

or

the new GEM TPC of ALICE

Dariusz Miśkowiec, GSI Darmstadt for the ALICE Collaboration

Large Hadron Collider at CERN

A Large Ion Collider Experiment at CERN

~1990 inception

1995-2008 construction

IJMPA 29 (2014) 1430044

2009-2013 LHC Run 1: Pb-Pb, p-Pb, pp at 50% energy

2015-2018 LHC Run 2: Pb-Pb, Xe-Xe, p-Pb, pp at 93% energy

2021-2023 LHC Run 3: increased luminosity and 93-100% energy

plan for Run 3

 improve statistics of minimum-bias Pb-Pb collisions by a factor of 100 by speeding up the Time Projection Chamber

 improve tracking resolution at low p_T by a factor of 3 by reducing the radius and amount of material in the Inner Tracking System

With higher statistics and better resolution, study

- open charm and beauty at low p_T , J/ ψ down to $p_T=0$
- photons, thermal dileptons, vector mesons
- light nuclei and exotica

this talk is about

Assembly and test of the new GEM chambers (Outer Readout Chamber = OROC) for the ALICE TPC

(involvement of the GSI Darmstadt)

ALICE Time Projection Chamber in 2006

Time Projection Chamber

gating grid closes 100 μ s after the trigger and stays closed for 180 μ s to keep ions off the drift volume \rightarrow maximum event-taking rate of 3.5 kHz

LHC Run 3 will offer 50 kHz of Pb-Pb

solution for the rate limitation

- remove gating grid
- use several amplification stages, keep total gain low, reduce ion backflow (IBF) by the choice of electric fields

implementation: 4 Gas Electron Multiplier (GEM) foils

Gas Electron Multiplier foils

thin (50 μm) insulating foil with many small (diameter 70 μm) holes 5 μm copper coating on both sides voltage (~300 V) across (between top and bottom copper layers)

- \rightarrow high electric field inside holes
- \rightarrow electrons ionize gas atoms while passing through holes
- \rightarrow signal amplification

comparison between wire chambers and GEM chambers

	wire ch	GEM chamber		
	grid open	grid closed		
gain	8000	0	2000	
ion backflow	0.13	<0.0001	<0.01	

upgrade of the TPC

Outer Readout Chamber (OROC)

Inner Readout Chamber (IROC)

36 IROCs and 36 OROCs to be replaced with new GEM chambers GSI assembling 20 OROCs

ALICE TPC upgrade project structure

ALICE TPC upgrade - a very logistic-intensive project

ALICE TPC upgrade project structure

basic GEM test: leakage current at 500 V

-0.20

1000

0

time (s)

0

time (s)

1000

200

500

1000

1500

time (s)

ALICE GEM-TPC, D. Miskowiec, DeSyT-2019 Messina

1000

time (s)

500

1000

0

time (s)

500

1000

1500

time (s)

500

current (nA)

current (nA)

-0.2

ALICE TPC upgrade project structure

advanced GEM tests: optical scan

...gets lost once several GEMs are stacked together

ALICE TPC upgrade project structure

GEM framing

GEM database documenting 923 foils

Home C	ategory:	OROC	Y Sto	ck Ship	ping Info	rmation	logged in	: Dariusz				
ALIC	Е ТРО	C prod	uctio	ı dat	abase	•						
Show s	electe	d stock it	tems	link	to bool	<u>kmark</u>	this sel	lection				
		Selec	tion			specific (QA step sel	ection: 💿 off	🔾 not done 🤇	🛛 passed 🔍 failed		
cate	gory	par	t	batch	type	QA sta	atus s wi	erialno/bc ldcards %, _	sent?	select location or 'used'	search string within comment regular expressions accepted	
OROC	~	OROC3 GEM fo	il 🗸	any 🗸	all types 🗸	any	•		~	~		
							sent		location	or		

part	item	batch	from to	date	link to parent		(QA status	link	comment
OROC3 GEM foil	O3-G1-001	5			OROC/02		A	20.07.17 CERN	X	
OROC3 GEM foil	O3-G1-002	5			OROC/01		3	15.01.17 CERN	X	
OROC3 GEM foil	O3-G1-003	5			OROC/04		В	30.01.18 CERN	X	
OROC3 GEM foil	O3-G1-004	. 7			Bonn		QA-A	05.11.18 CERN	X	
OROC3 GEM foil	O3-G1-005	7			GSI		3	17.01.17 CERN	X	GSI: GEM stripped from frame
OROC3 GEM foil	O3-G1-006	7			GSI		QA-A	23.11.18 CERN	X	GSI long term tested
OROC3 GEM foil	O3-G1-007	8			OROC/35	-	в	19.12.18 CERN	X	GSI long term tested. from CERN
OROC3 GEM foil	O3-G1-008	8			OROC/05		С	30.10.17 CERN	X	GSI tested, framed, tested

ALICE TPC upgrade project structure

OROC assembly

OROC tests at GSI

ALICE GEM-TPC, D. Miskowiec, DeSyT-2019 Messina

moving x-ray gun at 10 kV moving ⁵⁵Fe source of 6 keV x-rays monitoring currents of padplane and cathode

two x-ray guns at 60 kV, full illumination monitoring currents of padplane and cathode

OROC tests

- gain uniformity 11% (standard deviation), requirement <20%
- average ion backflow 0.5%, requirement <1%

- gain exponential within 300-15000, nominal gain 2000
- energy resolution 12-14%, requirement <12%

long x-ray irradiation at high intensity, chamber stable

encountered problems

OROC/10 gain hotspot

-

x (cm)

encountered problems

2.1 kV between GEM3 top poor fix of the GEM1 top wire

ALICE GEM-TPC, D. Miskowiec, DeSyT-2019 Messina

5

completion of the OROC assembly and tests

- 2015 planning
- 2016 planning and preparing
- 2017 3 OROCs assembled
- 2018 17 OROCs assembled

last OROC shipped to CERN in October 2018, one month before the start of the shutdown

And what is happening now?

OROC installation in 2019

TPC extracted (Jan-Feb)

... and brought to the surface (Mar)

in the cleanroom

Jun 2019, first GEM chamber being installed

chamber extraction video https://youtu.be/6nENACC8BhY

ALICE GEM-TPC, D. Miskowiec, DeSyT-2019 Messina

Apr 2019, first MWPC

removed

Jul 2019, side A completely equipped with GEM chambers

personal summary: how well did things work?

what	expectation	reality
bringing life into things ("Frankenstein effect")	put things together, apply HV, wake them up to live	yes!
flushing volumes with gas	rest gas = exp(-t/tau)	S0-S0
building tight volumes	you can debug by sniffing	sniffing worked only for big holes
keeping things clean	if you keep things clean, nothing can happen	if you keep things clean, you reduce the probability that something happens
electric discharges in equipment	just keep distance and isolation, then OK	calculate and test carefully, use a safety margin, then OK
electric discharges in gas	absent	statistical

bringing life into things ("Frankenstein effect")

But life functions very differently from the standard condensed-matter fare of metals or superconductors, which are "dead" things whose behaviors are predetermined. Living creatures can respond in seemingly disparate ways to the same stimulus, "Biological systems have this feedback loop that makes them very difficult to analyze using standard differential equations," Goldenfeld says, adding that he doesn't yet know how to address that problem. *APS Physics, "Life is Physics", January 11, 2019*

following this definition, gaseous chambers are living beings

under HV, they always wake up

backup

ALICE Time Projection Chamber upgrade 2019

outer readout chamber (OROC)

GSI contribution:

- frame 160 OROC3 GEM foils (= 100% of all)
- assemble and commission 20 OROCs (= 50% of all)

ALICE highlights from Run 1 and 2 (personal selection)

PLB 719 (2013) 29

flow continues at high energy QGP is NOT a gas of free quarks

collectivity in violent pp and pA collisions (modification of p_{T} spectra, elliptic flow, p_{T} dep. of HBT radii) \rightarrow QGP in small systems?

 J/ψ enhancement in central Pb-Pb collisions: c + anti-c coalescence

light nuclei and exotica production (eg. hypertriton ${}^{3}_{\Lambda}$ H)

Collectivity in pp has been predicted!

Quark Matter 2008, Jaipur, panel discussion with Blaizot, Kharzeev, Mueller, Schukraft

Jurgen Schukraft:

- Multiplicity distribution at LHC
- \Rightarrow quite respectable particle densities
 - o dN_{ch}/dη ~ 50 100 can be reached !
 - > central S+S @ SPS, mid-central Cu-Cu @ RHIC
- maively, energy density ε > 5 10 GeV/fm³
 - ^ο τ₀ = 1 fm, V = 5 fm³
- even protons get obese these days
- p@LHC ~ small (but very dense) <u>nucleus@SPS</u>

	SPS	RHIC	LHC
# of partons in proton 3 + $\int g(x > 2GeV)$	4	10	30

'QGP' physics with protons

🗢 at least:	onset of hadronic FS interactions
⇔ maybe:	collective <u>hadronic/partonic</u> dynamics
⇔ why not:	the QGP, mini serving

ALICE GEM-TPC, D. Miskowiec, DeSyT-2019 Messina

test run with open GG

Ernst Hellbär, Marian Ivanov

analysis of the special run with open GG taken in pp collisions at 200 kHz

- IBF = 13% (compare to ~0.01% with closed GG, ~1% with four GEMs)
- $\epsilon = 900$ (compare to ~1 with closed GG, 20 with four GEMs)
- ⇒ space charge comparable to Pb-Pb in Run 3 azimuthal distortions observed

observed distortions agree with simulations with $\varepsilon \approx 15$

project equipment

ALICE GEM-TPC, D. Miskowiec, DeSyT-2019 Messina

voltage divider boxes

LHC long-term schedule

