
Document Number: P2551R2

Date: 2023-02-13

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Jonathan Wakely <cxx@kayari.org>

Audience: LEWG

Target: C++23

Clarify intent of P1841 numeric traits

ABSTRACT

A list of design-related questions after implementation of [P1841R2] “Wording for Individually Spe-

cializable Numeric Traits”.

CONTENTS



P2551R2 0 Changelog

0 CHANGELOG

0.1 changes from revision 0

Previous revision: P2551R0

• Removed questions that were answered in the last telecon.

• Present options for reciprocal_overflow_threshold.

0.2 changes from revision 1

Previous revision: P2551R1

• Back to presenting all questions

• Added section “Proposed Changes”

1 INTRODUCTION

[P1841R2] provideswording for numeric traits. The last design paperwas [P0437R1] with additions

from [P1370R1].

2 DESIGN QUESTIONS

1. When exactly is a trait disabled for a given numeric type? It seems the intent was for the

value member to be defined whenever a representation for the desired constant exists. The

wording needs to clarify whether any behavioral aspects play a role. For example, a denorm_-
min may be enabled independent of whether the execution environment flushes denormals

to zero / treats denormals as zero. Even in the case of a processor that unconditionally

zeros denormals; as long as a representation exists, is the trait enabled? Conversely, if a

representation does not exist, is the trait disabled? Specifically, denorm_min should never

have the value of norm_min?

2. Please clarify whether we want to treat bool as a numeric type and enable the traits accord-

ingly. The current wording in [P1841R2] enables the traits for bool, which is consistent with

std::numeric_limits. std::numeric_limits<bool> will still exist if needed. Numeric code

does not use bool as a numeric type, despite it being technically an “arithmetic type” in the

core language.

3. Many of the numeric traits are motivated by floating-point and make little sense for integral

types. Is it intended that all of the following numeric traits are enabled also for integral types?

1

https://wg21.link/P2551R0
https://wg21.link/P2551R1


P2551R2 2 Design Questions

• denorm_min

• epsilon

• max_exponent

• max_exponent10

• min_exponent

• min_exponent10

• infinity

• quiet_NaN

• signaling_NaN

4. reciprocal_overflow_threshold is currently defined as:

P1841R2 [num.traits.val]

template <class T> struct reciprocal_overflow_threshold<T> { see below };

9 The smallest positive value 𝑥 of type T such that T(1)/𝑥 does not overflow.

This yields a subnormal number for IEC559 types. How should this value change wrt. treat-

denormals-as-zero? I.e. in a situation where the hardware treats subnormal operands as zero

you get 1/0 -> inf, which does overflow. In which case it doesn’t match the specification

anymore. This trait is specified by a behavior and as such may depend on processor state. As

a compile-time constant this value must be independent from runtime behavior. But what is

the correct value? See https://godbolt.org/z/eWxdnTYf8 for a demonstration of the prob-

lem.

Update after consultation with Mark and Damien (the P1370R1 authors):

• It would be possible to decouple the specification from runtime behavior by specifying

behavior of constant expressions only; i.e. that T(1)/𝑥 does not overflow in a constant

expression.

• P1370R1 presented an algorithm to determine the value and it does not yield the

“smallest positive value 𝑥 of type T such that T(1)/𝑥 does not overflow”.

• The P1370R1 algorithm seems to ensure that the value is never subnormal. Thus, the

specification should have been “The smallest positive normal value 𝑥 of type T such

that T(1)/𝑥 does not overflow”

2

https://godbolt.org/z/eWxdnTYf8


P2551R2 3 Proposed Changes

• Since the actual reciprocal overflow threshold depends on runtime state, we’re not sure

who would/should use a compile-time constant. It seems simpler and safer to remove

reciprocal_overflow_threshold from P1841. Mark wrote:

I would prefer to remove reciprocal_overflow_threshold entirely. The in-

tent of the feature was to describe actual computer behavior at run time, so

that library authors could write generic code. However, we can’t do that with

traits. For example, traits can’t change value based on compiler flags. I wish I

had realized that better when proposing the feature.

5. numeric_limits::max_digits10 is 0 for integral types. Is max_digits10_v<int> supposed to
yield digits10_v<int> + 1? Or should it only be specialized for floating-point?

3 PROPOSED CHANGES

After reviewing P2551, Library Evolution wanted to make the following changes:

1. Allow deviation of new individually specializable numeric traits from numeric_limits.

2. Base new individually specializable numeric traits on representation rather than behavior.

3. Disable bool for new individually specializable numeric traits.

4. Disable the new individually specializable numeric traits for integral types when they are not

meaningful for numeric_limits.

5. max_digits10 should be enabled for integral types (yielding digits_10_v + 1).

6. Remove reciprocal_overflow_threshold.

4 STRAW POLLS

4.1 lewg telecon 2022-03-29

Poll: Numeric traits can deviate from numeric_limits.

SF F N A SA

13 8 0 0 0

Poll: Numeric traits should be based on representation rather than behavior (ignoring reciprocal_-
overflow_threshold).

SF F N A SA

7 5 2 0 0

3



P2551R2 4 Straw Polls

Poll: All numeric traits for bool should be disabled.

SF F N A SA

12 6 1 0 0

Poll: The numeric traits that are not meaningful for numeric_limits (denorm_min, epsilon, etc)
should be disabled for integral types.

SF F N A SA

14 3 0 0 0

Poll: max_digits10 should deviate from numeric_limits and yields digits10_v + 1.

SF F N A SA

6 5 2 0 0

4.2 lewg telecon 2022-06-07

Poll: Remove reciprocal_overflow_threshold from P1841.

SF F N A SA

6 4 1 0 0

4


	0 Changelog
	0.1 Changes from revision 0
	0.2 Changes from revision 1

	1 Introduction
	2 Design Questions
	3 Proposed Changes
	4 Straw Polls
	4.1 LEWG telecon 2022-03-29
	4.2 LEWG telecon 2022-06-07


