Freeze-out characterization in

Pb+Au collisions at 158 AGeVS

Dariusz Miśkowiec, GSI Darmstadt

CERES Collaboration

D. Adamova, G. Agakichiev, D. Antonczyk, A. Andronic, H. Appelshäuser, V. Belaga, J. Bielcikova, P. Braun-Munzinger, O. Busch, A. Cherlin, S. Damjanovic, T. Dietel, L. Dietrich, A. Drees, S. Esumi, K. Filimonov, K. Fomenko, Z. Fraenkel, C. Garabatos, P. Glässel, G. Hering, J. Holeczek, M. Kalisky V. Kushpil, B. Lenkeit, W. Ludolphs, A. Maas, A. Marin, J. Milosevic, A. Milov, D. Miskowiec, R. Ortega, Yu. Panebrattsev, O. Petchenova, V. Petracek, A. Pfeiffer, M. Ploskon, S. Radomski, J. Rak, I. Ravinovich, P. Rehak, W. Schmitz, J. Schukraft, H. Sako, S. Shimansky, S. Sedykh, J. Stachel, M. Sumbera, H. Tilsner, I. Tserruya, G. Tsiledakis, T. Wienold, B. Windelband, J.P. Wessels, J.P. Wurm, W. Xie, S. Yurevich, V. Yurevich

CERES run history

1990	installation	
1991	completed	
1992	200 GeV S+Au	4M central
		445 open pairs
1993	450 GeV p+Be	10M pairs
	450 GeV p+Au	3M pairs
1995	160 GeV Pb+Au	10M central
1996	160 GeV Pb+Au	50M central
		2700 open pairs
1997	upgrade	
1998	upgrade	
1999	40 GeV Pb+Au	10M central
		185 open pairs
2000	80 GeV Pb+Au	1M central
	160 GeV Pb+Au	30M central

WPCF 2007, Santa Rosa, D. Miskowiec

CERES setup in 2000

CERES built and upgraded for leptons; but also good for... pt spectra, elliptic flow, two-particle correlations of hadrons

Retière, Lisa, PRC 70(2004)044907

analytic hydro-inspired 8-d emission function

$$S(x,K) = m_T \cosh(\eta - Y) \,\Omega(r,\phi_S) \, e^{\frac{-(\tau - \tau_0)^2}{2\Delta\tau^2}} \frac{1}{e^{K \cdot u/T} \pm 1}$$

1

with the space profile

$$\Omega(r,\phi_S) = \Omega(\widetilde{r}) = \frac{1}{1 + e^{(\widetilde{r}-1)/a}}$$

and the normalized elliptic radius

$$\widetilde{r}(r,\phi_S) = \sqrt{\frac{\left(r\cos(\phi_S)\right)^2}{R_x^2} + \frac{\left(r\sin(\phi_S)\right)^2}{R_y^2}}$$

and the flow four-velocity

$$u = u_{\mu}(x, \rho_0, \rho_2)$$

analytic hydro-inspired 8-d emission function $S(x,K) = m_T \cosh(n - Y) \Omega(r,\phi_S) e^{\frac{-(\tau - \tau_0)^2}{2\Delta \tau^2}} \frac{1}{e^{K \cdot u/T} \pm 1}$

1

with the space profile

$$\Omega(r,\phi_S) = \Omega(\widetilde{r}) = \frac{1}{1 + e^{(\widetilde{r}-1)/a}}$$

and the normalized elliptic radius

$$\widetilde{r}(r,\phi_S) = \sqrt{\frac{(r\cos(\phi_S))^2}{R_x^2} + \frac{(r\sin(\phi_S))^2}{R_y^2}}$$

and the flow four-velocity

$$u = u_{\mu}(\mathbf{x}, \rho_0, \rho_2)$$

function of four space-time coordinates

analytic hydro-inspired 8-d emission function

$$S(x,K) = m_T \cosh(\eta - Y) \Omega(r,\phi_S) e^{\frac{-(\tau - \tau_0)^2}{2\Delta \tau^2}} \frac{1}{e^{K \cdot t/T} + 1}$$

1

with the space profile

$$\Omega(r,\phi_S) = \Omega(\widetilde{r}) = \frac{1}{1 + e^{(\widetilde{r}-1)/a}}$$

and the normalized elliptic radius

$$\widetilde{r}(r,\phi_S) = \sqrt{\frac{\left(r\cos(\phi_S)\right)^2}{R_x^2} + \frac{\left(r\sin(\phi_S)\right)^2}{R_y^2}}$$

and the flow four-velocity

$$u = u_{\mu}(x, \rho_0, \rho_2)$$

function of four momentum components

1

with the space profile

$$\Omega(r,\phi_S) = \Omega(\widetilde{r}) = \frac{1}{1 + e^{(\widetilde{r}-1)/2}}$$

and the normalized elliptic radius

with eight parameters

$$\widetilde{r}(r,\phi_S) = \sqrt{\frac{\left(r\cos(\phi_S)\right)^2}{R_x^2} + \frac{\left(r\sin(\phi_S)\right)^2}{R_y^2}}$$

and the flow four-velocity

$$u = u_{\mu}(x \rho_0, \rho_2)$$

CERES (points) and blast T=100 MeV (lines)

WPCF 2007, Santa Rosa, D. Miskowiec

CERES (points) and blast T=80 MeV (lines)

WPCF 2007, Santa Rosa, D. Miskowiec

CERES (points) and blast T=100 MeV as=0.3 (lines)

1-Aug-2007

WPCF 2007, Santa Rosa, D. Miskowiec

hydro

Pasi Huovinen

- hydrodynamical model, see e.g. nucl-th/0305064
- Ireeze-out at a fixed energy density (similar to fixed temp)
- ø dedicated calculation of Au+Pb at 158 A GeV, b=2.6 fm

two sets of results:

- T=160 MeV (like at chemical freeze-out)
- T=120 MeV (like at kinetic freeze-out)

CERES (points) and hydro T=120 MeV (lines)

WPCF 2007, Santa Rosa, D. Miskowiec

CERES (points) and hydro T=160 MeV (lines)

WPCF 2007, Santa Rosa, D. Miskowiec

hydro RMC HBT puzzle

try another flavour of hydro

black and blue points: CERES data

red line:present day hydro (Pasi Huovinen)green line:old days hydro (Bernd Schlei)

Ornik, Plümer, Schlei, Strottman, Weiner PRC 54(1996)1381, Pb+Pb at 160A GeV; rapidity and centrality not matched to CERES data so detailed comparison not possible; but, in any case...

Rout/Rside totally different from the present hydro

hydro **≠** hydro

room for improvement in the present hydro?

Use blast to understand what is "wrong" in hydro:

- Is the second state of the second state of
- It CERES by blast and fit hydro by blast and compare the resulting parameters
- Identify THE parameter which is different \rightarrow this is what needs to be fixed in hydro

hydro 120 MeV (points) and blast (lines)

1-Aug-2007

WPCF 2007, Santa Rosa, D. Miskowiec

hydro 120 MeV (points) and blast, fit only HBT!

WPCF 2007, Santa Rosa, D. Miskowiec

hydro 160 MeV (points) and blast (lines)

WPCF 2007, Santa Rosa, D. Miskowiec

blast vs. hydro

Use blast to understand what is wrong in hydro:

hydro freeze-out profile

Why is R_{out} so large and R_{side} so small in hydro ?

Hint by Pasi Huovinen: freeze-out profile

blast wave freeze-out profile

"fit" to hydro

120 MeV

Yuri Sinyukov's blast wave freeze-out profile

Phys.Rev. C73 (2006) 024903 *pi- pi- from PHENIX and STAR*

Bernd Schlei's hydro freeze-out profile

nucl-th/9706037

WPCF 2007, Santa Rosa, D. Miskowiec

influence of the freeze-out surface

WPCF 2007, Santa Rosa, D. Miskowiec

summary

- Is blast fits reasonably well CERES spectra, flow, and HBT
- A hydro fits CERES spectra and flow but not HBT radii
- Is blast is qualitatively different from hydro (even if "inspired" by it)
- Iroubles with hydro may be caused by:

freeze-out surface moving inward? probably not... its unrealistically small thickness? probably not... with the two hydro versions giving so different results one should be able to nail it down!

azimuthal HBT from CERES: appetizer

Pb+Au at 158 AGeV preliminary

more about this subject in the talk of D. Antończyk on Friday morning

azimuthal dependence of pion HBT radii

more about this subject in the talk of D. Antończyk on Friday morning

pion-pion correlation function

correlation function

= pair distribution, normalized to event mixing

$$C_2(\mathbf{P}, \mathbf{q}) = \frac{n(\mathbf{p}_1, \mathbf{p}_2)}{n(\mathbf{p}_1) \ n(\mathbf{p}_2)}$$

with mean momentum

and momentum difference

 $P = (p_1 + p_2) / 2$

 $q = p_2 - p_1$

Bertsch-Pratt coordinates LCMS frame

$$\mathbf{q} = (q_{out}, q_{side}, q_{long})$$

acceptance and particle id

Pb+Au at 158 AGeV

two-pion correlation function

Pb+Au at 158 AGeV

D. Antonczyk

fit with
$$C_2(q) = 1 + \lambda \exp\left\{-\sum_{i,j} R_{i,j}^2 q_i q_j\right\}$$
 with $i,j = out$, side, long

correct for Coulomb and finite momentum resolution

HBT radii: pt dependence

Pb+Au at 158 AGeV centrality 5%

D. Antonczyk

HBT radii vs azimuthal pion angle - expectation

HBT radii in bins of the azimuthal pair angle

pion-pion correlation function

azimuthal angle dependence of the HBT radii - simulation

D. Antonczyk

π⁻π⁻
π⁺π⁺

Gaussian source parameterization with $R_x = 4$ (fm), $R_y = 5$ (fm), $R_z = 7$ (fm)

azimuthal angle dependence of HBT radii

Pb+Au at 158 AGeV

D. Antonczyk

1-Aug-2007

WPCF 2007, Santa Rosa, D. Miskowiec

azimuthal angle dependence of HBT radii

Pb+Au at 158 AGeV

D. Antonczyk

WPCF 2007, Santa Rosa, D. Miskowiec

pion source size anisotropy

Pb+Au at 158 AGeV preliminary

parametrize the oscillation with $R_i^2 = R_{i,0}^2 + 2 R_{i,2}^2 \cos \left[2(\Phi_{\pi\pi} - \Phi_{RP})\right] \rightarrow$

D. Antonczyk

...compared to RHIC

• CERES	158 AGeV	<pt> = 0.47 GeV/c</pt>	D. Antonczyk, Ph.D.
STAR	sqrt(s) = 130 GeV	0.125 <pt<0.45 c<="" gev="" td=""><td></td></pt<0.45>	
• STAR	sqrt(s) = 200 GeV	0.15 <pt<0.6 c<="" gev="" td=""><td>PRL 93 (2004) 012301</td></pt<0.6>	PRL 93 (2004) 012301

... and AGS

E895	●2,∎ 4, ▲ 6 AGeV	<pt> = 0.11 GeV/c</pt>	Phys. Lett. B 496 (2000) 1
• CERES	158 AGeV	<pt> = 0.47 GeV/c</pt>	D. Antonczyk, Ph.D.
STAR	sqrt(s) = 130 GeV	0.125 <pt<0.45 c<="" gev="" td=""><td></td></pt<0.45>	
• STAR	sqrt(s) = 200 GeV	0.15 <pt<0.6 c<="" gev="" td=""><td>PRL 93 (2004) 012301</td></pt<0.6>	PRL 93 (2004) 012301

source anisotropy vs sqrt(s)

Pb+Au, Au+Au centrality 15-20%

- In non-monotonic behavior of R_{side}

backup slides

HBT radii: centrality dependence

Pb+Au at 158 AGeV < *p_t* > = 0.47 GeV/c D. Antonczyk

centrality is defined as σ/σ_{GEOM} with $\sigma_{GEOM} = 6.94$ b

blast - source shape

WPCF 2007, Santa Rosa, D. Miskowiec

T - ρ contours

hydro 120 MeV (points) and blast as=0.3 (lines)

1-Aug-2007

WPCF 2007, Santa Rosa, D. Miskowiec

hydro 160 MeV (points) and blast as=0.3 (lines)

WPCF 2007, Santa Rosa, D. Miskowiec

Source anisotropy from HBT

E895 PLB 496 (2000) 1 STAR nucl-ex/0312009

charged particle multiplicity

Pb+Au at 158 GeV per nucleon

charged particle multiplicity determined from hits in the two silicon detectors

 $dNch/d\eta$ in central collisions of Au or Pb compilation by A. Andronic

two-track cut

Different cuts needed for the two topologies: sailor and cowboy

WPCF 2007, Santa Rosa, D. Miskowiec

determination of the reaction plane

distribution of the reaction plane angle

D. Antonczyk

resolution of the reaction plane

D. Antonczyk

resolution 31°-38° (depending on centrality)