Document Number: D2600R1

Date: 2023-02-13

Reply-to: Matthias Kretz <m kretz@gsi.de>
Audience: EWGI, EWG

Target: C+26

A MINIMAL ADL RESTRICTION TO AVOID
ILL-FORMED TEMPLATE INSTANTIATION

ABSTRACT

| researched and tested a minimal change to ADL to avoid ill-formed instantiations of templates
through ADL. If ADL ignores not-yet-instantiated-template types (just like ADL ignores incomplete
types) little to no functionality is lost while losing a sharp edge of the language. This paper presents
the idea, discusses potential code breakage, and presents potential alternatives/extensions of the

idea.

CONTENTS
1 INTRODUCTION 1
2 PROPOSED SOLUTION 4
3 |IMPLEMENTATION EXPERIENCE 8
4 ALTERNATIVE SOLUTIONS / ADDITIONAL ADL IDEAS 9
5 WOoRDING 1
6 SUGGESTED STRAW PoOLLS 1
7 ACKNOWLEDGEMENTS 12
A BIBLIOGRAPHY 12

— February 13, 2023 at 23:30 —

D2600R1 1 INTRODUCTION

1 INTRODUCTION

Consider the innocent-looking code in Listing 1 (as posted to the core reflector by Jonathan Wakely?).

struct Incomplete;
template <typename T> struct Wrap { T t; };

template <typename Unused>
struct Testable
{
explicit operator bool() const { return true; }

}s

int main()
{
Testable<Incomplete> 1;
if (1) // 0K
return 1;
if (! (bool)l) // OK
return O;
if (11) // 0K
return 0O;

Testable<Wrap<Incomplete>> 12;
if (12) // 0K
return 1;
if (1(bool)l2) // OK
return 0O;
if ('12) // ERROR
return O;

Listing 1: lll-formed instantiation of Wrap<Incomplete> because of ADL

The expressions !1 and 12 lead to name lookup of operator!. The associated entities of 12 are
Testable<Wrap<Incomplete>> Wrap<Incomplete>, and Incomplete. In this example Testable<Wrap<Incomplete>>
must already have been successfully instantiated, otherwise the declaration of 12 would have
been ill-formed. The type Incomplete is incomplete and the failure to look for operator! inside
Incomplete is ignored. The type Wrap<Incomplete> is a template specialization which has not been
instantiated at this point in the translation. But instead of treating the type like the incomplete
Incomplete type, the compiler attempts to instantiate the specialization, which leads to an ill-
formed definition of its data member since it has incomplete type.

http://lists.isocpp.org/core/2021/06/11161.php (the basic idea of this paper was already hinted at in the resulting
discussion thread)

— February 13, 2023 at 23:30 —

http://lists.isocpp.org/core/2021/06/11161.php

D2600RI1 1 INTRODUCTION

The expression '1 is well-formed since ADL ignores incomplete types. Consequently, a later
definition of Incomplete as
struct Incomplete {

friend bool operator!(Testable<Incomplete>) { return true; }

}
changes the value of the expression !1.

Why does the standard allow incomplete types (i.e. not require completion) as associated enti-
ties even though this can lead to ODR violations? Isn’t the same reasoning applicable to templates
that have not been instantiated yet? And what are the use cases for defining a hidden friend in
Wrap<Incomplete>which winsin overload resolution when the argumentis a Testable<Wrap<Incomplete>>?
(The last question is not only a rhetoric question, see Section 2.3 for a possible answer.)

1.1 IS THIS A REAL PROBLEM?

To determine whether Listing 1 poses a real problem, consider that Testable<T> is equivalent to
std: :unique_ptr<T>wrt. operator!. |.e. a few corner cases, but still legitimate uses of unique_ptr
lead to puzzling errors?.

Furthermore, for std: :unique_ptr<std::array<Incomplete, N>>, instantiation on ADL can oc-
cur in many more places; for example on range-based for loops as shown in Listing 2. The reason

class Incomplete;

using Data = std::array<Incomplete, 3>;
using Ptr = std::unique_ptr<Data>;

void assert_nonnull (std::span<Ptr> x)
{

for (const Ptr &ptr : x) // ERROR: 'std::array<_Tp, _Nm>::_M_elems' has

assert (ptr); /! incomplete type
}

Listing 2: Iteration over std: : span<std: :unique_ptr<std::array<Incomplete, N>>>is ill-formed

for the error in Listing 2 isn't the lookup of begin and end (it would be if x had no begin or end
members) but rather that operators applied to the iterator lead to ADL which instantiates std: :
array<Incomplete, 3>. Thus, to write an iterator that doesn't break on legitimate use of incom-
plete types a library developer has to use the ADL-proofing pattern from Listing 3 as explained by
O’'Dwyer [P2538R0]. We might expect standard library developers to learn and apply this pattern.
But we should not expect from any other C+ library developer to work around ADL surprises.

OTOH, unique_ptr is not boolean-testable, so maybe users should simply learn to cast unique_ptr, optional, etc to
bool?

— February 13, 2023 at 23:30 —

© N e o s W N e

o o s W N e

D2600R1 1 INTRODUCTION

template <typename T>

struct IteratorImpl {
class type {

70 ooc

¥

¥

template <typename T>
using Iterator = typename IteratorImpl<T>::type;

Listing 3: ADL-proofed iterator type

1.2 INSTANTIATION VIA ADL INTERFERES WITH THE EVOLUTION OF C++

With the current behavior of ADL, adding non-member operator[] or overloadable operator?:
[P0917R3] to the language® is a breaking change. Existing code that currently compiles just fine
would suddenly instantiate templates through ADL and thus potentially lead to ill-formed instanti-
ation.

Instantiation via ADL is a concern that needs to be considered for language and library evolution
whenever ADL is required for a new feature. This proposal makes language and library evolution
simpler (or even turn breaking changes into non-breaking changes).

1.3 LESS NEED FOR ADL PROOFING

To complete the picture, note that the issue is not specific to operators (e.g. Listing 4). However,
for operators there’s no simple “always fully qualify your calls” rule to avoid ADL.

template<class T> struct Holder { T t; I};

struct Incomplete;

Holder<Incomplete> *p;

int f(Holder<Incomplete>*);

int x = f(p); // error: Holder<Incomplete> is an associated entity
int y = ::f(p); // ok: no ADL

Listing 4: Minimal example triggering ill-formed instantiation, as presented in [P2538R0]

O'Dwyer [P2538R0] goes on to show how the original definition of std: :projected leads to
ill-formed instantiation on ADL. His proposed solution requires ADL-proofing of std: :projected,
which requires a change in how the class template is defined.

This proposal makes ADL-proofing for avoiding ill-formed instantiation unnecessary®. The lan-
guage would lose one sharp edge at a minor cost (more complex wording & new, unlikely, and easy
to work around corner case for users).

3 Motivation is / will be given in their own papers.
4 ADL-proofing is still a useful tool for avoiding ADL hijacking.

— February 13, 2023 at 23:30 —

D2600RT 2 PROPOSED SOLUTION

1.4 HISTORY

To estimate how much code might be affected by limiting template instantiation on ADL to the
argument type itself, it is helpful to know that template instantiation via ADL had not been imple-
mented in compilers for a long time. Template instantiation via ADL works since GCC 4.5.0 (April
2010), Clang 3.1.0 (May 2012), and since an ICC release between ICC 14 and 16°.

2 PROPOSED SOLUTION

Let us consider a simple solution to make ADL avoid the above situations:
Don't instantiate templates via ADL except for the argument type itself.
RATIONALE: If a given associated entity has not been instantiated at this point in the translation,

1. theuser might have avoided instantiation intentionally since instantiation would be ill-formed;
and

2. the type was not important enough up to this point that instantiation was necessary — the
chances for it to make a semantic difference are small —.

If | interpret the current wording correctly, the reason compilers instantiate templates via ADL is
[temp.inst] p2:
[temp.inst]
Unless a class template specialization is a declared specialization, the class template specialization is implicitly
instantiated when the specialization is referenced in a context that requires a completely-defined object type or
when the completeness of the class type affects the semantics of the program. [...]

In basically all cases, the completeness of the class type does not affect the semantics of the pro-
gram, though. But the compiler cannot know that instantiation is unnecessary until after it instanti-
ated the template. The subsequent note in [temp.inst] clarifies that the knowledge about whether
a name exists or not is considered affecting semantics. Therefore implementations have no choice
of avoiding instantiation, even if they kept track of ADL-relevant names (i.e. hidden friends).

2.1 NECESSARY INSTANTIATION

The one case where instantiation via ADL is still required is shown in Listing 5. The situation in
Listing 5 is unlikely (but certainly not impossible®), since almost every other use of the Ivalue x
would lead to instantiation.

Therefore, given an argument of reference to T, ADL should instantiate T and its bases but none
of its template arguments.

5 I'have only been able to test with the compilers available on Compiler Explorer
6 E.g. https://gcc.gnu.org/PR34870, which lead to GCC instantiating templates via ADL

— February 13, 2023 at 23:30 —

https://gcc.gnu.org/PR34870

D2600R1 2 PROPOSED SOLUTION

template <typename T>

struct A {

friend void f(const A&);
}s
void g(const A<int>& x) {

f(x);
¥

Listing 5: Requires instantiation or reasonable code could break.

2.2 NAMESPACES OF BASE CLASSES

Consider Listing 6 which defines a base class in a different namespace (4) than the derived class tem-
plate. In order for ADL to consider A as associated namespace when an argument of type C<int>*
namespace A {

class B {};

void f(Bx*);
}

void f(voidx);
template <class T> class C : public A::B {};

void g(C<int>* p) {
f(p); // calls ::f because C<int> has not been instantiated
A::Bx other_ptr = p; // instantiates C<int> to find its base types
f(p); // calls A::f because C<int> has been instantiated before ADL
}

// analogue situation with incomplete types:
class I;

void gO0(I* p) { £f(p); } // calls ::f

class I : public A::B {};

void gi(Ix p) { f(p); } // calls A::f

Listing 6: ADL in namespace of base class

is used, the base types of the class template need to be know. However, if ADL were not to in-
stantiate C<int> anymore, the behavior would depend on the preceding code: whether C<int> had
already been instantiated or not. The analogue issue for an incomplete type I exhibits the same
behavior change in ADL after defining I. However, for the incomplete type it is more obvious why
the base types’ namespaces are not considered (“You didn’t say that A: :B is a base!”).

Note that overload resolution still has to instantiate class templates to find bases, as shown in
Listing 7. It is an open question whether template instantiation via ADL on arguments of pointer
type is enough of a problem to warrant the surprising behavior of the (contrived) example in Listing 7

— February 13, 2023 at 23:30 —

D2600R1 2 PROPOSED SOLUTION

class BO {};

namespace A {
class B : public BO {};
void f(B*);

b

void f(voidx);

void f(BOx*);

template <class T> class C : public A::B {};

void g(C<int>* p) {
f(p); // calls ::f(BO%)
// candidates: ::f(void*) and ::f(BO%*), overload resolution instantiates
// C<int> and picks ::f(B0%*), i.e. overload resolution works unchanged
f(p); // calls A::f(A::Bx*)
// because ADL now finds the additional candidate A::f(A::Bx*)
¥

Listing 7: Class template instantiation on overload resolution if ADL does not instantiate C<int>

(vs. the surprising behavior of Listing 4). As a more conservative change to ADL, given an argument
of pointer to T, let ADL instantiate T and its bases but none of its template arguments.

Beyond references and pointers — as far as | have seen — there is little use in ADL instantiating
templates. | propose to modify [basic.lookup.argdep] and/or [temp.inst] to treat not-yet-instanti-
ated-template types like incomplete types except if the not-yet-instantiated-template type is the
type of the function argument’.

2.3 STD: :REFERENCE_WRAPPER EXAMPLE

std: :reference_wrapper<X>, where X implements hidden friends, is the canonical example where
this proposal has the potential for breaking existing code. An idea for avoiding the breaking change is
presented in Section 4.1. Note that, since C+20, std: :reference_wrapper<T>does not require T to
be complete and we can therefore construct valid examples with the type std: :reference_wrapper
<Wrap<Incomplete>>. The relevant class of examples follows the pattern shown in Listing 8. This
pattern relies on:

1. std: :reference_wrapper<X> is convertible to X, and

2. ADL looks into X for hidden friends when std: :reference_wrapper<X> is a function argu-
ment (operand).

Note that X doesn't need to know about (or even spell out) std: :reference_wrapper and can there-
fore work with any type that has a conversion operator to X and where X is an associated entity.
Notably, and inconsistently, function arguments of type XRef, as defined in Listing 9, will not find

7 stops handwaving; this is nowhere near wording ...

— February 13, 2023 at 23:30 —

D2600R1 2 PROPOSED SOLUTION

struct X {
friend constexpr int f(const X&) { return 1; }
friend constexpr bool operator!(const X&) { return false; }

}s

int g(std::reference_wrapper<X> ref) {
return !'ref ? 0 : f(ref); // returns 1

Listing 8: std: :reference_wrapper is transparent for hidden friends

struct XRef {
X* ptr;
constexpr operator X&() const noexcept { return *ptr; }

+s

Listing 9: A non-template reference wrapper is not transparent for hidden friends

hidden friends of X on name lookup. See Section 4.1 for an idea that would resolve the inconsis-
tency.

With the following ingredients we can build an example (see Listing 10) that would break with
the proposed language change:

A class template specialization X<Y> that has not been instantiated yet.

A hidden friend in X<Y>.

e Afunction call (or operator) which wants to find said hidden friend in name lookup.

e Wrap everything as std: :reference_wrapper<X<y>>.

template <typename T>
struct X
{
T data;
friend auto operator<=>(const X&, const X&) = default;

}s;

// static_assert(std::totally_ordered<X<int>>);

// the following fails unless X<int> was instantiated already (e.g. with the
// line above)
static_assert(std::totally_ordered<std::reference_wrapper<X<int>>>);

Listing 10: std: :reference_wrapper example which would fail unless line 8 is uncommented

As far as | can tell there is no class template in the standard library that fits this description.
However, the std: :experimental: :simd<T, Abi> class template of the Parallelism TS 2 specifies

— February 13, 2023 at 23:30 —

o s W o e

© W N e ;s W N e

D2600R1 3 IMPLEMENTATION EXPERIENCE

its operators as hidden friends. Consequently, the example in Listing 11 would not instantiate simd
<float> anymore via ADL and thus fail to compile.

#include <experimental/simd>
#include <functional>

auto f(std::reference_wrapper<std::experimental::simd<float>> x) {
return x == x; // would not instantiate simd<float> anymore

}

Listing 11: Regression when combining std: :reference_wrapper with std: :experimental: :simd.

An example similar to Listing 11 is still highly unlikely to occur outside of code snippets specif-
ically written for demonstrating the issue. In general, an expression instantiating simd<float> (i.e.
the wrapped type) would precede the use of the reference wrapper with high probability. More
importantly, the explicit use of std: :reference_wrapper or similar reference types is not common.
At least reference_wrapper is unwrapped transparently for std: :bind and typically unwraps auto-
matically when a function with a reference to the wrapped type is called.

While the chance of breakage after restricting instantiation via ADL may be close to zero, we
have no way of making a more substantial statement. It is impossible to prove that no breakage will
occur, because the absence of certain code patterns cannot be proven.

3 IMPLEMENTATION EXPERIENCE

| implemented the presented idea for GCC. In this implementation the type of a pointer argument
is not instantiated (cf. Section 2.2). The necessary change to the ADL code was straightforward:
In principle the change involved only making template instantiation conditional on whether the
type is the argument type itself or an associated entity. A modified GCC 12.1 can be obtained at
https://github.com/mattkretz/gcc/tree/7266f1c5£75fc7a970de.

One test of GCC's testsuite (shown in Listing 12) broke with the change. The test case started

template <typename> struct g { static const int h = 0; };
template <typename i> void declval() { static_assert(!g<i>::h,""); }
template <typename> struct a {

template <typename d, typename c>

friend auto f(d &&, c &&)

noexcept (declval<c>) -> decltype(declval<c>); // { dg-error "different exception" }

I
template <typename d, typename c> auto f(d &&, c &&) -> decltype(declval<c>);
struct e {};
static_assert ((e{}, declval<a<int>>),""); // { dg-error "no context to resolve type" }

Listing 12: GCC test that broke after implementation of less eager ADL (declval<a<int>> without
parenthesis is no error — with parenthesis a<int> isn't an associated entity)

— February 13, 2023 at 23:30 —

https://github.com/mattkretz/gcc/tree/7266f1c5f75fc7a970de

D2600R1 4 ALTERNATIVE SOLUTIONS / ADDITIONAL ADL IDEAS

failing because the expression (e, declval<a<int>>) requires name lookup of operator, and the
type a<int> is an associated entity and therefore was instantiated (i.e. GCC was looking for a hidden
friend comma operator in a<int>) which lead to the actual failure this test was looking for. To me
Listing 12 is no motivation for holding back on this proposal, rather the opposite. For what it’s
worth, Clang doesn’t even instantiate a<int> for this test case.

| found no further code breakage.

4 ALTERNATIVE SOLUTIONS / ADDITIONAL ADL IDEAS

| believe the above suggestion would be a strict improvement of the C+ language and better than
the alternatives listed in the following. However, in order to reduce the potential for breaking ex-
isting code and to resolve an inconsistency of ADL with regard to reference wrappers, | believe the
idea in Section 4.1 should be part of the final solution.

4.1 ADD CONVERSION OPERATOR RETURN TYPES TO ASSOCIATED ENTITIES

Observe the inconsistency in Listing 13. Each of the three types ref<foo>, int _ref, and foo -
ref (partially) model a reference (conversion operator defined as for std: :reference_wrapper). But
they behave considerably different because name lookup is different.

To make Listing 13 consistent, we could add another rule to ADL and add the return types of
all conversion operators as associated entities. Since these types are much more likely to make a
semantic difference on name lookup, template instantiation should be performed. However, only
the conversion operators of the function argument type itself must be considered; conversion
operators of return types of conversion operators are irrelevant, as are conversion operators of
template arguments. As a consequence the examples in Listing 10 and Listing 11 would work again.

Obviously, more ADL has the potential to add more problems. But if this is introduced together
with not instantiating templates anymore, the net effect should be positive. Counter-examples are
welcome to improve the discussion of the idea.

| have implemented this idea in GCC and found no regressions in the GCC and libstdc++ test
suites. More testers are welcome. A modified GCC 12.1 can be obtained at https://github.com/
mattkretz/gcc/tree/7895934£858fbb2e6039.

4.2 OPT-OUT/IN ADL

If the committee cannot agree on changing the way ADL and template instantiation work, we are
basically only left with new opt-in/out syntax, if we want to solve this problem. | am not ready to
explore this idea. | mention it here to give a complete picture of the solution space.

As a straw-man example consider Listing 14. Note that such an opt-in/out solution would not
open a path for the evolution of non-member operator[] and overloadable operator?:.

— February 13, 2023 at 23:30 —

https://github.com/mattkretz/gcc/tree/7895934f858fbb2e6039
https://github.com/mattkretz/gcc/tree/7895934f858fbb2e6039

20

21

22

23

24

25

D2600R1 4 ALTERNATIVE SOLUTIONS / ADDITIONAL ADL IDEAS

struct foo {
friend bool operator!(const foo&) noexcept;

}s

template <class T>
struct ref {
Tx data;
constexpr operator T&() const noexcept { return *data; 7}

}s

struct int_ref {
int* data;
constexpr operator int&() const noexcept { return *data; }

}s

struct foo_ref {
foo*x data;
constexpr operator foo&() const noexcept { return *data; }

}s

void f(const ref<foo>& r0O, const int_ref& rl, const foo_ref& r2) {
'rO; // finds foo::operator! because foo is an associated entity
'ri; // OK
'r2; // ERROR

¥

Listing 13: Different name lookup for three reference types that should be equivalent (https://

godbolt.org/z/83fqT76vn)

// opts out of considering implicit associated entities; instead “bar and its

// associated entities are the associated entities of foo<T>:
template <typename T>
struct foo : adl bar { /x ... */ };

// no associated entities:
template <typename T>
struct meow : adl void { /* ... x/ };

// fix the “unique_ptr ~ problem from Listing 1
namespace std {
template<class T, class D = default_delete<T>>
class unique_ptr : adl void {

//
};

Listing 14: Straw-man opt-in/out syntax for ADL

10

— February 13, 2023 at 23:30 —

https://godbolt.org/z/83fqT76vn
https://godbolt.org/z/83fqT76vn

D2600RT 5 WORDING

4.3 TENTATIVE INSTANTIATION

It seems like an obvious solution to require IFINAE (instantiation failure is not an error) on ADL, i.e.
to require tentative template instantiation. However, this would place a huge burden on implemen-
tations: The instantiation depth might be very deep, before the condition is found. IFINAE requires
a rollback of all unfinished instantiations that lead to the issue. It seems like a huge but solvable
task for compilers, but without implementation experience it is not a realistic path forward.

4.4 INHIBIT INSTANTIATION IF A TEMPLATE PARAMETER IS INCOMPLETE

A minimal solution for solving the problem in Listing 1 inhibits instantiation on ADL if a template
parameter is incomplete. This would cover some of the cases where ADL appears too eager. How-
ever, only minor variations of such examples would instantiate the class templates again, leading
to the same errors we were trying to fix. The solution would thus appear to be rather fragile and
potentially more confusing than helpful.

4.5 INSTANTIATION IF AND ONLY IF THERE ARE HIDDEN FRIENDS WITH A MATCHING NAME

The current wording already makes instantiation conditional on whether “the completeness of the
class type affects the semantics of the program”. Can we take this a step further, and require instan-
tiation only if the compiler determines name lookup will find something it wouldn’t find otherwise?
Such a condition would come close to tentative instantiation but isn't necessarily the same thing.
Name lookup requires less information of the complete type. Only when determining viability and
performing overload resolution is the completely instantiated type unavoidable.

An implementation would have to

1. keep a list of names of all hidden friends, and
2. be able to determine additional associated namespaces from base classes.

Instantiation is only necessary if a hidden friend was found via name lookup. For the other case
instantiation will likely be required for overload resolution, though.

5 WORDING
TBD.
6 SUGGESTED STRAW POLLS

None at this point.

11

— February 13, 2023 at 23:30 —

D2600RI1 7 ACKNOWLEDGEMENTS

7 ACKNOWLEDGEMENTS

This paper and my implementation for GCC are a reaction to a discussion on the CWG list with
input from a Jonathan Wakely, Richard Smith, Peter Dimov, Barry Revzin, Arthur O’'Dwyer, Ville
Voutilainen, and Daveed Vandevoorde. Arthur O’Dwyer suggested to consider std: :reference -
wrapper examples and strengthen the motivation.

A BIBLIOGRAPHY

[PO917R3] Matthias Kretz. PO917R3: Making operator?: overloadable. 1SO/IEC C+ Standards Com-
mittee Paper. 2019. urL: https://wg21.1ink/p0917r3.

[P2538R0O] Arthur O’'Dwyer. P2538R0: ADL-proof std::projected. ISO/IEC C+ Standards Commit-
tee Paper. 2022. urL: https://wg21l.1ink/p2538r0.

12

— February 13, 2023 at 23:30 —

https://wg21.link/p0917r3
https://wg21.link/p2538r0

	1 Introduction
	1.1 Is this a real problem?
	1.2 Instantiation via ADL interferes with the evolution of C++
	1.3 less need for ADL proofing
	1.4 History

	2 Proposed solution
	2.1 Necessary instantiation
	2.2 Namespaces of base classes
	2.3 std::reference_wrapper example

	3 Implementation Experience
	4 Alternative solutions / additional ADL ideas
	4.1 Add conversion operator return types to associated entities
	4.2 Opt-out/in ADL
	4.3 Tentative instantiation
	4.4 Inhibit instantiation if a template parameter is incomplete
	4.5 Instantiation if and only if there are hidden friends with a matching name

	5 Wording
	6 Suggested Straw Polls
	7 Acknowledgements
	A Bibliography

