Correlations and fluctuations from CERES

Dariusz Miskowiec, GSI Darmstadt

Critical Point and Onset of Deconfinement, Darmstadt, July 2007

CERES run history

1990	installation	
1991	completed	
1992	200 GeV S+Au	4M central
		445 open pairs
1993	450 GeV p+Be	10M pairs
	450 GeV p+Au	3M pairs
1995	160 GeV Pb+Au	10M central
1996	160 GeV Pb+Au	50M central
		2700 open pairs
1997	upgrade	
1998	upgrade	
1999	40 GeV Pb+Au	10M central
		185 open pairs
2000	80 GeV Pb+Au	1M central
	160 GeV Pb+Au	30M central

CERES built and upgraded for leptons; but also good for... pt spectra, elliptic flow, two-particle correlations of hadrons

10-Jul-2007

azimuthal dependence of pion HBT radii

ø pt fluctuations

10-Jul-2007

azimuthal dependence of pion HBT radii (Dariusz Antonczyk, Ph.D. work)

In pt fluctuations (Georgios Tsiledakis, Ph.D. work)

azimuthal dependence of two-pion correlations (HBT) in central Pb+Au at 158 GeV per nucleon

pion-pion correlation function

<i>correlation function</i> = pair distribution, normalized to event mixing	$C_2(\mathbf{P},\mathbf{q}) = \frac{n(\mathbf{p}_1,\mathbf{p}_2)}{n(\mathbf{p}_1) \ n(\mathbf{p}_2)}$	
with mean momentum	$P = (p_1 + p_2) / 2$	
and momentum difference	$q = p_2 - p_1$	

Bertsch-Pratt coordinates

 $\mathbf{q} = (q_{out}, q_{side}, q_{long})$

10-Jul-2007

acceptance and particle id

Pb+Au at 158 AGeV

two-pion correlation function

Pb+Au at 158 AGeV

D. Antonczyk

correct for Coulomb and finite momentum resolution

10-Jul-2007

HBT radii: pt dependence

Pb+Au at 158 AGeV centrality 5%

D. Antonczyk

HBT radii: centrality dependence

Pb+Au at 158 AGeV < *p_t* > = 0.47 GeV/c D. Antonczyk

centrality – fraction of σ_{GEOM} = 6.94 b

HBT radii vs azimuthal pion angle - expectation

HBT radii in bins of the azimuthal pair angle

pion-pion correlation function

azimuthal angle dependence of the HBT radii - simulation

D. Antonczyk

Gaussian source parameterization with $R_x = 4$ (fm), $R_y = 5$ (fm), $R_z = 7$ (fm)

10-Jul-2007

azimuthal angle dependence of HBT radii

Pb+Au at 158 AGeV

D. Antonczyk

10-Jul-2007

azimuthal angle dependence of HBT radii

Pb+Au at 158 AGeV

D. Antonczyk

10-Jul-2007

pion source size anisotropy

Pb+Au at 158 AGeV preliminary

parametrize the oscillation with $R_i^2 = R_{i,0}^2 + 2 R_{i,2}^2 \cos [2(\Phi_{\pi\pi} - \Phi_{RP})] \rightarrow$

D. Antonczyk

10-Jul-2007

...compared to RHIC

• CERES	158 AGeV	<pt> = 0.47 GeV/c</pt>	D. Antonczyk, Ph.D.
STAR	sqrt(s) = 130 GeV	0.125 <pt<0.45 c<="" gev="" td=""><td></td></pt<0.45>	
• STAR	sqrt(s) = 200 GeV	0.15 <pt<0.6 c<="" gev="" td=""><td>PRL 93 (2004) 012301</td></pt<0.6>	PRL 93 (2004) 012301

... and AGS

 <i>E</i>895 <i>CERES</i> 	●2,∎4, ▲6 AGeV 158 AGeV	<pt> = 0.11 GeV/c <pt> = 0.47 GeV/c</pt></pt>	Phys. Lett. B 496 (2000) 1 D. Antonczyk, Ph.D.
STAR	sqrt(s) = 130 GeV	0.125 <pt<0.45 c<="" gev="" td=""><td></td></pt<0.45>	
• STAR	sqrt(s) = 200 GeV	0.15 <pt<0.6 c<="" gev="" td=""><td>PRL 93 (2004) 012301</td></pt<0.6>	PRL 93 (2004) 012301

source anisotropy vs sqrt(s)

Pb+Au, Au+Au centrality 15-20%

In non-monotonic behavior of R_{side}

10-Jul-2007

transverse momentum fluctuations in Pb+Au at 158 and 80 GeV per nucleon

10-Jul-2007

pt fluctuations

10-Jul-2007

pt fluctuations strategy: analyze pt-pt correlations as a function of $\Delta \eta$ and $\Delta \phi$

$$\begin{array}{l} \textbf{relations} \\ \sigma_{\text{pt dyn}}^{2} = \sigma_{\langle \text{pt} \rangle}^{2} - \sigma_{\text{pt}}^{2} / \langle \textbf{M} \rangle \\ \Sigma_{\text{pt}} = \sigma_{\text{pt dyn}} / \langle \textbf{pt} \rangle \\ \langle \Delta \textbf{pt}_{i}, \Delta \textbf{pt}_{j} \rangle \cong \sigma_{\text{pt dyn}}^{2} \\ \Phi_{\text{pt}} \cong \langle \textbf{M} \rangle \sigma_{\text{pt dyn}}^{2} / 2 \sigma_{\text{pt}} \end{array}$$

10-Jul-2007

pt fluctuations

Pb+Au at 158 AGeV

Harry Appelshaeuser Georgios Tsiledakis

pt covariance at 158 GeV: centrality dependence

10-Jul-2007

pt covariance at 158 GeV: centrality dependence

Pb+Au at 158 AGeV preliminary

the observed centrality dependence comes from the short-range and the away-side correlations

 $30^{\circ} < \Delta \phi < 60^{\circ}$ region, which is free of these effects and of elliptic flow, shows no signal

10-Jul-2007

pt covariance at 80 GeV: centrality dependence

10-Jul-2007

pt covariance at 80 GeV: centrality dependence

Pb+Au at 80 AGeV preliminary

pt covariance: beam energy dependence

CERES Pb+Au 158 AGeV preliminary STAR Au+Au 20-200 GeV PRC 72 (2005) 044902

the 30°<Δφ<60° region is suited for critical point, easy to analyze, and gives results different from the inclusive analysis

- anisotropy of R_{out} as expected
- Interpreted of the second s

- ø pt covariance for pairs with 30°<Δφ<60° is well suited for the critical point search
- ø pt-fluctuations in this region are rather small

CERES Collaboration

D. Adamova, G. Agakichiev, D. Antonczyk, A. Andronic, H. Appelshäuser, V. Belaga, J. Bielcikova, P. Braun-Munzinger, O. Busch, A. Cherlin, S. Damjanovic, T. Dietel, L. Dietrich, A. Drees, S. Esumi, K. Filimonov, K. Fomenko, Z. Fraenkel, C. Garabatos, P. Glässel, G. Hering, J. Holeczek, M. Kalisky V. Kushpil, B. Lenkeit, W. Ludolphs, A. Maas, A. Marin, J. Milosevic, A. Milov, D. Miskowiec, R. Ortega, Yu. Panebrattsev, O. Petchenova, V. Petracek, A. Pfeiffer, M. Ploskon, S. Radomski, J. Rak, I. Ravinovich, P. Rehak, W. Schmitz, J. Schukraft, H. Sako, S. Shimansky, S. Sedykh, J. Stachel, M. Sumbera, H. Tilsner, I. Tserruya, G. Tsiledakis, T. Wienold, B. Windelband, J.P. Wessels, J.P. Wurm, W. Xie, S. Yurevich, V. Yurevich

10-Jul-2007

quark-gluon plasma paradox

10-Jul-2007

QGP paradox: statement of the problem

simultaneously in the whole volume

no way to synchronize regions separated by space-like interval so single quarks may remain between hadronization domains

one region after another ("burning log")

terribly slow!

10-Jul-2007

QGP paradox demonstrated

- I will start from an allowed state (1 mm³ of QGP)
- I will never violate any physics law
- I will end up in a not allowed state (with single quarks)

QGP paradox: experiment 1

10-Jul-2007

QGP paradox: experiment 2

10-Jul-2007

QGP paradox: 3 ways out

- 1) fast (volume) hadronization
- single quarks can exist, or
- Set the set of the
- Superluminal information transfer is possible

2) slow (surface) hadronization

- Ico slow: Early Universe at least couple of minutes
- In the second second

QGP paradox: 3 ways out

3) true QGP does not exist

- Quarks are in clusters
- Ithe ring can be cut only between two such clusters
- In the second second

backup slides

10-Jul-2007

pt covariance at 158 GeV: centrality dependence

Source anisotropy from HBT

E895 PLB 496 (2000) 1 STAR nucl-ex/0312009

pion-proton correlations central Pb+Au 158 GeV per nucleon

10-Jul-2007

pair acceptance

pion-proton correlations

central Pb+Au at 158 AGeV

Dariusz Antonczyk, Ph.D. thesis

idea:

asymmetry of correlation function is related to the asymmetry of the relative source distribution (Lednicky, Phys.Lett.B373(96)30)

analysis:

pair c.m.s. $q = p_{proton} - p_{pion}$ $C(q_{\parallel}, q_{\perp})$ q_{\parallel} is parallel to the pair P $_{\perp}$

result :

the proton source is located at a larger transverse radius than the pion source

parametrizing the peak asymmetry

 π^- - proton correlation

10-Jul-2007

peak asymmetry: pt-dependence

centrality 7%, 1.5<y<2.8

Pt is pair pt!

10-Jul-2007

pion-proton displacement: pt-dependence

green: UrQMD (only Δx , not Δt !) blue and red: fit to Δx (see next slide) Δx is the average displacement between protons and pions at freeze-out in the out-direction. Positive Δx – protons outside

pion-proton correlations conclusion

- ø protons freeze-out at larger radii than pions
- Quantitatively consistent with transverse flow

centrality determination

Pb+Au at 158 GeV per nucleon

10-Jul-2007

charged particle multiplicity

dNch/dn in central collisions of Au or Pb

Pb+Au at 158 GeV per nucleon

charged particle multiplicity determined from hits in the two silicon detectors

two-track cut

Different cuts needed for the two topologies: sailor and cowboy

10-Jul-2007

determination of the reaction plane

10-Jul-2007

distribution of the reaction plane angle

D. Antonczyk

resolution of the reaction plane

D. Antonczyk

resolution 31°-38° (depending on centrality)

10-Jul-2007

