Hydro, blast, and CERES

Dariusz Miskowiec, GSI Darmstadt

- hydro vs. CERES
- Ist vs. CERES
- Islast vs. hydro

CERES

CERES build and upgraded for leptons; but also good for... pt spectra, elliptic flow, two-particle correlations of hadrons

CERES pt spectra and elliptic flow

CERES two-particle correlations

Hydro

- Pasi Huovinen, calculation of Au+Pb at 158 A GeV, b=2.6 fm
- hydrodynamical model, see e.g. nucl-th/0305064
- Ireeze-out at a fixed energy density (similar to fixed temp)

two sets of results:

- T=160 MeV (like at chemical freeze-out)
- T=120 MeV (like at kinetic freeze-out)

hydro T=120 MeV (lines) and CERES (points)

hydro T=120 MeV (lines) and CERES (points)

hydro T=160 MeV (lines) and CERES (points)

hydro T=160 MeV (lines) and CERES (points)

Retière, Lisa, PRC 70(2004)044907

analytic hydro-inspired 8-d emission function

$$S(x,K) = m_T \cosh(\eta - Y) \,\Omega(r,\phi_S) \, e^{\frac{-(\tau - \tau_0)^2}{2\Delta \tau^2}} \frac{1}{e^{K \cdot u/T} + \tau^2}$$

with the space profile $\Omega(r,\phi_S) = \Omega(\widetilde{r}) = \frac{1}{1 + e^{(\widetilde{r}-1)/a}}$

and the normalized elliptic radius

$$\widetilde{r}(r,\phi_S) = \sqrt{\frac{(r\cos(\phi_S))^2}{R_x^2} + \frac{(r\sin(\phi_S))^2}{R_y^2}}$$

and the flow four-velocity

 $u = u_{\mu}(x, \rho_0, \rho_2)$

Retière, Lisa, PRC 70(2004)044907

analytic hydro-inspired 8-d emission function

$$S(\mathbf{x},K) = m_T \cosh(\eta - Y) \,\Omega(r,\phi_S) \,e$$

1

$$\frac{1}{e^{K \cdot u/T} \pm 1}$$

 $\frac{(\tau - \tau_0)^2}{2\Lambda \tau^2}$

with the space profile

$$\Omega(r,\phi_S) = \Omega(\widetilde{r}) = \frac{1}{1 + e^{(\widetilde{r}-1)/a}}$$

space-time dependence

and the normalized elliptic radius

$$\widetilde{r}(r,\phi_S) = \sqrt{\frac{(r\cos\phi_S)^2}{R_x^2} + \frac{(r\sin\phi_S)^2}{R_y^2}}$$

and the flow four-velocity

$$u = u_{\mu} (\mathbf{x}, \boldsymbol{\rho}_0, \boldsymbol{\rho}_2)$$

Retière, Lisa, PRC 70(2004)044907

. ว

analytic hydro-inspired 8-d emission function

$$S(x,K) = m_T \cosh(\eta - Y) \Omega(r,\phi_S) e^{\frac{-(\tau - \tau_0)^2}{2\Delta \tau^2}} \frac{1}{e^{K \cdot t/T} \pm 1}$$

1

with the space profile

$$\Omega(r,\phi_S) = \Omega(\widetilde{r}) = \frac{1}{1 + e^{(\widetilde{r}-1)/a}}$$

and the normalized elliptic radius

$$\widetilde{r}(r,\phi_S) = \sqrt{\frac{\left(r\cos(\phi_S)\right)^2}{R_x^2} + \frac{\left(r\sin(\phi_S)\right)^2}{R_y^2}}$$

and the flow four-velocity

$$u = u_{\mu}(x, \rho_0, \rho_2)$$

four-momentum dependence

Retière, Lisa, PRC 70(2004)044907

analytic hydro-inspired 8-d emission function

$$S(x,K) = m_T \cosh(\eta - Y) \,\Omega(r,\phi_S) \,e^{-\frac{1}{2}}$$

$$\frac{1}{e^{K \cdot u} T} \pm 1$$

with the space profile $\Omega(r,\phi_S) = \Omega(\widetilde{r}) = \frac{1}{1 + e^{(\widetilde{r}-1)/2}}$

parameters

and the normalized elliptic radius

$$\widetilde{r}(r,\phi_S) = \sqrt{\frac{\left(r\cos(\phi_S)\right)^2}{R_x^2} + \frac{\left(r\sin(\phi_S)\right)^2}{R_y^2}}$$

and the flow four-velocity

$$u = u_{\mu}(x \rho_0, \rho_2)$$

Retière, Lisa, PRC 70(2004)044907

+1

2

analytic hydro-inspired 8-d emission function

$$S(x,K) = m_T \cosh(\eta - Y) \,\Omega(r,\phi_S) \, e^{\frac{-(\tau - \tau_0)^2}{2\Delta \tau^2}} \frac{1}{e^{K \cdot u/T}}$$

by semi-analytic integration gives

- ø pt-spectra
- elliptic flow
- HBT radii (including their reaction-plane dependence)
- In non-identical particle correlations

blast T=100 MeV (lines) and CERES (points)

blast T=100 MeV (lines) and CERES (points)

blast T=80 MeV (lines) and CERES (points)

Dariusz Miskowiec, Hydro, blast, and CERES, VI-SIM workshop on HBT and reaction dynamics, Dec 2006, GSI

blast T=80 MeV (lines) and CERES (points)

T - ρ contours

Thu Sep 7 20:23:17 2006

blast vs. hydro

Use blast to understand what is wrong in hydro:

- Is hydro inspired and has 8 free parameters
 → true hydro source must be a special case of blast source
- fit CERES by blast and fit hydro by blast and compare the resulting parameters
- Identify THE parameter which is different
 → this is what needs to be fixed in hydro

blast (lines) and hydro 160 MeV (points)

blast (lines) and hydro 160 MeV (points)

blast (lines) and hydro 120 MeV (points)

blast (lines) and hydro 120 MeV (points)

blast vs. hydro

Use blast to understand what is wrong in hydro:

Is blast is hydro inspired and has 8 free parameters

true hydro source must be a special case of black source

- fit CERES by blast and fit hydro by blast and compare the resulting parameters
- identify THE parameter which is different

 \rightarrow this is what needs to be fixed in hydro

blast only HBT (lines) and hydro 120 MeV (points)

blast only HBT (lines) and hydro 120 MeV (points)

blast - source shape

fitted blast source shapes

fit to CERES data

"fit" to hydro 120 MeV

hydro source shape

Sinyukov's blast

hydro, why is R_{out} so large and R_{side} so small: freeze-out surface too thin?

summary

- blast fits CERES data reasonably well
 (in spite of the lacking resonances, lacking surface emission...)
- hydro fits CERES spectra and flow but not HBT radii
- Is blast is qualitatively different from hydro (even if "inspired" by it)
- troubles with hydro may have to do with the freeze-out hypersurface moving inward (Pasi Huovinen)
- ... combined with its unrealistic small thickness?

backup slides

blast T=100 MeV as=0.3 (lines) and CERES (points)

blast T=100 MeV as=0.3 (lines) and CERES (points)

blast as=0.3 (lines) and hydro 160 MeV (points)

blast->fDtau = 2.44

blast as=0.3 (lines) and hydro 160 MeV (points)

blast as=0.3 (lines) and hydro 120 MeV (points)

blast as=0.3 (lines) and hydro 120 MeV (points)

setup with TPC: 1999 and 2000

setup with TPC: 1999 and 2000

setup with TPC: 1999 and 2000

centrality of the analyzed data set

Absolute multiplicity of charged particles

Absolute multiplicity of charged particles

Fitting R_{side} and Δx

R. Lednicky, nucl-th/0305027, based on Akkelin, Sinyukov Z.Phys.C 72(1996)501

 R_{side} dominates the fit ∆x agrees reasonably well → all flow?