
→ Cristian Ivan (Sat 09:00)

elliptic flow

elliptic flow

elliptic flow of identified hadrons

discrepancy for antiprotons – can be fixed by adding rescattering (UrQMD) to hydro (Heinz, Shen, Song, arXiv:1108.5323v1)

higher harmonics of flow

 v_3 is not related to reaction plane v_3 only weakly depends on centrality v_2 and v_3 magnitudes reasonably well described by hydro the azimuthal correlations at high p_T fully described by the flow coefficients

the peaks come from hydrodynamic flow

fluctuations

see talks by → Satyajit Jena (Fri 11:40) → Ilya Selyuzhenkov (Fri 11:00)

charge fluctuations

see talk by Satyajit Jena (Fri 11:40)

pt fluctuations

charge dependent azimuthal correlations

similar shape and magnitude as at RHIC

see talk by Ilya Selyuzhenkov (Fri 11:00)

summary

new insight into the reaction dynamics from LHC

- Mach cone and ridge challenged
- ✤ HBT R(k_T) dependence developing with multiplicity in pp
- proton puzzle: lower yield, lower v₂ than expected

~2 x higher than at RHIC

- particle production
- homogeneity volume

~10-30% higher than at RHIC

- transverse flow
- mean transverse momentum
- integrated elliptic flow
- mass-splitting of v₂

like at RHIC

- centrality dependence of particle production
- centrality dependence of v₂
- multiplicity dependence of HBT radii
- multiplicity dependence of particle ratios
- transverse momentum dependence of v₂
- charge and p_T fluctuations
- charge dependent azimuthal correlations

working at CERN - requirements

