NA45/CERES at the SPS

(tips and tricks around the experiment)

Dariusz Miśkowiec

GSI Darmstadt

Hades Summer School, Kleinwalsertal

September 2007

D. Miskowiec, Hades Summer School 2007

CERES Collaboration

D. Adamova, G. Agakichiev, D. Antonczyk, A. Andronic, H. Appelshäuser, V. Belaga, J. Bielcikova, P. Braun-Munzinger, O. Busch, A. Cherlin, S. Damjanovic, T. Dietel, L. Dietrich, A. Drees, S. Esumi, K. Filimonov,
K. Fomenko, Z. Fraenkel, C. Garabatos, P. Glässel, G. Hering, J. Holeczek, M. Kalisky V. Kushpil, B. Lenkeit, W. Ludolphs, A. Maas, A. Marin, J. Milosevic, A. Milov, D. Miskowiec, R. Ortega, Yu. Panebrattsev,
O. Petchenova, V. Petracek, A. Pfeiffer, M. Ploskon, S. Radomski, J. Rak,
I. Ravinovich, P. Rehak, W. Schmitz, J. Schukraft, H. Sako, S. Shimansky,
S. Sedykh, J. Stachel, M. Sumbera, H. Tilsner, I. Tserruya, G. Tsiledakis, T. Wienold, B. Windelband, J.P. Wessels, J.P. Wurm, W. Xie, S. Yurevich, V. Yurevich

CERES run history

1990	installation		
1991	completed		
1992	200 GeV S+Au	4M central	
		445 open pairs	
1993	450 GeV p+Be	10M pairs	
	450 GeV p+Au	3M pairs	
1995	160 GeV Pb+Au	10M central	
1996	160 GeV Pb+Au	50M central	
		2700 open pairs	
1997	upgrade		
1998	upgrade		
1999	40 GeV Pb+Au	10M central	
		185 open pairs	
2000	80 GeV Pb+Au	1M central	
	160 GeV Pb+Au	30M central	

1990-	1996	prehistory
1997-	1998	upgrade
1999-	2000	running
2000-	2005	calibration
2001-	2007	analysis

Sources of e⁺e⁻ pairs

Drell-Yan

thermal radiation from QGP (quark annihilation)

thermal radiation from hadron gas (pion annihilation)

meson decays

gamma conversion

CERES results 92-96

 \rightarrow excess of e⁺e⁻ pairs in heavy ion collisions

Origin of the excess pairs

- absent in p+A, present in A+A
- Mee range 0.2-1.0 GeV/c²
- 🥺 low pt
- In proportional to charged-particle-multiplicity squared

consistent with

$$\pi + \pi \rightarrow \rho \rightarrow e^+ e^-$$

 $q + qbar \rightarrow \gamma^* \rightarrow e^+ e^-$

D. Miskowiec, Hades Summer School 2007

Silicon Drift Detectors (SDD)

F		
	RICH1	RICH2
RICH specifications:		
$\Delta \eta$	0.93	0.61
$\langle \eta \rangle$	2.34	2.34
Radiator length (m)	0.9	1.75
Radiator gas	CH_4	CH_4
γ_{thr} (measured)	31.4	32.6
window	CaF_2	quartz
RICH band width (eV)	5.4 - 8.5	5.4 - 7.4
Mirror specifications		
material (thickness)	carbon fiber (0.8 mm)	glass (6 mm)
geometry	one pièce	10 azimuthal segments
inner/outer diameter (m)	0.20 - 0.65	0.85 - 1.75
focal length (cm)	126	420
UV-detector specifications:		
UV-detector area (m^2)	0.42	2.84
inner/outer diameter (m)	0.27 - 0.79	1.06 - 2.20
number of pads	53800	48400
pad size (mm^2)	2.74×2.74	7.62×7.62
channels/module	8×32	11×11
number of modules	210	400
readout chains	16	14
readout freq. (MHz)	2.5	2.5
readout time (μs)	1600	1600

UV1

D. Miskowiec, Hades Summer School 2007

TPC – principle of operation

- \odot cylinder Φ 2.6 m x 2 m
- gas Ne:CO₂ (80:20)
- So radial E-field $E_R \sim 1/r$ with E=200-600 V/cm

TPC E and B fields

first laser shot into CERES TPC

D. Miskowiec, Hades Summer School 2007

first laser events in the CERES TPC

19-Sep-2007

2000 run of CERES - DAQ

BC1	beam Cherenkov 1
BC2	beam Cherenkov 2
target	
BC3	beam Cherenkov 3
МС	multiplicity counter
BC1*2	beam
BC1*2*^3	minb
BC1*2*^3*MC	central

centrality trigger with beam beforeand after-protection

old scheme:

- VME modules controlled by an old FIC processor

new scheme:

- old FIC processor just forwards read and write commands to VME modules (server)
- client software on Linux

Ē	Logic Editor	
0	[0]&[1]&![6]	Clear
1	[0]&[1]&![2]&![6]	Refresh
2	[0]&[1]&![2]&![6]	
3	[0]&[1]	
4	[0]&[1]&![2]	
5	[0]&[1]&![2]&[3]	
6	[0]	
7	[0]&[4]	Done

D. Miskowiec, Hades Summer School 2007

2000 run of CERES

Total events vs time

2000 run of CERES

TPC performance

TPC electric field

Iaser tracks curved

→ field is "wrong"

→ better calculation needed

TPC electric field: calculate in 3d

Maxwell package at CERN

TPC electric field: calculate in 3d

TPC electric field: calculate precisely!

D. Miskowiec, Hades Summer School 2007

TPC electric field: account for bad resistors!

TPC electric field: short in the resistor chain!

TPC electric field: leaking through wires!

2-d Garfield calculation including wires matched to the 3-d calculation of the drift volume

D. Miskowiec, Hades Summer School 2007

TPC electric field: chambers misaligned

effect of chamber misalignment:

- 1. drift path modified
- 2. drift field modified
- (similar contributions, same sign)

TPC electric field: chamber misalignment corrected

3. calculate corrected 3-dim potential as

 $V_{3cor} = V_3 + V_{2,misal} - V_{2,nominal}$

iterate misalignment until reconstructed cylinder has R = 486 mm

TPC electric field: chamber misalignment corrected

TPC electric field: residual correction

ring voltages adjusted to remove the remaining curvature of laser tracks

drift time: effect of the trace length

drift velocity determination with laser tracks

final momentum resolution

centrality determination

Pb+Au at 158 GeV per nucleon

nuclear overlap on the web

http://www.gsi.de/~misko/overlap

Web interface for a nuclear overlap calculation code This nuclear overlap code will calculate the number of participants and the number of binary collisions in an nucleus-nucleus collision via the mass distribution within the two colliding nuclei. Please enter the input parameters below. A: 208 (mass number of the projectile nucleus) B: 208 (mass number of the target nucleus) Which density profile do you want?		Web interface by Jens Elgeti, Bielefeld	
Sharp sphere	Average number of participants and collisions		
sigma: ¥2 (inelastic NN cross section 42, 60 for s=56, 130, 200, 5500 GeV, r Statistics: 1000 (number of trials per Submit A lead lead collision calculation takes t	from: $b = 10$ fm or 10 centrality to: $b = 14.8$ fm or 1.10266 centrality calculate Number of participants: $1.324.4$ Number of collisions: $1.748.8$		

charged particle multiplicity

dileptons traditionally normalized to dN_{ch}/dη
 d

states and the standard analysis, for the 2000 data set new approach:

data driven N_{ch} analysis (no Monte Carlo!)

CERES e+e- mass spectrum:

traditionally normalized to N

dN_{ch}/dη determination without Monte Carlo

segmented Au target

13 disks 25 µm thick diameter 0.6 mm disk-to-disk 2 mm

two silicon drift detectors

360 anodes in phi (hit makes signal on 2-3 anodes) radius via drift time *in principle can be done by counting tracks, track := matching hits in SD1 and SD2. But...*

single track efficiency

I fake tracks

two-track resolution

ø delta electrons

single track efficiency

- ø pick two regions of phi without dead anodes
- acceptance determined by SD1 (narrower windows)

fake track subtraction

ordinate:

19-Sep-2007

two-track resolution

inefficiency for pairs of close tracks
make it worse by applying cuts, study the influence on the result

two-track cuts, extrapolated to zero

delta electrons

determined in the same way but using data taken with the beam trigger

1/2 of the obtained delta electron multiplicity subtracted (on average, beam passes through half of the target thickness before making an interaction)

dN_{ch}/dη vs centrality

raw

corrected for fakes ...and for 2-track resolution seen by TPC (not discussed here)

corrections are significant

corrected results agree with NA57 and NA50

dN_{ch}/dη vs centrality

dN_{ch}/dy vs sqrt(s)

dNch/dη: problems and solutions

- single track efficiency use the best performing parts of detectors
- fake tracks subtract event mixing
- two-track resolution apply separation cuts and extrapolate to zero
- In the sector of the sector

- absolute multiplicities without Monte Carlo
- result very reasonable
- systematic error estimate 12% max

determination of the reaction plane

distribution of the reaction plane angle

D. Antonczyk

D. Miskowiec, Hades Summer School 2007

resolution of the reaction plane

D. Antonczyk

resolution 31°-38° (depending on centrality)

e+e- in Pb+Au at 40 GeV per nucleon

Kirill Filimonov, Sanja Damjanovic Phys. Rev. Lett. 91 (2003) 042301

Modification of the ρ -meson mass observed

in control Dh Au Collicions at CEDN CDC

CERES, submitted to Phys. Lett. B

closer look: ρ -meson signal (all other cocktail components subtracted)

Brown, Rho, PRL 66(1991)2720, Phys. Rep. 269(1996)333, Phys. Rep. 363(2002)85 Rapp, Wambach, Adv.Nucl.Phys. 25(2000)1, Hess,Rapp, PRL 97(2006)162302

 ρ - enhancement in hot and dense medium

interactions with baryons responsible for the observed ρ -meson modification

D. Miskowiec, Hades Summer School 2007

e+e- mass spectrum: lowering the pt-cut

Pb+Au at 158 GeV per nucleon

Sergey Yurevich

poor signal-to-background ratio due to the π^{0} -Dalitz electrons

e+e- mass spectrum: increasing the pt-cut

Pb+Au at 158 GeV per nucleon

Sergey Yurevich

 ϕ puzzle: D. Röhrich, J.Phys.G 27(2001)355

the e⁺e⁻ mass spectrum; Phys. Rev. Lett. 96 (2006) 152301 Ana Marin CERES $\Phi \rightarrow e^+ e^-$ പ് 0 10 $\phi \rightarrow K^+K^-$ 1/m,d²n/dm,dy ((GeV/c) _ 1 1 CERES $\Phi \rightarrow K^+K^-$ ٠ Counts NA49 $\Phi \rightarrow K^+ K^-$ 30000 PRELIMINAR NA50 $\Phi \rightarrow \mu^+ \mu^-$ 158 A GM Δ $\phi \rightarrow K^*K^*$ 2000d scaled to NA49 rapidity range 2.2 <y_<2.4 10000 5 GeV/c a C < 1.75 GeV/ 0.98 1.02 1.04 2 1 1.06 1.08 11 1.12 m_{inv} (GeV/c²) 10⁻² L leptonic and hadronic channels agree 1.8 2 2.2 m_t-m_{t₀} (GeV/c) 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1

 $\phi \rightarrow e^+e^-$ extracted from

First HBT analysis with upgraded CERES

Heinz Tilsner and Harry Appelshäuser, PRL 90 (2003) 022301

D. Miskowiec, Hades Summer School 2007

new analysis by D. Antończyk 2003-2006

Setter momentum, centrality, reaction plane resolutions

ø better two-track separation cut

In the second second

emphasis on nonidentical and reaction plane dependence...

...however, most of the statistics central 7%

pion-pion correlation function

correlation function = pair distribution, normalized to event mixing

$$C_2(\mathbf{P}, \mathbf{q}) = \frac{n(\mathbf{p}_1, \mathbf{p}_2)}{n(\mathbf{p}_1) \ n(\mathbf{p}_2)}$$

with mean momentum

and momentum difference

 $P = (p_1 + p_2) / 2$

 $q = p_2 - p_1$

acceptance and particle id

Pb+Au at 158 AGeV

two-track cut

two-pion correlation function

Pb+Au at 158 AGeV

D. Antonczyk

fit with
$$C_2(q) = 1 + \lambda \exp\left\{\sum_{i,j} R_{i,j}^2 q_i q_j\right\}$$
 with i,j = out, side, long

correct for Coulomb and finite momentum resolution

HBT radii: centrality dependence

Pb+Au at 158 AGeV < *p_t* > = 0.47 GeV/c D. Antonczyk

centrality is defined as σ/σ_{GEOM} with σ_{GEOM} = 6.94 b

HBT radii vs azimuthal pion angle - expectation

HBT radii in bins of the azimuthal pair angle

pion-pion correlation function

azimuthal angle dependence of the HBT radii - simulation

D. Antonczyk

Gaussian source parameterization with $R_x = 4$ (fm), $R_y = 5$ (fm), $R_z = 7$ (fm)

azimuthal angle dependence of HBT radii

Pb+Au at 158 AGeV

D. Antonczyk

19-Sep-2007

D. Miskowiec, Hades Summer School 2007

azimuthal angle dependence of HBT radii

Pb+Au at 158 AGeV

D. Antonczyk

19-Sep-2007

D. Miskowiec, Hades Summer School 2007

pion source size anisotropy

Pb+Au at 158 AGeV preliminary

parametrize the oscillation with $R_i^2 = R_{i,0}^2 + 2 R_{i,2}^2 \cos [2(\Phi_{\pi\pi} - \Phi_{RP})] \rightarrow$

D. Antonczyk

...compared to RHIC

• CERES	158 AGeV	<pt> = 0.47 GeV/c</pt>	D. Antonczyk, Ph.D.
STAR	sqrt(s) = 130 GeV	0.125 <pt<0.45 c<="" gev="" td=""><td></td></pt<0.45>	
• STAR	sqrt(s) = 200 GeV	0.15 <pt<0.6 c<="" gev="" td=""><td>PRL 93 (2004) 012301</td></pt<0.6>	PRL 93 (2004) 012301

E895 • CERES	●2,∎ 4, ▲ 6 AGeV 158 AGeV	<pt> = 0.11 GeV/c <pt> = 0.47 GeV/c</pt></pt>	Phys. Lett. B 496 (2000) 1 D. Antonczyk, Ph.D.
STAR	sqrt(s) = 130 GeV	0.125 <pt<0.45 c<="" gev="" th=""><th></th></pt<0.45>	
• STAR	sqrt(s) = 200 GeV	0.15 <pt<0.6 c<="" gev="" th=""><th>PRL 93 (2004) 012301</th></pt<0.6>	PRL 93 (2004) 012301

source anisotropy vs sqrt(s)

Pb+Au, Au+Au centrality 15-20%

pion-proton correlations

D. Miskowiec, Hades Summer School 2001

Retière, Lisa, PRC 70(2004)044907

analytic hydro-inspired 8-d emission function

$$S(x,K) = m_T \cosh(\eta - Y) \,\Omega(r,\phi_S) \, e^{\frac{-(\tau - \tau_0)^2}{2\Delta\tau^2}} \frac{1}{e^{K \cdot u/T} \pm 1}$$

1

with the space profile

$$\Omega(r,\phi_S) = \Omega(\widetilde{r}) = \frac{1}{1 + e^{(\widetilde{r}-1)/a}}$$

and the normalized elliptic radius

$$\widetilde{r}(r,\phi_S) = \sqrt{\frac{\left(r\cos(\phi_S)\right)^2}{R_x^2} + \frac{\left(r\sin(\phi_S)\right)^2}{R_y^2}}$$

and the flow four-velocity

$$u = u_{\mu}(x, \rho_0, \rho_2)$$

analytic hydro-inspired 8-d emission function

$$S(\mathbf{x},K) = m_T \cosh(\eta - Y) \,\Omega(r,\phi_S) \, e^{\frac{-(\tau - \tau_0)^2}{2\Delta \tau^2}} \frac{1}{e^{K \cdot u/T} \pm \frac{1}{2\Delta \tau^2}}$$

1

with the space profile

$$\Omega(r,\phi_S) = \Omega(\widetilde{r}) = \frac{1}{1 + e^{(\widetilde{r}-1)/a}}$$

and the normalized elliptic radius

$$\widetilde{r}(r,\phi_S) = \sqrt{\frac{(r\cos(\phi_S))^2}{R_x^2} + \frac{(r\sin(\phi_S))^2}{R_y^2}}$$

and the flow four-velocity

$$u = u_{\mu}(\mathbf{X}, \rho_0, \rho_2)$$

19-Sep-2007

function of four space-time coordinates

analytic hydro-inspired 8-d emission function

$$S(x,K) = m_T \cosh(\eta - Y) \Omega(r,\phi_S) e^{\frac{-(\tau - \tau_0)^2}{2\Delta \tau^2}} \frac{1}{e^{K \cdot t/T} + 1}$$

1

with the space profile

$$\Omega(r,\phi_S) = \Omega(\widetilde{r}) = \frac{1}{1 + e^{(\widetilde{r}-1)/a}}$$

and the normalized elliptic radius

$$\widetilde{r}(r,\phi_S) = \sqrt{\frac{\left(r\cos(\phi_S)\right)^2}{R_x^2} + \frac{\left(r\sin(\phi_S)\right)^2}{R_y^2}}$$

and the flow four-velocity

$$u = u_{\mu}(x, \rho_0, \rho_2)$$

function of four momentum components

analytic hydro-inspired 8-d emission function $S(x,K) = m_T \cosh(\eta - Y) \Omega(r,\phi_S) e^{\frac{-(\tau - \tau_0)^2}{2\Delta \tau^2}} \frac{1}{e^{K \cdot u T}}$

1

with the space profile

$$\Omega(r,\phi_S) = \Omega(\widetilde{r}) = \frac{1}{1 + e^{(\widetilde{r}-1)/2}}$$

and the normalized elliptic radius

$$\widetilde{r}(r,\phi_S) = \sqrt{\frac{(r\cos(\phi_S))^2}{R_x^2} + \frac{(r\sin(\phi_S))^2}{R_y^2}}$$

and the flow four-velocity

with eight parameters

 $u = u_{\mu}(x \rho_0, \rho_2)$

CERES (points) and blast T=100 MeV (lines)

CERES (points) and hydro T=120 MeV (lines)

D. Miskowiec, Hades Summer School 2007

hydro RMC HBT puzzle

try another flavour of hydro

black and blue points: CERES data

red line: green line: present day hydro (Pasi Huovinen) old days hydro (Bernd Schlei)

Ornik, Plümer, Schlei, Strottman, Weiner PRC 54(1996)1381, Pb+Pb at 160A GeV; rapidity and centrality not matched to CERES data so detailed comparison not possible; but, in any case...

Rout/Rside totally different from the present hydro

hydro **≠** hydro

pt fluctuations

motivation:

enhanced fluctuations at critical point

difficulty:

distinguish from trivial fluctuations (statistical, centrality, HBT, elliptic flow...)

observation:

19-Sep-2007

pt fluctuations strategy: analyze pt-pt

correlations as a function of An and Am

$$\begin{aligned} & \text{relations} \\ \sigma_{\text{pt dyn}}^2 = \sigma_{\langle \text{pt} \rangle}^2 - \sigma_{\text{pt}}^2 / \langle \mathbf{M} \rangle \\ \Sigma_{\text{pt}} = \sigma_{\text{pt dyn}} / \langle \mathbf{pt} \rangle \\ \langle \Delta \mathbf{pt}_i, \Delta \mathbf{pt}_j \rangle &\cong \sigma_{\text{pt dyn}}^2 \\ \Phi_{\text{pt}} &\cong \langle \mathbf{M} \rangle \sigma_{\text{pt dyn}}^2 / 2\sigma_{\text{pt}} \end{aligned}$$
pt fluctuations

Pb+Au at 158 AGeV

Harry Appelshaeuser Georgios Tsiledakis

pt covariance at 158 GeV:

<u>contrality donondonce</u>

D. Miskowiec, Hades Summer School 2007

pt covariance at 158 GeV:

contrality dopondonce

Pb+Au at 158 AGeV preliminary

the observed centrality dependence comes from the short-range and the away-side correlations

 $30^{\circ} < \Delta \phi < 60^{\circ}$ region, which is free of these effects and of elliptic flow, shows no signal

pt covariance at 80 GeV:

<u>contrality donondonce</u>

D. Miskowiec, Hades Summer School 2007

pt covariance at 80 GeV:

<u>contrality donondonce</u>

Pb+Au at 80 AGeV preliminary

pt covariance: beam energy dependence

CERES central Pb+Au 158 AGeV preliminary STAR central Au+Au 20-200 GeV PRC 72 (2005) 044902

summary... and outlook

- Investigation of the second state of the se
- 58 members
- 57 publications (SPIRES)
- I318 citations
- In ALICE practically all members now working in ALICE

backup slides

pt covariance at 158 GeV:

<u>contrality donondonce</u>

Pb+Au at 158 AGeV preliminary

Extracting the asymmetry

 π^- - proton correlation

19-Sep-2007

D. Miskowiec, Hades Summer School 2007

118

Fitting R_{side} and Δx

R_{side} (fm)

$$R_{side}(p_{\perp}) = \frac{R_G}{\sqrt{1 + \frac{m_{\perp} \eta_f^2}{T}}} \qquad m_{\perp} = \sqrt{m_{\pi} + \left(\frac{P_{\perp}}{2}\right)^2}$$

U. Heinz, many many papers

R. Lednicky, nucl-th/0305027, based on Akkelin, Sinyukov Z.Phys.C 72(1996)501

0.6

0.8

0.2

0.4

1.2

P_L(GeV/c)

 $\pi^{+} - \pi^{+}$

Fitting R_{side} and Δx

fixed T=120 MeV

	Во	R _G (fm)
π + p	0.695 (7)	7.64 (7)
<i>π</i> - <i>p</i>	0.655 (6)	7.41 (12)
π + p and π - p	0.663 (4)	7.42 (12)

e⁺e⁻ enhancement: centrality dependence

Pb+Au at 158 GeV per nucleon

Sergey Yurevich

final position resolution

final mass resolution

final dE/dx resolution

final position resolution

final momentum resolution

Compare to the widths in 1999: lambda 12.6 MeV, K0 21.7 MeV

TPC contribution to pid (via dE/dx)

centrality of the analyzed data set

Track multiplicity in the TPC

19-Sep-2007

D. Miskowiec, Hades Summer School 2007

CERES setup in 2000

Is rho-modification interesting?

At high density and/or temperature chiral condensate disappears

 \rightarrow meson masses change

quarks interact with chiral condensate

GENESIS

$\frac{dN}{dy} \sim \cosh^{-2}[0.75/\sigma(y-y_o)] \\ \frac{dN}{dp_t} \sim Ae^{-Bm_t} + C(1-0.0682 m_t)^{7.9}/(1+m_t^2)^4$

particle	relative abundance	decays
π°	1.0	$\pi^{o} o \gamma e^{+}e_{-}$
η	0.053	<i>η</i> → γe+e–
η'	0.009	η' → γe+e–
φ	0.0033	$oldsymbol{arphi} ightarrow$ e+e–
ρ	0.065	$oldsymbol{ ho} ightarrow$ e+e–
ω	0.065	$oldsymbol{\omega} ightarrow$ e+e– $oldsymbol{\omega} ightarrow$ ve+e–

comparison to the 95/96 data

Pb+Au at 158 GeV per nucleon

2000 data: Sergey Yurevich, Heidelberg

Pair acceptance

HBT radii: pt dependence

Pb+Au at 158 AGeV centrality 5%

D. Antonczyk

Pion-proton correlations

pair c.m.s.

 $q = p_{proton} - p_{pion}$

 $C(q_{\parallel},q_{\perp})$

 $\textbf{q}_{||}$ is the component parallel to the pair P $_{\perp}$

pion-proton correlations

central Pb+Au at 158 AGeV

Dariusz Antonczyk

First HBT results with upgraded CERES

analysis by Heinz Tilsner and Harry Appelshäuser centrality and energy dependence

CERES (points) and blast T=80 MeV (lines)

141

CERES (points) and hydro T=160 MeV (lines)

hydro 120 MeV (points) and blast (lines)

pt fluctuations, charge dependence

Pb+Au at 158 GeV per nucleon

G. Tsiledakis, GSI Darmstadt

pt fluctuations, event mixing

Pb+Au at 158 GeV per nucleon

G. Tsiledakis, GSI Darmstadt

A flow

Pb+Au at 158 GeV per nucleon

Jovan Milosevic

comparison with hydro (P. Huovinen):

calculation with T=160 MeV describes the Λ and π flow

comparison with STAR PRL 92(2004)052302:

similar pt dependence about 60% in magnitude

angular correlations of high-pt particles

Pb+Au at 158 GeV per nucleon

19-Sep-2007

D. Miskowiec, Hades Summer School 2007