ALICE: Past, Present, and Future

Dariusz Miskowiec, GSI / EMMI Darmstadt for the ALICE Collaboration

> introduction bulk particle production spatial extension **collective** flow probing QCD matter collectivity in small systems? summary future plans

2010-11-08 11:30:46 Fill : 1482 Run : 137124 Event : 0x00000000D3BBE693

introduction

From the Big Bang to hadrons and nuclei

QGP first mentioned...

Superdense Matter: Neutrons or Asymptotically Free Quarks?

J. C. Collins and M. J. Perry

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 9EW, England

(Received 6 January 1975)

We note the following: The quark model implies that superdense matter (found in neutron-star cores, exploding black holes, and the early big-bang universe) consists of quarks rather than of hadrons. Bjorken scaling implies that the quarks interact weakly. An asymptotically free gauge theory allows realistic calculations taking full account of strong interactions.

> A neutron has a radius¹⁰ of about 0.5-1 fm, and so has a density of about 8×10^{14} g cm⁻³, whereas the central density of a neutron star^{1,2} can be as much as $10^{16}-10^{17}$ g cm⁻³. In this case, one must expect the hadrons to overlap, and their individuality to be confused. Therefore, we suggest that matter at such high densities is a quark soup. In such a system, long-range interactions are screened because of many-body effects,¹¹ and hence no problems will arise for any peculiar infrared behavior of quark binding forces. At short

QCD Phase Diagram, modern schematic version

rich structure:

deconfinement and restoration of chiral symmetry;

color superconductivity at low T and high chemical potential;

existence of tri-critical point.

exploration of the phases of QCD: a key theme of modern nuclear physics

heavy-ion collisions

- before collision
- parton collisions
- thermalization
- hadronization

 $\begin{array}{c} \text{normal nuclear matter} \\ \rho_0 = 0.17 \ /\text{fm}^3 \\ \epsilon_0 = 0.16 \ \text{GeV/fm}^3 \end{array} \\ \end{array} \\ \begin{array}{c} \text{initial-state effects} \\ \text{quark-gluon plasma} \\ \epsilon > 0.5 \ \text{GeV/fm}^3 \end{array} \end{array}$

- chemical freezeout (number of particles frozen)
- kinetic freezeout (particle momenta frozen)

ALICE: Past, Present, and Future / Dariusz Miskowiec, GSI Darmstadt / DPG meeting Frankfurt, 18-Mar-2014

LHC experiments

an idea for ALICE, 1990

ALICE apparatus in 2014

ALICE: Past, Present, and Future / Dariusz Miskowiec, GSI Darmstadt / DPG meeting Frankfurt, 18-Mar-2014

first collisions in ALICE, Nov 23, 2009

Nov 23, 2009 first collisions seen with ITS

 Nov 28, 2009 first LHC physics paper submitted by ALICE, charged particle multiplicity

ALICE publishing pattern

- Irst LHC article from pp (5 days after first collisions)
- Irst 2 LHC articles from Pb-Pb (9 days after first collisions)
- Irst 2 LHC articles from p-Pb (1 month after first collisions)
- 73 physics articles from 2009-2013 https://aliceinfo.cern.ch/ArtSubmission/publications

ALICE measurements 2009-2013

system	sqrt(s _{NN})	data taking time
рр	0.9, 2.36, 2.76, 7, 8 TeV	21 months*

Pb-Pb	2.76 TeV	2 x 1 month

p-Pb 5.02 TeV

1 month

* at a reduced luminosity

ALICE performance 2009-2013

arxiv:1402.4476

ALICE talks related to data taking

HK 21.1 Tue 14:00 F. Rettig, TRD trigger and online tracking
HK 46.76 Thu 16:00 D. Herzig, PHOS data QA (poster)

tour through major ALICE results 2009-2013

- selected highlights only
- STAR and PHENIX data)
- detailed discussion in parallel talks

bulk particle production

ALICE: Past, Present, and Future / Dariusz Miskowiec, GSI Darmstadt / DPG meeting Frankfurt, 18-Mar-2014

charged-particle production: pseudorapidity distributions

ALICE: Past, Present, and Future / Dariusz Miskowiec, GSI Darmstadt / DPG meeting Frankfurt, 18-Mar-2014

charged-particle production: collision energy dependence

Wounded Nucleon Model aka Glauber model aka nuclear overlap calculation \rightarrow Npart(b), Ncoll(b), d σ /db

For an online calculation: google for "nuclear overlap"

charged-particle production: centrality dependence

hadron identification

ALICE: Past, Present, and Future / Dariusz Miskowiec, GSI Darmstadt / DPG meeting Frankfurt, 18-Mar-2014

ALICE: Past, Present, and Future / Dariusz Miskowiec, GSI Darmstadt / DPG meeting Franktyrt,+18-Mar/2014

Blast-wave parametrization of transverse-momentum spectra

identified-hadron spectra – blast-wave fit

identified hadron spectra – comparison to models

fairly good description by hydrodynamics-based models

VISH2+1 (pure hydro) overpredicts protons (fixed by adding a hadronic phase – VISHNU – with baryon annihilation, arXiv:1311.0157)

Krakow, HKM, and EPOS (hydro + hadronic cascade) agree with the measurement

spatial extension

ALICE: Past, Present, and Future / Dariusz Miskowiec, GSI Darmstadt / DPG meeting Frankfurt, 18-Mar-2014

Bose-Einstein correlation analysis technique (HBT)

peak width ~ 1 / source size

definition of out-side-long axes

Lisa MA, et al. 2005. Annu. Rev. Nucl. Part. Sci. 55:357–402

standard way to parametrize source size in 3-dim

pion HBT

homogeneity volume 2 x larger than at RHIC

growth with energy reasonably well described by hydro-based models tuned to RHIC data, containing early flow, cross-over, realistic EOS, and hadronic rescattering phase

pion HBT

ALICE: Past, Present, and Future / Dariusz Miskowiec, GSI Darmstadt / DPG meeting Frankfurt, 18-Mar-2014

pion HBT

ALICE: Past, Present, and Future / Dariusz Miskowiec, GSI Darmstadt / DPG meeting Frankfurt, 18-Mar-2014

pion HBT in pp collisions

in pp, a similar k_T dependence develops with increasing multiplicity \rightarrow collective flow in high-multiplicity pp?

ALICE talks related to two-particle correlations

HK 63.3 Fri 14:30 N. Martin, Lambda-n and H-dibaryon

HK 63.4 Fri 14:45

H. Beck, p-lambda correlations in Pb-Pb

flow

elliptic flow in Au and Pb collisions

elliptic flow

ALICE: Past, Present, and Future / Dariusz Miskowiec, GSI Darmstadt / DPG meeting Frankfurt, 18-Mar-2014
higher harmonics of flow

PRL 107 (2011) 032301

- v_3 is not related to reaction plane
- v₃ only weakly depends on centrality
- v_2 and v_3 magnitudes reasonably well described by hydro
- the azimuthal correlations at high p_T (sometimes interpreted as Mach cone) are fully described by the flow coefficients

the peaks come from hydrodynamic flow

ALICE talks related to flow and other multiparticle correlations

- HK 19.1
- HK 19.5 Tue 14:30

Tue 14:00

Tue 17:45

Tue 18:00

- HK 26.5
- HK 26.6

- I. Selyuzhenkov, Flow
 - J. Onderwaater, Chiral magnetic effect
 - M. Arslandok, Multiplicity fluctuations
 - J. Thaeder, Net-baryon fluctuations

probing QCD matter

ALICE: Past, Present, and Future / Dariusz Miskowiec, GSI Darmstadt / DPG meeting Frankfurt, 18-Mar-2014

jet quenching in QCD medium

nuclear modification factor for charged particles

nuclear modification factor for gauge bosons

mass dependent energy loss

ALICE: Past, Present, and Future / Dariusz Miskowiec, GSI Darmstadt / DPG meeting Frankfurt, 18-Mar-2014

J/ψ suppression – or enhancement?

both effects expected to be stronger at LHC than at RHIC

ALICE: Past, Present, and Future / Dariusz Miskowiec, GSI Darmstadt / DPG meeting Frankfurt, 18-Mar-2014

nuclear modification factor for J/ψ prediction from models which include (re)generation

statistical hadronization transport model (Liu et al.) transport model (Zhao and Rapp) PLB 490 (2000) 196 PLB 678 (2009) 72 NuPhA 859 (2011) 114

hot photons

the phase transition and are subject to blueshift by radial flow...

ALICE talks related to probes of QCD medium

	HK 4.1	Mon 14:00	Xianguo Lu, Jets
Ø	HK 4.4	Mon 15:00	R. Haake, Jets in p-Pb
Ø	HK 4.6	Mon 15:30	A. Zimmermann, Strangeness in jets in Pb-Pb
ø	HK 4.7	Mon 15:45	J. Klein, Jet-hadron correlations
Ø	HK 5.1	Mon 14:00	J. Wilkinson, D0 via Bayesian PID
Ø	HK 12.2	Mon 17:00	P. Luettig, Charged-particle p _T spectra
ø	HK 12.4	Mon 17:30	J. Wagner, Electrons from c and b in p-Pb
ø	HK 12.6	Mon 18:00	J. Book, Jets in Pb-Pb
ø	HK 12.7	Mon 18:15	S. Schuchmann, Lambda and K0 RAA
Ø	HK 12.8	Mon18:30	B. Sahlmüller, Neutral pions with EMCal
Ø	HK12.9	Mon18:45	M. Hecker, Neutral pions with PHOS

ALICE talks related to probes of QCD medium

3	HK 29.1	Wed 11:00	R. Bailhache, c, b in nuclear collisions
③	HK 33.2	Wed 17:00	M. Koehler, Low-mass dielectrons in pp
Solution	HK 33.3	Wed 17:15	P. Reichelt, Low-mass dielectrons in Pb-Pb
Ø	HK 37.5	Thu 15:00	B. Hess, Jet fragmentation in pp
Solution	HK 41.1	Thu 14:00	A. Andronic, p-Pb collisions
Ø	HK 41.2	Thu 14:30	J. Gronefeld, p _T spectra in p-Pb
Ø	HK 41.4	Thu 15:00	A. Passfeld, pi0 and eta in p-Pb
ø	HK 41.5	Thu 15:15	I.Erdemir, Dielectron cocktail
Ø	HK 41.6	Thu 15:30	T. Broeker , Low-mass dielectrons in p-Pb
Solution	HK 41.7	Thu 15:45	M. Winn, J/ ψ in p-Pb with central barrel
3	HK 46.14	Thu 16:00	L. Leardini, eta meson in Pb-Pb (poster)

central Pb-Pb collisions: can we talk about QCD "matter"?

"Three questions to LHC" H. Satz, Nucl. Phys. A862-863 (2011) 4 When going from RHIC to LHC, do we see	ALICE results 2009-2013				
Increase of source volume?	Yes, by a factor of 2				
Increase of photon spectral temperature?	Yes, from 221(27) to 304(51) MeV (But: blueshift?)				
J/ψ production: sequential suppression or statistical regeneration?	Visible contribution of (re)generation				
Yes, we can!					

collectivity in p-Pb?

definition

collectivity \Leftrightarrow mean velocity depends on position

experimental manifestation of collectivity in Pb-Pb transverse flow via p_T spectra flow via particle correlations p_T dependence of HBT radii

ALICE: Past, Present, and Future / Dariusz Miskowiec, GSI Darmstadt / DPG meeting Frankfurt, 18-Mar-2014

Blast-wave fit to p_T spectra of pions, kaons, protons, lambda

p-Pb collisions: correlations originating from jets and other sources

PLB 719 (2013) 29

in high-multiplicity p-Pb, a near-side ridge develops (like the one reported by CMS)

difference between central and peripheral

PLB 719 (2013) 29

near-side ridge arising in high-multiplicity collisions is accompanied by a similar ridge on the away side \rightarrow elliptic flow?

dependence of HBT radii on transverse momentum in high-multiplicity pp collisions

ALICE talks related to p-Pb and possible collectivity in small systems

HK 12.1

Mon 16:30

HK 41.1 Thu 14:00

HK 41.3 Thu 14:45

J. Anielski, Identified particle spectra in p-Pb

- A. Andronic, p-Pb collisions
- M. Schork, Collective effects in p-Pb

summary

summary

new insight into the reaction dynamics from LHC

- Mach cone: alternative explanation by flow
- ✤ HBT R(k_T) dependence developing with multiplicity in pp
- proton puzzle: lower yield, lower v₂ than expected
- nuclear suppression decreasing at very high p_T (R_{AA} increasing)
- J/ψ production via statistical regeneration
- indications of collectivity in high-multiplicity pp and p-Pb collisions

~2 x higher than at RHIC

- particle production
- homogeneity volume

~10-30% higher than at RHIC

- transverse flow
- mean transverse momentum
- integrated elliptic flow
- mass-splitting of v₂

like at RHIC

- centrality dependence of particle production
- centrality dependence of v₂
- multiplicity dependence of HBT radii
- transverse momentum dependence of v₂
- ✤ charge and p_T fluctuations
- charge dependent azimuthal correlations

... and outlook

ALICE: Past, Present, and Future / Dariusz Miskowiec, GSI Darmstadt / DPG meeting Frankfurt, 18-Mar-2014

ALICE outlook

- 2014 LS1: completion of TRD, PHOS, and DCAL; consolidation
- 2015
- 2016 Run 2 (full energy)
- ***** 2017 _
- 2018 LS2: ALICE upgrade
- * 2019 LS2
- *** 2020**
- ✤ 2021 ⊢ Run 3 (full luminosity)
- *** 2022**
- * 2023 LS3
- ✤ 2024 LS3✤ 2025 LS3

upgrade after Run 2 (2018)

detector objectives

- cope with 50 kHz Pb-Pb
- inspect all collision events
- improve or preserve the resolution

physics objectives

- Scharm and beauty
- Iow-mass dileptons
- 🥺 jets
- search for exotica

ALICE Upgrade Letter of Intent http://cds.cern.ch/record/1475243

ITS upgrade 2018

7 layers of pixel Si, reduced material, 3 x better resolution, lower momentum cutoff, topological trigger at L2 for charm and beauty, low-mass dielectrons

http://cds.cern.ch/record/1625842

TPC upgrade 2018

faster gas, 3-4 GEM foils instead of the gating grid (suppression of ion backflow by a factor of 100), faster and continuous readout for heavy flavors, low-mass dielectrons, jets, exotica

trigger and readout upgrade 2018

fast readout, replacing T0/V0/FMT with new detector FIT for increased interaction and event rates

http://cds.cern.ch/record/1603472

online-offline (O²) upgrade 2018

new combined DAQ/HLT/offline system for high-rate and continuous readout; online processing and compression; for increased event rates

http://cds.cern.ch/record/1475243

Muon Forward Tracker (MFT) addition 2018

pixel Si, -4<η<-2.5 before the absorber, same technology as the upgraded ITS; improved momentum resolution, separation of prompt and secondary charmonia

https://cds.cern.ch/record/1592659

Very High Momentum Particle Identification Detector (VHMPID) not scheduled

large-volume gas (3.5 atm, 46° C) Cherenkov detector between TOFand the calorimeters, π/K/p separation in 5<p<25 GeV/c for jet and</td>fragmentation studiesarXiv:1309.5880

tracking chamber (3 cm)

Forward Calorimeter (FoCal) possibly after Run 3

WSi (EM) + Pb-scint. (hadronic) calorimeter 2.5<η<4.5 or 3.3<η<5.3 for studies of initial-state effects

arXiv:1309.5880

ALICE upgrades considered for the time after Run 2

system	upgrade	scheduled installation
ITS	reduced material, improved resolution, topological trigger at L2	2018
TPC	faster gas, GEM readout, faster and continuous readout	2018
trigger/ readout	fast readout, replacing T0/V0/FMT with new detector FIT	2018
O ²	new combined DAQ/HLT/offline system for high-rate and continuous readout	2018
MFT	Muon Forward Tracker, pixel Si, -4<η<-2.5	2018
VHMPID	Very High Momentum PID, gas Cherenkov, $\pi/K/p$ separation in 5 <p<25 c<="" gev="" td=""><td>not scheduled</td></p<25>	not scheduled
FoCal	Forward Calorimeter, WSi+Pb-scint, photon/ electron/ π^0 /jet	after Run 3

ALICE talks related to the upgrades

J. Stiller, B mesons with upgraded tracker

A.Tarantola, Readout Electronics for Run 2

C. Klein, Low-mass dielectrons after upgrade

S. Weber, Future chi c measurement

E. Bartsch, Ion back flow in GEM

3	HK 5.4	Mon	14:45

- Mon 15:00
- HK 21.2 Tue 14:30 **F**
- HK 33.4 Wed 17:30 **F**
- HK 43.3 Thu 14:45 \bigcirc
- HK 44.3 Thu 14:30 \bigcirc
- HK 51.1
- Thu 16:30 J. Wiechula, TPC upgrade
- HK 51.2 Thu 17:00 M. Fleck, Gas chromatograph for ALICE

F. Reidt, ITS upgrade

backup

centrality determination

- Solution VZERO covers -3.7< η <-1.7 and 2.8< η <5.1, signal ~ multiplicity
- fit function: a Ncoll + b Npart sources, each source producing particles following a negative binomial distribution
- Sentrality resolution better than 1%

charged-particle production: centrality dependence

PRL 106 (2010) 032301

individual differences larger than the difference between the two groups

ALICE: Past, Present, and Future / Dariusz Miskowiec, GSI Darmstadt / DPG meeting Frankfurt, 18-Mar-2014
elliptic flow of identified hadrons

hydro overestimates protons – this can be fixed by adding a rescattering phase (VISH2+1 + UrQMD = VISHNU) (Heinz, Shen, Song, arXiv:1311.0157)

properties of this double ridge

PLB 719 (2013) 29

v2 of pions, kaons, protons in p-Pb collisions

mass splitting like in Pb-Pb \rightarrow further support for the collective flow picture

nuclear modification factor in p-Pb – comparison to models

detector	acce	ptance	position	technology	main purpose
	polar	azimuthal			
SPD*	$ \eta < 2.0$	full	r = 3.9 cm	Si pixel	tracking, vertex
	$ \eta < 1.4$	full	r = 7.6 cm	Si pixel	tracking, vertex
SDD	$ \eta < 0.9$	full	r = 15.0 cm	Si drift	tracking, dE/dx
	$ \eta < 0.9$	full	r = 23.9 cm	Si drift	tracking, dE/dx
SSD	$ \eta < 1.0$	full	r = 38.0 cm	Si strip	tracking, dE/dx
	$ \eta < 1.0$	full	r = 43.0 cm	Si strip	tracking, dE/dx
TPC	$ \eta < 0.9$	full	85 < r/cm < 247	Ne drift	tracking, dE/dx
TRD*	$ \eta < 0.8$	full	290 < r/cm < 368	TR+Xe drift	tracking, e^{\pm} id
TOF^*	$ \eta < 0.9$	full	370 < r/cm < 399	MRPC	time of flight
PHOS*	$ \eta < 0.12$	$220^{\rm o} < \phi < 320^{\rm o}$	460 < r/cm < 478	$PbWO_4$	photons
EMCal*	$ \eta < 0.7$	$80^{\rm o} < \phi < 187^{\rm o}$	430 < r/cm < 455	Pb+scint.	photons and jets
HMPID	$ \eta < 0.6$	$1^{\circ} < \phi < 59^{\circ}$	r = 490 cm	C_6F_{14} RICH	charged kaon id
ACORDE	$ \eta < 1.3$	$30^{\circ} < \phi < 150^{\circ}$	r = 850 cm	scint.	cosmics
PMD	$2.3 < \eta < 3.7$	full	z = 364 cm	Pb+PC	photons
FMD	$3.6 < \eta < 5.0$	full	z = 320 cm	Si strip	charged particles
	$1.7 < \eta < 3.7$	full	z = 80 cm	Si strip	charged particles
	$-3.4 < \eta < -1.$	7 full	z = -70 cm	Si strip	charged particles
$V0^*$	$2.8 < \eta < 5.1$	full	z = 340 cm	scint.	charged particles
	$-3.7 < \eta < -1.$	7 full	z = -90 cm	scint.	charged particles
T0	$4.6 < \eta < 4.9$	full	z = 375 cm	quartz	time, vertex
	$-3.3 < \eta < -3.$	0 full	z = -73 cm	quartz	time, vertex
ZDC^*	$ \eta > 8.8$	full	$z = \pm 116 \text{ m}$	W+quartz	forward neutrons
	$6.5 < \eta < 7.5$	$ \phi < 10^{\circ}$	$z = \pm 116 \text{ m}$	brass+quartz	forward protons
	$4.8 < \eta < 5.7$	$ 2\phi < 32^{\circ}$	z = 7.3 m	Pb+quartz	photons
MCH	$-4.0 < \eta < -2.$	5 full -	-14.2 < z/m < -5.4	MWPC	muon tracking
MTR^*	$-4.0 < \eta < -2.$	5 full -	-17.1 < z/m < -16.1	RPC	muon trigger

ALICE: Past, Present, and Future / Dariusz Miskowiec, GSI Darmstadt / DPG meeting Frankfurt, 18 Mar 2014

Verification of experiment's material

arxiv:1402.4476

TRD performance

Dimuon mass spectrum

Combined particle-identification power

ALICE: Past, Present, and Future / Dariusz Miskowiec, GSI Darmstadt / DPG meeting Frankfurt, 18-Mar-2014

mean p_T of identified hadrons

M. Floris, QM2011 (see also PRC 88 (2013) 044910)

proton deficit in Pb-Pb collisions

...but a lower T_{ch} leads to a worse description of Ξ and Ω

ALICE: Past, Present, and Future / Dariusz Miskowiec, GSI Darmstadt / DPG meeting Frankfurt, 18-Mar-2014

Adding collectivity to pp models

AMPT with string melting

strings decaying into soft partons rather than Lund fragmentation parton-parton interactions parton coalescence

PYTHIA with color reconnection fewer particles, higher momenta

EPOS built in

charged-particle production in Pb-Pb: comparison with models

PRL 105 (2010) 252301

higher yield than expected (by most)

elliptic flow of direct photons

ALICE: Past, Present, and Future / Dariusz Miskowiec, GSI Darmstadt / DPG meeting Frankfurt, 18-Mar-2014

	arxiv	system	energy (TeV)	observable	published in
1	0911.5430	рр	0.9	charged particle dN/deta	EPJ C65 (2010) 111
2	1004.3034	рр	0.9, 2.36	charged particle dN/deta, mult. distr.	EPJC 68(2010)89
3	1004.3514	рр	7.0	same	EPJC 68(2010)345
4	1006.5432	рр	0.9, 7.0	antiproton/proton ratio	PRL 105(2010)072002
5	1007.0516	рр	0.9	pion HBT	PRD 82(2010)052001
6	1007.0719	рр	0.9	charged particle p_T spectra	PLB 693(2010)53
7	1011.3914	Pb-Pb	2.76	charged particle dN/deta	PRL 105(2010)252301
8	1011.3916	Pb-Pb	2.76	charged particle v2	PRL 105(2010)252302
9	1012.1004	Pb-Pb	2.76	charged particle RAA	PLB 696(2011)30
10	1012.1657	Pb-Pb	2.76	centrality dependence of Nch	PRL 106(2011)032301
11	1012.3257	рр	0.9	K0, phi, lambda, cascade	EPJC 71(2011)1594
12	1012.4035	Pb-Pb	2.76	pion HBT	PLB 696(2011)328
13	1101.3665	рр	0.9, 7.0	pion HBT	PRD 84 (2011) 112004
14	1101.4110	рр	0.9	pion, kaon, proton production	EPJC 71(2011)1655
15	1105.0380	рр	7.0	J/ψ production	PLB 704 (2011) 442+E
16	1105.3865	Pb-Pb	2.76	charged particle v3, v4,v5	PRL 107 (2011) 032301
17	1109.2501	Pb-Pb	2.76	angular correlations	PLB 708 (2012) 249

	arxiv	system	energy (TeV)	observable	published in
18	1110.0121	Pb-Pb	2.76	angular correlations	PRL 108 (2012) 092301
19	1111.1553	рр	7.0	D production	JHEP 1201 (2012) 128
20	1111.1630	рр	7.0	J/ψ polarization	PRL 108 (2012) 082001
21	1112.2082	рр	0.9, 7.0	underlying event	JHEP 7 (2012) 116
22	1112.2222	рр	7.0	phi, omega production	PLB 710 (2012) 557
23	1201.2423	Pb-Pb	2.76	jet background	JHEP 1203 (2012) 053
24	1201.3791	рр	7.0	heavy-flavor muons	PLB 708 (2012) 265
25	1202.1383	Pb-Pb	2.76	J/ψ suppression	PRL 109 (2012) 072301
26	1202.2816	рр	7.0	Nch dependence of J/ψ production	PLB 712 (2012) 165
27	1203.2160	Pb-Pb	2.76	D suppression	JHEP 09 (2012) 112
28	1203.2436	Pb-Pb	2.76	electromagnetic dissociation	PRL 109 (2012) 252302
29	1203.3641	рр	2.76	J/ψ production	PLB 718 (2012) 295
30	1204.0282	рр	7.0	cascade, Omega production	PLB 712 (2012) 309
31	1205.3963	рр	0.9, 2.76, 7.0	sphericity	EPJ C72 (2012) 2124
32	1205.4007	рр	2.76	D production	JHEP 1207 (2012) 191
33	1205.5423	рр	7.0	heavy-flavor electrons	PRD 86 (2012) 112007
34	1205.5724	рр	0.9, 7.0	pi0, eta production	PLB 717 (2012) 162

	arxiv	system	energy (TeV)	observable	published in
35	1205.5761	Pb-Pb	2.76	v2 of high-p _T hadrons pions protons	PLB 719 (2013) 18
36	1205.5880	рр	7.0	J/ψ production	JHEP 11 (2012) 065
37	1205.6443	pp PbPb	2.76	heavy-flavor muons	PRL 109 (2012) 112301
38	1206.2056	рр	7.0	КО НВТ	PLB 717 (2012) 151
39	1207.0900	Pb-Pb	2.76	azimuthal charge separation	PRL 110 (2013) 012301
40	1207.6068	Pb-Pb	2.76	net-charge fluctuations	PRL 110 (2013) 152301
41	1208.1902	рр	7.0	beauty decay electrons	PLB 721 (2013) 13
42	1208.1948	рр	7.0	Ds production	PLB 718 (2012) 279
43	1208.1974	Pb-Pb	2.76	pion, kaon, proton production	PRL 109 (2012) 252301
44	1208.2711	Pb-Pb	2.76	charged particle RAA	PLB 720 (2013) 52
45	1208.4968	рр	0.9, 2.76, 7.0	pp cross section	EPJC 73 (2013) 2456
46	1208.5717	рр	7.0	K*, phi production	EPJ C72 (2012) 2183
47	1209.3715	Pb-Pb	2.76	coherent J/ψ in ultraperipheral	PLB 718 (2013) 1273
48	1210.3615	p-Pb	5.02	dNch/deta	PRL 110 (2013) 032301
49	1210.4520	p-Pb	5.02	charged particle RAA	PRL 110 (2013) 082302
50	1212.2001	p-Pb	5.02	ridges in p-Pb	PLB 719 (2013) 29
51	1212.5958	рр	7.0	kaon HBT	PRD 87 (2013) 052016

	arxiv	system	energy (TeV)	observable	published in
52	1301.3475	рр	2.76	jets	PLB 722 (2013) 262
53	1301.3756	Pb-Pb	2.76	balance functions	PLB 723 (2013) 267
54	1301.4361	Pb-Pb	2.76	centrality	PRC 88 (2013) 044909
55	1303.0737	Pb-Pb	2.76	pion, kaon, proton vs centrality	PRC 88 (2013) 044910
56	1303.5880	Pb-Pb	2.76	J/ψ v2	
57	1304.0347	Pb-Pb	2.76	dNch/deta vs centrality	PLB 726 (2013) 610
58	1305.1467	Pb-Pb	2.76	J/ψ in ultraperipheral	EPJC 73 (2013) 2617
59	1305.1562	рр	0.9, 2.76, 7	antibaryon/baryon ratios	EPJC 73 (2013) 2496
60	1305.2707	Pb-Pb	2.76	D meson v2	PRL 111 (2013) 102301
61	1306.4145	Pb-Pb	2.76	v1	PRL 111 (2013) 232302
62	1307.1093	рр	0.9, 2.76, 7	charged particle p _⊤ spectra	EPJC 73 (2013) 2662
63	1307.1094	all three	many	<p<sub>T> vs multiplicity</p<sub>	PLB 727 (2013) 371
64	1307.1249	рр	0.9, 2.76, 7	angular correlations	JHEP 1309 (2013) 049
65	1307.3237	p-Pb	5.02	angular correlations of pi, K, p	PLB 726 (2013) 164
66	1307.5530	Pb-Pb	2.76	K0, lambda	PRL 111 (2013) 222301
67	1307.5543	Pb-Pb	2.76	Xi, Omega	PLB 728 (2014) 216
68	1307.6796	p-Pb	5.02	pi, k, p, lambda vs multiplicity	PLB 728 (2014) 25

	arxiv	system	energy (TeV)	observable	published in
69	1308.6726	p-Pb	5.02	J/ψ	
70	1310.7808	Pb-Pb	2.76	three-pion HBT	PRC 89 (2014) 024911
71	1311.0214	Pb-Pb	2.76	J/ψ suppression	
72	1311.0633	Pb-Pb	2.76	jet suppression	
73	1401.1250	Pb-Pb	2.76	pion, kaon, proton suppression	

first question to LHC: particle-source size

Helmut Satz, Nucl. Phys. A862-863 (2011) 4, "The Quark-Gluon Plasma" Student Day Lecture, Goa, Dec 2010

5 Three Questions to the LHC

The QGP predicted by statistical QCD is the ultimate state of matter to be studied in high energy nuclear collisions. This is a speculative endeavor, since it is not clear to what extent such collisions can produce something to be called matter. We therefore close our survey with three questions to the next generation of experiments which might help us in finding an answer to this fundamental enigma.

If an increase of collision energy indeed leads to the production of a hotter bubble of deconfined primordial matter, then this must expand more in order to reach the hadronization temperature, and hence the source size for hadron emission must become larger. In particular, it is expected to increase as a power of the hadron multiplicity, since this in turn grows with the initial energy density [24]. So far, from AGS to RHIC, the source size for hadron emission, as determined by Hanbury-Brown–Twiss (HBT) methods [25] used in astrophysics, has not shown a significant increase [26]. This "HBT-puzzle" has been accounted for in terms of the relative role of meson and baryon production [27], but at LHC energies, a clear increase of the source volume is predicted. Such an increase seems necessary in a model-independent way, if the concept of hot primordial fireball production in nuclear collisions is to make any sense.

ALICE: homogeneity volume at LHC two times higher than at RHIC

second question to LHC: photon temperature

Helmut Satz, Nucl. Phys. A862-863 (2011) 4, "The Quark-Gluon Plasma" Student Day Lecture, Goa, Dec 2010

We had noted that momentum spectra for real and virtual photons can in principle provide an internal thermometer of the QGP, with

$$(dN_{\gamma}/dk_T) \sim \exp\{-k_T/T\}$$
(8)

A recent analysis of RHIC Au - Au data at $\sqrt{s} = 200$ GeV [28] has identified possible thermal photons, seen in a transverse momentum window between pion decay and prompt photon spectra. The corresponding temperature is with $T = 221 \pm 19(\text{stat.}) \pm 19(\text{syst.})$ MeV above the hadronization value of about 175 MeV. If such thermal photons are indeed observable, the LHC should lead to much higher temperatures for electromagnetic radiation.

ALICE: T = 304 +- 51 MeV

third question to LHC: J/ψ suppression or regeneration

Helmut Satz, Nucl. Phys. A862-863 (2011) 4, "The Quark-Gluon Plasma" Student Day Lecture, Goa, Dec 2010

The last question addresses quarkonium production in nuclear collisions at the LHC. The J/ψ production rate in Au - Au collisions at RHIC is compatible with that for central collisions at the SPS, once cold nuclear matter effects are taken into account. The remaining survival rate of about 50 % is in accord with suppression of the higher excited states (ψ' and χ_c) and survival of the direct J/ψ [29]. The much higher energy density of the LHC should dissociate also the latter, leading to complete J/ψ suppression (modulo B decay and corona production). The expected survival pattern is illustrated in Fig. 8

Here, however, an alternative scenario has been proposed [30] and much discussed. Charm production in nuclear collisions, as a hard process, increases with collision energy much faster than that of light quarks. At sufficiently high energy, the produced medium will therefore contain more charm quarks than present in a QGP at "chemical" equilibrium. If these charm and anticharm quarks combine at the hadronization point statistically to form charmonium states, this new combination mechanism should lead to a much enhanced J/ψ production rate, even if all primary ("direct") J/ψ 's are dissociated. The two predictions, sequential suppression vs. statistical regeneration, thus present two really opposite patterns, and first LHC results should be able to distinguish between them.

ALICE: statistical regeneration dominates

ALICE talks Mon-Tue

③	HK 4.1	Mon 14:00	Xianguo Lu	Jets
3	HK 4.4	Mon 15:00	Rüdiger Haake	Jets in p-Pb
3	HK 4.6	Mon 15:30	Alice Zimmermann	Strangeness in jets in Pb-Pb
3	HK 4.7	Mon 15:45	Jochen Klein	Jet-hadron correlations
3	HK 5.1	Mon 14:00	Jeremy Wilkinson	D0 via Bayesian PID
3	HK 5.4	Mon 14:45	Johannes Stiller	B mesons with upgraded tracker
F	HK 5.5	Mon 15:00	Steffen Weber	Feasibility study for chi_c measurement
	HK 12.1	Mon 16:30	Jonas Anielski	identified particle spectra in p-Pb
F	HK 12.2	Mon 17:00	Philipp Luettig	Charged-particle p _T spectra
3	HK 12.4	Mon 17:30	Jan Wagner	Electrons from c and b in p-Pb
	HK 12.6	Mon 18:00	Julian Book	Jets in Pb-Pb
3	HK 12.7	Mon 18:15	Simone Schuchmann	Lambda and K0 RAA
F	HK 12.8	Mon18:30	Baldo Sahlmüller	Neutral pions with EMCal
	HK12.9	Mon18:45	Malte Hecker	Neutral pions with PHOS
F	PV II	Tue 09:00	Dariusz Miskowiec	ALICE: Past, Present, and Future
3	HK 19.1	Tue 14:00	Ilya Selyuzhenkov	Flow
3	HK 19.5	Tue 14:30	Jaap Onderwaater	Charge-dependent azimuthal correlations
3	HK 21.1	Tue 14:00	Felix Rettig	TRD trigger and online tracking
3	HK 21.2	Tue 14:30	Attilio Tarantola	Readout Electronics for Run 2
3	HK 26.5	Tue 17:45	Mesut Arslandok	Multiplicity fluctuations
3	HK 26.6	Tue 18:00	Jochen Thaeder	Net fluctuations

ALICE: Past, Present, and Future / Dariusz Miskowiec, GSI Darmstadt / DPG meeting Frankfurt, 18-Mar-2014

ALICE talks Wed-Fri

	HK 29.1	Wed 11:00	Raphaelle Bailhache	c, b in nuclear collisions at LHC
F	HK 33.2	Wed 17:00	Markus Koehler	Low-mass dielectrons in pp
F	HK 33.3	Wed 17:15	Patrick Reichelt	Low-mass dielectrons Pb—Pb
F	HK 33.4	Wed 17:30	Carsten Klein	Low-mass dielectrons with upgraded det.
	HK 37.5	Thu 15:00	Benjamin Hess	Jet fragmentation in pp
	HK 41.1	Thu 14:00	Anton Andronic	p-Pb collisions
F	HK 41.2	Thu 14:30	Julius Gronefeld	Charged particle p_T spectra in p-Pb
3	HK 41.3	Thu 14:45	Michael Schork	Collective effects in p-Pb
	HK 41.4	Thu 15:00	Annika Passfeld	pi0 and eta in p-Pb
	HK 41.5	Thu 15:15	Irem Erdemir	Dielectron cocktail
3	HK 41.6	Thu 15:30	Theo Broeker	Low-mass dielectrons in p-Pb
	HK 41.7	Thu 15:45	Michael Winn	J/ψ in p-Pb with central barrel
3	HK 43.3	Thu 14:45	Esther Bartsch	Ion back flow in GEM
3	HK 44.3	Thu 14:30	Felix Reidt	ITS upgrade
3	HK 46.14	Thu 16:00	Lucia Leardini	eta meson in Pb-Pb (poster)
3	HK 46.76	Thu 16:00	Dominik Herzig	PHOS data quality assessment (poster)
3	HK 51.1	Thu 16:30	Jens Wiechula	TPC upgrade
	HK 51.2	Thu 17:00	Martin Fleck	Gas chromatograph for ALICE
3	HK 63.3	Fri 14:30	Nicole Martin	lambda-n and H-dibaryon
F	HK 63.4	Fri 14:45	Hans Beck	p-lambda correlations in Pb-Pb

LHC schedule beyond LS1

working at CERN - requirements

