
D
03
50
R5

Document Number: D0350R5

Date: 2023-02-13

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Audience: LEWG

Target: C++23 (pending simd merge)

Integrating simd with parallel
algorithms

ABSTRACT

This paper discusses a new execution policy for integrating simd with parallel algorithms.

CONTENTS

— February 13, 2023 at 23:29 —

D
03
50
R5

D0350R5 1 Changelog

1 CHANGELOG

1.1 changes from revision 0

Previous revision: P0350R0

• Update to apply against C++17 wording.

• Removed executors discussion because the executors design has not left SG1 yet.

• Updated example code to reflect changes in P0214.

1.2 changes from revision 1

Previous revision: P0350R1

• Updated code to match [N4744].

• Fixed a bug in the for_each example implementation.

• Improved iota and for_each example implementations with constexpr-if.

• Discuss impact on all algorithms.

1.3 changes from revision 2

Previous revision: P0350R2

• Discuss ABI tag of std::generate callables.

• Add a Tony Table.

• Note that remove and remove_copy are implicitly vectorizable.

1.4 changes from revision 3

Previous revision: P0350R3

• Add heap algorithms to list of algorithms that may benefit from new execution policy.

• Discuss the 3 options for generate.

• Settle on simd_mask predicates.

1

— February 13, 2023 at 23:29 —

https://wg21.link/P0350R0
https://wg21.link/P0350R1
https://wg21.link/P0350R2
https://wg21.link/P0350R3

D
03
50
R5

D0350R5 2 Straw Polls

1.5 changes from revision 4

Previous revision: P0350R4

. Discuss algorithms in <numeric>. (transform_reduce is a bit more involved because of differ-

ent value_types)

. Mention <memory> algorithms (they don’t call user-defined code).

. Add pointer to P0214 for motivation.

. Fix mention of swap_ranges, which was swap before.

. Add C++20’s shift_left and shift_right.

. make_heap, push_heap, pop_heap, and sort_heap have no execution policy overload. Do fix.

. Discuss permission to fall back to sequential execution (i.e. T vs. simd<T, scalar>).

2 STRAW POLLS

2.1 sg1 at oulu

Poll: Ship it to LEWG?

SF F N A SA

6 6 2 0 0

2.2 lewg at albuquerque

Poll: Forward the paper to LWG?

SF F N A SA

1 1 2 1 1

→ Paper needs a revision: LEWG wants a list of affected algorithms and an update to concept

requirements.

2.3 lewg at cologne 2019

Poll: Prefer expressing simd execution via policy tag (not newly named algorithms, std::simd_-
transform, etc).
SF F N A SA

4 9 3 0 0

2

— February 13, 2023 at 23:29 —

https://wg21.link/P0350R4

D
03
50
R5

D0350R5 3 Introduction

Poll: What do we do with predicates? (Roughly option 2 from the paper, be mindful of the amount

of wording that is thrown out of conformance.)

→ unanimous consent

Poll: Require that this goes first into std::ranges algorithms (which haven’t been parallelized yet).

SF F N A SA

0 2 7 5 2

Revise and come back.

3 INTRODUCTION

Parallel Algorithms enable implementations of the existing STL algorithms to use non-sequential se-

mantics when executing the user-supplied code (explicit callable or implicit operator call). The first

argument to the algorithm function determines this change in execution semantics via an execution

policy. This paper introduces a new execution policy, called execution::simd1. execution::simd
requires user-provided function objects to be callable with simd<T, Abi> arguments instead of the

T arguments the execution::seq variant would use. The algorithm therefore processes chunks of

simd<T, Abi>::size() objects concurrently. The execution order of the chunks retains the sequen-
tial semantics of the non-parallel algorithms.

As a consequence, the applicability of the execution policy is limited to iteratorswhere Iterator::value_-
type is a vectorizable type [N4744]. A future extension of simd may lift this restriction by allowing

certain (or all) user-defined types as first template argument to simd. A different conceivable ex-

tensions is a recursive destructuring applied inside the algorithm, subsequent creation of a corre-

sponding number of simd objects, and a call to the function object with a corresponding number of

arguments. (E.g. application of an algorithm on std::vector<std::pair<float, float>> calls the
function object with simd<float>, simd<float> instead of simd<std::pair<float, float>>.)

4 PARALLEL ALGORITHMS

4.1 example

Consider the example in Listing ??. The iota and for_each functions each could create an internal

simd iterator adaptor, depending on the iterator category. Being able to determine whether the

storage, the iterator points to, is contiguous, is most important in this context as it enables vector

loads and stores. Since the std::vector iterators are contiguous iterators, the example implemen-

tations shown in Listing ?? and Listing ?? could be used for the example.

1 An alternative suggestion for the name is execution::simd_type.

3

— February 13, 2023 at 23:29 —

D
03
50
R5

D0350R5 4 Parallel Algorithms

before with D0350R5

using V = stdx :: native_simd <float >;
constexpr int N = 60;

template <class T> T something (T);

auto f(const std::array <float , N>& data)
{

std::array <float , N> output;

size_t i = 0;
for (; i + V:: size () <= N; i += V:: size ()) {

V x(& data[i], stdx :: element_aligned);
x = something (x + 1);
x. copy_to (& output[i], stdx :: element_aligned);

}
for (; i < N; ++i) {

output[i] = something (data[i] + 1);
}

return output;
}

using V = stdx :: native_simd <float >;
constexpr int N = 60;

template <class T> T something (T);

auto f(const std::array <float , N>& data)
{

std::array <float , N> output;

stdx :: transform (std:: execution ::simd ,
data.begin (), data.end(), output.begin (),
[](auto x) {

return something (x + 1);
});

return output;
}

Tony Table 1: Transformation of an array. c.f. https://godbolt.org/z/mEL3CK

1 std::vector <float > data;
2 data.resize (99);
3 iota(execution::simd, data.begin (), data.end(), 0.f);
4 for_each (execution::simd, data.begin (), data.end(), [](auto &x) {
5 x *= x;
6 });

Listing 1: Example using execution::simd with iota and for_each.

4

— February 13, 2023 at 23:29 —

https://godbolt.org/z/mEL3CK

D
03
50
R5

D0350R5 4 Parallel Algorithms

1 template <size_t N, class ContiguousIterator >
2 inline void epilogue (ContiguousIterator first , ContiguousIterator last ,
3 typename ContiguousIterator :: value_type first_value) {
4 if constexpr (N > 0) {
5 if (distance (first , last) >= N) {
6 using T = ContiguousIterator :: value_type ;
7 using V = simd <T, simd_abi :: deduce_t <T, N>>;
8 const V init = V([&](auto i) { return T(i); }) + first_value ;
9 store(init , std:: addressof (* first), element_aligned);
10 first += V:: size ();
11 }
12 epilogue <V:: size () / 2>(first , last , init[V:: size () - 1] + 1);
13 }
14 }
15

16 template <class ContiguousIterator >
17 void iota(execution::simd_policy, ContiguousIterator first , ContiguousIterator last ,
18 typename ContiguousIterator :: value_type first_value) {
19 using T = ContiguousIterator :: value_type ;
20 using V = native_simd <T>;
21 V init = V([&](auto i) { return T(i); }) + first_value ;
22 const V stride = T(V:: size ());
23 for (; distance (first , last) >= V:: size (); first += V:: size (), init += stride) {
24 store(init , std:: addressof (* first), element_aligned);
25 }
26 epilogue <V:: size () / 2>(first , last , init[V:: size () - 1] + 1);
27 }

Listing 2: Implementation idea for the iota function used in Listing ??.

5

— February 13, 2023 at 23:29 —

D
03
50
R5

D0350R5 4 Parallel Algorithms

1 template <size_t N, class ContiguousIterator , class UnaryFunction >
2 inline void epilogue (ContiguousIterator first , ContiguousIterator last ,
3 UnaryFunction f) {
4 if constexpr (N > 0) {
5 using T = ContiguousIterator :: value_type ;
6 using V = simd <T, simd_abi :: deduce_t <T, N>>;
7 if (distance (first , last) >= V:: size ()) {
8 V tmp(std:: addressof (* first), element_aligned);
9 f(tmp);
10 if constexpr (is_functor_argument_mutable_v <UnaryFunction , V>) {
11 store(tmp , std:: addressof (* first), element_aligned);
12 }
13 }
14 epilogue <V:: size () / 2>(first , last , f);
15 }
16 }
17

18 template <class ContiguousIterator , class UnaryFunction >
19 void for_each (execution::simd_policy, ContiguousIterator first ,
20 ContiguousIterator last , UnaryFunction f) {
21 using V = native_simd < ContiguousIterator :: value_type >;
22 for (; distance (first , last) >= V:: size (); first += V:: size ()) {
23 V tmp(std:: addressof (* first), element_aligned);
24 f(tmp);
25 if constexpr (is_functor_argument_mutable_v <UnaryFunction , V>) {
26 store(tmp , std:: addressof (* first), element_aligned);
27 }
28 }
29 epilogue <V:: size () / 2>(first , last , f);
30 }

Listing 3: Implementation idea for the for_each function used in Listing ??.

6

— February 13, 2023 at 23:29 —

D
03
50
R5

D0350R5 4 Parallel Algorithms

Both implementations might be improved with a prologue that enables aligned loads and stores.

Also note that for_each allows the Function parameter to mutate the argument if the iterator is a

mutable iterator. The implementation uses a compile-time trait to determine whether the function

f uses a reference parameter, in which case it stores the temporary simd object back. Otherwise,

the store is optimized away.

Figure ?? shows a visualization how the iota implementation works. The init simd object is

stored via vector stores to 4 (assuming native simd::size() == 4) elements in the std::vector. In
each iteration the init object is incremented by simd::size() and stored to the following elements

in the std::vector. Since the std::vector has 99 elements, the last three elements cannot be

initialized with a vector store of four elements. Instead the epilogue recursion generates a new

init simd object for size 2 and subsequently for size 1.

Figure ?? visualizes the end of the for_each implementation. The main for loop processes four

elements of the std::vector in parallel. It executes a vector load, calls the user-provided function

with the temporary simd object, and executes a vector store back to the samememory location. The

remaining three elements are again handled by an epilogue recursion which divides the number of

processed elements by 2 with every step.

For both algorithms it would be perfectly valid to implement the epilogue as a sequential loop

using simd objects with size 1.

4.2 discussion of algorithms

Copies In general, the execution::simd policy requires algorithms to make a copy from the input

sequence. For now, since simd only supports arithmetic types and simd does not return lvalue
references to its values, it is not observable whether a copywas made. With two exceptions:

• Modification of the input sequence via different means than the function parameter(s),

which is UB anyway, will not modify the value of the function parameter(s).

• Using mutable iterators, assignment to the simd (lvalue reference) parameter of the

user-supplied function object will not modify the output sequence until after the func-

tion has returned (cf. Listing ??).

Note that most non-modifying sequence operations allow modification of the sequence by

using a non-const lvalue reference parameter for the user-supplied function object.

Predicates Algorithms that take a predicate returning a bool have two possible vectorization

strategies:

1. The predicate still returns bool. In this case, every predicate must execute a simd_mask
reduction. This makes it simple to short-circuit in the algorithm implementation but

may unnecessarily restrict the achievable parallelization.

7

— February 13, 2023 at 23:29 —

D
03
50
R5

D0350R5 4 Parallel Algorithms

0
1
2
3

0
1
2
3

+
+
+
+

4
4
4
4

=
=
=
=

4
5
6
7

4
5
6
7

+
+
+
+

4
4
4
4

=
=
=
=

8
9
10
11

88
89
90
91

+
+
+
+

4
4
4
4

=
=
=
=

92
93
94
95

96
96

+
+

0
1

=
=

96
97

98 + 0 = 98

Figure 1: Visualization of chunking the iota call with 𝒲T = 4 in Listing ??.

8

— February 13, 2023 at 23:29 —

D
03
50
R5

D0350R5 4 Parallel Algorithms

92
93
94
95

*
*
*
*

92
93
94
95

=
=
=
=

92²
93²
94²
95²

96
97

*
*

96
97

=
=

96²
97²

98 * 98 = 98²

Figure 2: Visualization of chunking the for_each call with 𝒲T = 4 in Listing ??.

2. The predicate returns simd_mask. In this case 𝒲ForwardIterator∶∶value_type reductions can

happen in parallel. Short-circuiting is still possible, but requires a simd_mask reduction
on each step (QoI question).

It would also be possible to allow both and let the algorithm switch the strategy depending

on the return type of the predicate.

In Cologne 2019, LEWG unanimously recommended to exclusively go with predicates re-

turning simd_mask: The use of bool would effectively change the algorithms.

Complexity requirements For many algorithms, the complexity requirement states “Applies f
exactly last - first times”. In the execution::simd case, the number of applications of f
is reduced by an unspecified factor.

Sorting The Compare function object type is required to return a value that is contextually con-

vertible to bool. For sorting, it is important that overloads using the execution::simd policy
work with simd_mask instead of bool. It is not useful for the sort algorithm to knowwhether

all/any/some/none of the compared values are “less than”. It requires a mask object to know

the “less than” relation for each individual value.

9

— February 13, 2023 at 23:29 —

D
03
50
R5

D0350R5 4 Parallel Algorithms

4.3 design alternative

In Cologne 2019, LEWG recommended to not pursue this design alternative. It is still provided in

this paper for completeness.

There are subtle differences in how the execution::simd specializations need to be used (e.g.

std::generate currently requires the generator function to return objects that can be assigned to

a dereferenced ForwardIt; the execution::simd specialization requires the generator function to

return objects of type simd<ForwardIt::value_type>). An attempt to fit execution::simd_policy
into the existing wording results in some special-casing in the algorithm specifications. This ob-

servation leads to the question whether a new execution policy is really the best approach. The

alternative would be a duplication of algorithms to variants with a simd_ prefix in their name. Ex-

ample:

simd_for_each (data.begin (), data.end(), [](auto &x) {
x *= x;

});

This alternative would not reduce the amount of wording/complexity though, since now a lot

of the algorithm wording would need to be duplicated. However, this would allow a very simple

reduction of the number of algorithms that support simd execution.

4.4 affected algorithms

The following algorithms have an ExecutionPolicy overload and canworkwith a execution::simd_policy
specialization:

• all_of, any_of, none_of

• for_each, for_each_n

• find, find_if, find_if_not

• find_end

• find_first_of

• adjacent_find

• count, count_if

• mismatch

• equal

• search, search_n

10

— February 13, 2023 at 23:29 —

D
03
50
R5

D0350R5 4 Parallel Algorithms

• copy, copy_n (no real need; can be implicitly vectorized)

• copy_if

• swap (no real need; can be implicitly vectorized)

• transform

• replace, replace_if, replace_copy, replace_copy_if

• fill, fill_n (no real need; can be implicitly vectorized)

• generate, generate_n (see Section ??)

• remove, remove_copy (no real need; can be implicitly vectorized)

• remove_if, remove_copy_if

• unique, unique_copy

• reverse, reverse_copy (no real need; can be implicitly vectorized)

• rotate, rotate_copy (no real need; can be implicitly vectorized)

• is_partitioned, partition, stable_partition, partition_copy, partition_point

• sort,stable_sort, partial_sort, partial_sort_copy, is_sorted, is_sorted_until

• nth_element

• merge, inplace_merge

• includes, set_union, set_intersection, set_difference, set_symmetric_difference

• min_element, max_element, minmax_element

• lexicographical_compare

• is_heap, is_heap_until, make_heap, push_heap, pop_heap, and sort_heap (The comparison

function object can use simd and simd_mask.)

The remaining algorithms have no obvious use for the specialization:

• move makes no sense until we can create simd<T> types for pointers (likely) and class types

(less likely).

lower_bound, upper_bound, equal_range, and binary_search may benefit from simd usage, but

currently do not provide ExecutionPolicy overloads.

11

— February 13, 2023 at 23:29 —

D
03
50
R5

D0350R5 4 Parallel Algorithms

1 std::vector <float > v;
2

3 // 0. Existing (scalar) interface
4 std:: generate (v.begin (), v.end(), [&]() { return 0.f; })
5

6 // 1. Choose ABI via template parameter
7 // template <class Gen >
8 // void generate (/*...*/ , Gen g) { g. template operator ()< native_simd <float > >(); }
9 std:: generate (v.begin (), v.end(), []< typename T >() { return T(); });
10

11 // 2. Choose ABI via return type
12 // template <class Gen >
13 // void generate (/*...*/ , Gen g) {
14 // auto x = g(); // discard if x has more values than needed
15 // }
16 std:: generate (v.begin (), v.end(), []() { return native_simd <float >(); });
17

18 // 3. Choose ABI via unused parameter
19 // template <class Gen >
20 // void generate (/*...*/ , Gen g) {
21 // constexpr native_simd <float >* tag = nullptr ;
22 // g(tag);
23 // }
24 std:: generate (v.begin (), v.end(), []< typename T>(T*) { return T(); });

Listing 4: Use std::generate to fill a container with random numbers.

4.5 the generate algorithm

The generator function passed to generate/generate_n does not expect any arguments and thus

has no interface for the algorithm to request a certain ABI tag from the function (template). Con-

sequently, there are three ideas how to make it work for simd:

1. Require the generator function object to take a template argument (no function arguments).

2. Let the algorithm implementation cope with the return type defined by the generator func-

tion object. It may have to discard values if the number of values in the range is not a multiple

of the number of values in the return type.

3. Pass a parameter that is not used other than for deducing the expected return type of the

generator function object.

See Listing ?? for examples.

Ideas 1 and 3 require the user to supply a type with a template call operator. Idea 2 may lead

the user to unintentionally drop generated values. For the user, idea 3 requires to write boilerplate

with no apparent use: it’s an implementation detail shining through. Idea 1 was preferred in the

discussion in LEWG in Cologne 2019. However, it is still unclear whether the need for explicit

12

— February 13, 2023 at 23:29 —

D03
50

R5

D0350R5 4 Parallel Algorithms

instantiation of the call operator in the standard library implementation is acceptable. There is no

apparent technical reason not to use this variant.

4.6 initial wording for the policy

Add a new execution policy to [N4842]:

§20.18.2 [execution.syn]
// 20.18.7, unsequenced execution policy

class unsequenced_policy;

// 20.18.8, simd execution policy
class simd_policy;

// 20.18.89, execution policy objects:
inline constexpr sequenced_policy seq{ unspecified };
inline constexpr parallel_policy par{ unspecified };
inline constexpr parallel_unsequenced_policy par_unseq{ unspecified };
inline constexpr unsequenced_policy unseq{ unspecified };
inline constexpr simd_policy simd{ unspecified };

Renumber §20.18.8 to §20.18.9 and add §20.18.8 [execpol.simd]:

class simd_policy { unspecified };

1 The class simd_policy is an execution policy type used as a unique type to disambiguate parallel algorithm
overloading and indicate that a parallel algorithm’s execution may be vectorized using simd for interfacing
with user-provided functionality.

2 During the execution of a parallel algorithm with the execution::simd_policy policy, if the invocation of
an element access function exits via an uncaught exception, terminate() shall be called.

Add to §20.18.9 [execpol.objects]:

inline constexpr execution::simd_policy execution::simd{ unspecified };

[N4842] defines requirements on user-provided function objects. This might be the right place

to add:

§25.3.2 [algorithms.parallel.user]
2 Function objects passed into parallel algorithms instantiated with the execution::simd execution policy shall:

• be callable with arguments of type simd<Iterator::value_type, Abi>, for any ABI tag Abi, for all argu-
ments that otherwise would be of type Iterator::value_type;

13

— February 13, 2023 at 23:29 —

D
03
50
R5

D0350R5 4 Parallel Algorithms

• return objects of type simd<Iterator::value_type, Abi>, if the function object is otherwise expected to
return objects assignable to a dereferenced Iterator object;

• return objects of type simd_mask<Iterator::value_type, Abi> or bool, if the function object is otherwise
expected to return bool.

The following subsection in [N4842] defines the semantics of the execution policies. A new

paragraph for execution::simd is needed. The intent is to

1. constrain execution to the calling thread,

2. allow implementations to assume unordered access for all internal element access functions

(most importantly loads and stores),

3. apply user-provided function objects in the order the simd chunks are created from sequen-

tial iteration over the iterator(s).

§25.3.3 [algorithms.parallel.exec]
8 The invocations of element access functions in parallel algorithms invoked with an execution policy object of

type execution::simd_policy are permitted to execute in an unordered fashion in the calling thread, except for
the application of user-provided function objects. User-provided function objects are called with an unspecified
number of sequence elements combined into a simd<T, Abi> object. The type for Abi is chosen by the implemen-
tation. It may be different for subsequent applications of the user-provided function in the same parallel algorithm
invocation. The type for T is the decayed type of the sequence elements. The order of elements in the simd object is
equal to the order of the corresponding elements in the sequence argument. The invocation order of user-provided
function objects is sequential.

It is my understanding that we do not want to add anything to [N4842] at this point. The situation

is simpler for the execution::simd policy. It is almost equivalent to the seq policy.

4.7 wording for individual algorithms

§25.7 [alg.sorting]
2 Compare is a function object type. The return value of the function call operation applied to an object of type

Compare, when contextually converted to bool, yields true if the first argument of the call is less than the second,
and false otherwise. If the ExecutionPolicy is execution::simd_policy, the return type of the function call oper-
ation applied to an object of type Compare is a specialization of simd_mask. Its 𝑖-th element in the simd_mask yields
true if the value of the 𝑖-th element of the first argument of the call is less than the corresponding element of the
second, and false otherwise. Compare comp is used throughout for algorithms assuming an ordering relation. It is
assumed that comp will not apply any non-constant function through the dereferenced iterator.

Further wording work is necessary where individual algorithms refer to boolean results from

predicates. (E.g. all_of returns false if any_of(𝐸) is false …)

14

— February 13, 2023 at 23:29 —

	1 Changelog
	1.1 Changes from revision 0
	1.2 Changes from revision 1
	1.3 Changes from revision 2
	1.4 Changes from revision 3
	1.5 Changes from revision 4

	2 Straw Polls
	2.1 SG1 at Oulu
	2.2 LEWG at Albuquerque
	2.3 LEWG at Cologne 2019

	3 Introduction
	4 Parallel Algorithms
	4.1 Example
	4.2 Discussion of algorithms
	4.3 Design Alternative
	4.4 Affected algorithms
	4.5 The generate algorithm
	4.6 Initial wording for the policy
	4.7 Wording for individual algorithms

