
Document Number: P0964R2

Date: 2023-02-13

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Audience: LEWG

Target: Parallelism TS 2

Finding the right set of traits for
simd<T>

ABSTRACT

This paper makes the set of traits for simd<T> more complete.

CONTENTS

P0964R2 1 Introduction

1 INTRODUCTION

[N4744] defines the trait simd_abi::deduce<T, N>, allowing users to find an “implementation-rec-

ommended” ABI tag for a given value_type and number of elements. P0820R1 discusses a use for

considering involved ABI tags in the “recommendation”. SG1 polled in Albuquerque about

Poll: abi_for_size_t (SF) vs. implementation-defined (SA)

SF F N A SA

1 7 7 0 0

The poll result implies that SG1 prefers users to be able to spell out theABI tags that are determined

as return types.

2 MOTIVATION

As P0820R1 shows, there is a use case for deducing an ABI tag type from a value_type, a width,
and additionally zero or more “input” ABI tags. The latter tells the deduction logic what ABI tags are

used in the input types to produce an object of the requested value_type and width. This enables

an implementation design choice of staying within a certain SIMD register subset.

From the user’s perspective, the ABI tag deduction is most often necessary in the following two

cases:

• Given a certain simd type, what is the best simd type for a different value_type (e.g. mixed

precision calculations).

• Given a certain simd type, what is the best simd type for a different width (e.g. split, concat,

shuffle).

Therefore, I propose to

1. extend simd_abi::deduce to consider input ABI tags in its decision,

2. introduce a new trait rebind_simd<U, V>, which deduces a simd<U, Abi> instantiation from

a given simd type V and requested value_type U, and

3. introduce a new trait resize_simd<N, V>, which deduces a simd<T, Abi> instantiation from

a given simd type V with value_type T and requested width N.

3 PROPOSED WORDING

Apply the following change to the Parallelism TS 2 [N4744]:

modify [parallel.simd.synopsis]

1

P0964R2 3 Proposed Wording

template <class T, size_t N> struct deduce { using type = see below; };

template <class T, size_t N> using deduce_t = typename deduce<T, N>::type;

template <class T, size_t N, class... Abis> struct deduce { using type = see below; };

template <class T, size_t N, class... Abis> using deduce_t = typename deduce<T, N, Abis...>::type;

add to [parallel.simd.synopsis]
inline constexpr size_t memory_alignment_v = memory_alignment<T, U>::value;

template <class T, class V> struct rebind_simd { using type = see below; };

template <class T, class V> using rebind_simd_t = typename rebind_simd<T, V>::type;

template <int N, class V> struct resize_simd { using type = see below; };

template <int N, class V> using resize_simd_t = typename resize_simd<N, V>::type;

modify [parallel.simd.abi]
template <class T, size_t N> struct deduce { using type = see below; };

template <class T, size_t N, class... Abis> struct deduce { using type = see below; };

12 The member type is present if and only if
• T is a vectorizable type, and
• simd_abi::fixed_size<N> is supported (see 9.2.1), and
• every type in the Abis pack is an ABI tag.

13 Where present, the member typedef type names an ABI tag type that satisfies
• simd_size_v<T, type> == N, and
• simd<T, type> is default constructible (see 9.3.1),

If N is 1, the member typedef type is simd_abi::scalar. Otherwise, if there are multiple ABI tag types
that satisfy the constraints, the member typedef type is implementation-defined. [Note: It is expected that
extended ABI tags can produce better optimizations and thus are preferred over simd_abi::fixed_size<N>.
Implementations can base the choice on Abis, but can also ignore the Abis arguments. — end note]

add at the end of [parallel.simd.traits]
template <class T, class V> struct rebind_simd { using type = see below; };

15 The member type is present if and only if
• V is either simd<U, Abi0> or simd_mask<U, Abi0>, where U and Abi0 are deduced from V, and
• T is a vectorizable type, and
• simd_abi::deduce<T, simd_size_v<U, Abi0>, Abi0> has a member type type.

16 Let Abi1 denote the type deduce_t<T, simd_size_v<U, Abi0>, Abi0>. Where present, the member typedef
type names simd<T, Abi1> if V is simd<U, Abi0> or simd_mask<T, Abi1> if V is simd_mask<U, Abi0>.

template <int N, class V> struct resize_simd { using type = see below; };

17 The member type is present if and only if

2

P0964R2 4 Changelog

• V is either simd<T, Abi0> or simd_mask<T, Abi0>, where T and Abi0 are deduced from V, and
• simd_abi::deduce<T, N, Abi0> has a member type type.

18 Let Abi1 denote the type deduce_t<T, N, Abi0>. Where present, the member typedef type names simd<T,
Abi1> if V is simd<T, Abi0> or simd_mask<T, Abi1> if V is simd_mask<T, Abi0>.

4 CHANGELOG

4.1 changes from r1

Previous revision: [P0964R1].

• Editorial changes to the wording: “denotes” instead of “identify”, remove incorrect “shall”.

4.2 changes from r0

Previous revision: [P0964R0].

• Adjusted to changes between [P0214R8] and [N4744].

• Make resize_simd a non-optional part of the requested changes (after SG1 discussion).

• Update motivation after resolving different naming preferences with Tim.

5 STRAW POLLS

5.1 sg1 at jacksonville 2018

Poll: Proceed to LEWG?

→ unanimous consent

5.2 lewg at rapperswil 2018

Poll: Proceed to LWG?

SF F N A SA

4 5 0 0 0

3

	1 Introduction
	2 Motivation
	3 Proposed Wording
	4 Changelog
	4.1 Changes from R1
	4.2 Changes from R0

	5 Straw Polls
	5.1 SG1 at Jacksonville 2018
	5.2 LEWG at Rapperswil 2018

