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Abstract. The ALICE Time Projection Chamber has just been upgraded by replacing the6

readout chambers, which cover the two ends of the cylinder, with new detectors based on7

the Gas Electron Multiplier (GEM) technology. We report here on the related activities at8

GSI Darmstadt: GEM framing and chamber production, as well as the quality assurance9

accompanying both procedures.10

1. Introduction11

The ALICE Time Projection Chamber (TPC) (Fig. 1) is the world’s largest detector of its12

kind [1]. It served as the main central tracking and particle-identification detector of ALICE13

from 2009 till now (see Refs. [2] and [3] for the description of the experiment and its performance).14

Figure 1. The ALICE apparatus at the CERN LHC. The Time Projection Chamber is the
main tracking and particle identification detector of the ALICE central barrel.



Its upgrade is an essential part of the experiment’s preparation for the LHC Run 3 starting in15

2021, when the machine will deliver Pb–Pb collisions at a rate of 50 kHz [4, 5].16

The principle of operation of the ALICE TPC as used in Runs 1 and 2 is as follows. The17

TPC is filled with Ne-CO2-N (90-10-5). Charged particles traversing its drift volume ionize gas18

atoms. An electric field of 400 V/cm makes the ionization electrons drift towards the readout19

chambers (Fig. 2) in which the charges are amplified and produce measurable signals. The20

nominal gas amplification factor is 7000–8000. The ions produced during the amplification21

slowly drift towards the cathode and, if not stopped, would result in a space charge within the22

active volume. The space charge would affect the electron drift in the subsequent events. In23

order to avoid this, a dedicated wire plane (gating grid) is located at the boundary between24

the drift volume and the readout chambers. About 100 µs after every trigger, after the last25

ionization electrons have arrived to the readout chambers but before the first ions reach the26

drift volume, the gating grid is made opaque by applying alternating voltages to its wires. The27

gating grid is kept closed for 180 µs. This method solves the problem of ion backflow, at the28

expense of introducing a significant deadtime limiting the trigger rate to about 3 kHz.

Figure 2. The ALICE Time Projection Chamber. The ionization electrons drift parallel to
the cylinder axis towards its ends, where they are amplified and produce signals in the readout
chambers. With a segmentation of 20o in azimuth and two sizes in radial direction, there are
36 inner and 36 outer readout chambers (IROCs and OROCs). These chambers have just been
replaced by GEM-based chambers. Half of the new OROCs was assembled and tested at GSI.

29

The ongoing upgrade of the CERN accelerators will allow for Pb–Pb collision rates of 50 kHz30

from 2021 on. In order to fully make use of this, the readout chambers of the ALICE TPC31

have just been replaced by chambers of similar geometry but without the gating grid. Also32

the cathode and anode wire planes have been removed, the gas amplification is now performed33

sequentially in four layers of GEMs. Most of the ions are thus produced at the last GEM layer,34

and their way to the drift volume is made difficult by the presence of the first three GEM foils.35



With 8 potentials to tweak and with a somewhat reduced total gain factor, configurations can36

be found that result in an acceptable ion backflow (<1%) while preserving the energy resolution37

(12% for 5.9 keV x-rays). The parameters of wire and GEM chambers are compared in Table 1.38

After eliminating the gating grid and the related dead time, the plan is to run the upgraded TPC39

in a continuous – rather then triggered – readout mode, thus recording all Pb–Pb interactions40

offered by the LHC.41

Table 1. Comparison of wire and GEM chambers.

wire chamber GEM chamber
grid open grid closed

gain 8000 0 2000
ion backflow 0.13 < 0.0001 <0.01

42

2. GEM-chamber production43

The ALICE TPC Upgrade collaboration consists of teams from 52 institutions. The chamber44

production was highly decentralized (Fig. 3). The GSI team joined the detector building45

activities in 2015, getting involved in GEM framing as well as assembly and tests of OROCs.46

The relevant steps of the production scheme are described below.47

Figure 3. Scheme of GEM-chamber production project. The GSI team framed the largest
GEM foils and assembled and tested 50% of the Outer Readout Chambers (OROCs).



Figure 4. Measurement of the GEM dark current. The box is flushed with nitrogen, 500 V are
applied and the currents are measured separately for all segments.

A basic test of a GEM, as performed in particular before and after every transport, consisted48

in measuring its dark current. For this, a dry GEM (a few days spent at a relative humidity49

<1%) was placed in a plexiglass box equipped with spring-loaded pin contacts, and flushed50

with nitrogen (Fig. 4). A voltage of 500 V was applied to all segments (20–24, depending on51

GEM size) and the respective currents were monitored. Typically, the currents stabilized at a52

level of 10–50 pA, depending on the hole pitch of a GEM. The currents of individual segments53

within a GEM normally agreed within 10%. An excessive current of a segment meant a shorted54

GEM. Increased current (see example in Fig. 5) may come from a defect/contamination and was55
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Figure 5. Example of a pathological GEM. Segment 15 (lower left panel) has a significantly
higher current than others.



Figure 6. Example of a hole size map, extracted from optical survey of a GEM.

considered a potential danger. Shorted and contaminated GEMs had a fair chance of recovery56

when sent back to their production site for recleaning.57

An advanced quality assurance procedure, performed once for each GEM, consisted in a58

long-term (at least 5 hours) dark-current measurement and an optical survey. During the latter,59

microscope photographs were taken of the entire GEM. The pictures were stitched together and60

analyzed for defects and hole-size nonuniformities (Fig. 6). The gain of a single GEM appeared61

to be clearly anticorrelated with the diameter of the holes. This correlation, however, was62

practically lost in a stack of four GEMs.63

Framing a GEM consisted in stretching it and positioning 0.5 mm above a rigid frame made64

of G11 with a thin layer of epoxy glue on it. After a careful alignment (Fig. 7), the GEM foil65

was pressed to the frame and covered with a plexiglass hood. The box was flushed with nitrogen66

Figure 7. The GEM foil is being aligned to the epoxy-covered frame which is underneath it.



Figure 8. Chamber body before GEM installation. Readout pad planes of the three stacks and
nylon bolts for GEM mounting are visible. The pad planes are inspected under UV light.

and left overnight.67

The complete information about the 923 GEM foils of the project was stored in a dedicated68

database. With an intuitive user interface and numerous analysis macros, the database was a69

valuable tool in steering and monitoring the production process.70

The OROC chamber assembly consisted in adding three stacks of 4 GEMs each to the chamber71

bodies (Figs. 8, 9). The bodies were equipped with pad planes and connection wires bringing72

HV into the chambers and the signals out of it. The GEMs were attached to them with densely73

spaced nylon bolts (Fig. 8), ensuring a reasonable level of tension. The GEMs were trimmed to74

trapezoidal shape and mounted one by one. The HV connections were soldered to both sides of75

each GEM. As anticipated, the size, shape, and precise location of the soldering points were of76

high importance for the HV stability of the chambers.77

Figure 9. Chamber assembly. A GEM is being added to the stack. After adding the fourth –
last – GEM foil, the nylon nuts holding stacks together are tightened with a torque of 6 Ncm.



3. GEM-chamber quality assurance78

The chambers were subject to several tests at the assembly site. For this, they were enclosed in79

a test box filled with the nominal gas mixture, with a low-mass entrance windows and a 13 mm80

drift gap with 400 V/cm before the first GEM. The gain of the chamber, for each of the three81

GEM stacks separately, was measured by irradiating it with 5.9 keV x-rays from a 55Fe source.82

The photons that reach the drift gap ionize gas atoms, producing on average a primary charge83

of 166 electrons. The absolute gain factor is calculated by dividing the pad current by the x-ray84

rate (measured using a scaler) and the primary charge. An example of the obtained gain curves85

is shown in Fig. 10.
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Figure 10. Gain curves of the three GEM stacks of one particular chamber (OROC/23). As
expected, the gain increases exponentially with the applied voltage. The difference between
stacks can be compensated by applying slightly different voltages. The nominal gain is 2000.

86

The charge induced on the pads is proportional to the primary ionization and thus to87

the energy deposited by the traversing charged particle. The energy resolution is checked by88

recording the 55Fe x-ray spectrum and fitting the 5.9 keV peak (Fig. 11). The test is performed at89

a voltage corresponding to a gain of 2000. The relative width of the peak, calculated taking into90

account the position and the width of the pedestal, was typically around 12-14%, usually slightly91

above the limit of 12%. As the energy resolution and the ion backflow can be traded against92

each other by changing the GEM voltages, and as we notoriously observed an ion backflow93

significantly better than the limit, the poor values of the energy resolution were not considered94

to be a problem.95

The gain homogeneity was evaluated by shifting a collimated x-ray tube over the chamber96

surface and monitoring the anode current (sum of all pads). This test was performed with the97

three stacks kept at a voltage corresponding to a gain of 2000. An example of the resulting98

current map is shown in Fig. 12.99
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Figure 11. X-ray spectrum of 55Fe, measured with the third stack of chamber OROC/23. The
relative width of the 5.9 keV peak, corrected for the position and width of the pedestal (smaller
peak on the left side), is the measure of the energy resolution.
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Figure 12. The pad current (in nA) as a function of the position of the x-ray tube for chamber
OROC/23. The gain uniformity is 11% (standard deviation), well below the requirement of
20%.



The ion backflow (IBF) measurement is performed in parallel with the gain uniformity test.100

For this purpose, the cathode current is recorded along with the pad one. The cathode current101

is caused by ions traversing the drift volume and reaching the cathode. The IBF factor is102

calculated as the ratio between the cathode and the pad currents. An example map is shown in103

Fig. 13.

0 20 40 60 80 100 120

 (cm)x

0

20

40

60

80

 (
c
m

)
y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 13. The ion backflow factor (in percent) as a function of the position of the x-ray tube
for chamber OROC/23. The IBF factor was calculated as the ratio between the cathode and
pad currents. Its mean value is 0.5%, well below the required limit of 1%.

104

The stability of each chamber was checked by illuminating it semi-uniformly with two strong105

x-ray tubes. The level of irradiation was such that the pad current was 10 nA/cm2 and the test106

duration was 6 hours. The pad and cathode currents were monitored. After the test, the health107

of all GEMs was checked by measuring their dark currents.108

Upon completion of the tests, each chamber was enclosed in its transportation box. The gas109

tightness was checked and the boxes were flushed with nitrogen. After the last check of the110

GEM integrity, performed by applying 250 V to each GEM and measuring its dark current, the111

chambers were shipped to CERN.112

4. GEM chamber installation113

In the beginning of 2019, the ALICE TPC was extracted and brought to a dedicated cleanroom114

on the surface. The replacement of the chambers started in April and was completed in115

September. Installation of a chamber requires inserting it into the TPC, turning, and pressing116

from inside against the backplate (Fig. 14). The removal of wire chambers and the installation117

of GEM chambers each proceeded at a pace of two sectors per day. Replacing all 72 chambers118

took six months.119



Figure 14. Chamber replacement in the ALICE TPC. The operation took six months and was
performed in a dedicated cleanroom at CERN.

5. Concluding remarks120

The involvement of the GSI group in the construction of the GEM chambers for the ALICE121

TPC upgrade started in 2015 with planning, ordering equipment, and defining procedures. The122

peak production took place in 2017–2018. With the new GEM technology and large detector123

sizes, the production encountered several surprises and some procedures had to be adjusted124

correspondingly. In all production steps, strong emphasis was put on quality assurance.125

The works were performed in the GSI detector laboratory. It was a privilege and pleasure to126

use its excellent infrastructure. Our hosts, the detlab colleagues, were welcoming and helped to127

quickly overcome some of the encountered problems. We appreciate their purely science- and128

curiosity-driven motivation and gratefully acknowledge their contribution to our project.129

By the end of 2019, the time of submission of these proceedings, the chambers have been130

installed in the TPC, and the TPC commissioning has just started. We are all looking forward131

to seeing the upgraded TPC performing beautifully in the coming LHC Run 3.132
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