
D
26
00
R1

Document Number: D2600R1

Date: 2023-02-13

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Audience: EWGI, EWG

Target: C++26

A minimal ADL restriction to avoid
ill-formed template instantiation

ABSTRACT

I researched and tested a minimal change to ADL to avoid ill-formed instantiations of templates

through ADL. If ADL ignores not-yet-instantiated-template types (just like ADL ignores incomplete

types) little to no functionality is lost while losing a sharp edge of the language. This paper presents

the idea, discusses potential code breakage, and presents potential alternatives/extensions of the

idea.

CONTENTS

1 Introduction 1
2 Proposed solution 4
3 Implementation Experience 8
4 Alternative solutions / additional ADL ideas 9
5 Wording 11
6 Suggested Straw Polls 11
7 Acknowledgements 12
A Bibliography 12

— February 13, 2023 at 23:30 —

D
26
00
R1

D2600R1 1 Introduction

1 INTRODUCTION

Consider the innocent-looking code in Listing 1 (as posted to the core reflector byJonathanWakely1).

struct Incomplete ;
template <typename T> struct Wrap { T t; };

template <typename Unused >
struct Testable
{

explicit operator bool () const { return true; }
};

int main ()
{

Testable <Incomplete > l;
if (l) // OK

return 1;
if (!(bool)l) // OK

return 0;
if (!l) // OK

return 0;

Testable <Wrap <Incomplete >> l2;
if (l2) // OK

return 1;
if (!(bool)l2) // OK

return 0;
if (!l2) // ERROR

return 0;
}

Listing 1: Ill-formed instantiation of Wrap<Incomplete> because of ADL

The expressions !l and !l2 lead to name lookup of operator!. The associated entities of l2 are
Testable<Wrap<Incomplete>>, Wrap<Incomplete>, and Incomplete. In this example Testable<Wrap<Incomplete>>
must already have been successfully instantiated, otherwise the declaration of l2 would have

been ill-formed. The type Incomplete is incomplete and the failure to look for operator! inside

Incomplete is ignored. The type Wrap<Incomplete> is a template specialization which has not been

instantiated at this point in the translation. But instead of treating the type like the incomplete

Incomplete type, the compiler attempts to instantiate the specialization, which leads to an ill-

formed definition of its data member since it has incomplete type.

1 http://lists.isocpp.org/core/2021/06/11161.php (the basic idea of this paper was already hinted at in the resulting
discussion thread)

1

— February 13, 2023 at 23:30 —

http://lists.isocpp.org/core/2021/06/11161.php

D
26
00
R1

D2600R1 1 Introduction

The expression !l is well-formed since ADL ignores incomplete types. Consequently, a later

definition of Incomplete as

struct Incomplete {
friend bool operator !(Testable <Incomplete >) { return true; }

}

changes the value of the expression !l.
Why does the standard allow incomplete types (i.e. not require completion) as associated enti-

ties even though this can lead to ODR violations? Isn’t the same reasoning applicable to templates

that have not been instantiated yet? And what are the use cases for defining a hidden friend in

Wrap<Incomplete>whichwins in overload resolutionwhen the argument is a Testable<Wrap<Incomplete>>?
(The last question is not only a rhetoric question, see Section 2.3 for a possible answer.)

1.1 is this a real problem?

To determine whether Listing 1 poses a real problem, consider that Testable<T> is equivalent to

std::unique_ptr<T> wrt. operator!. I.e. a few corner cases, but still legitimate uses of unique_ptr
lead to puzzling errors2.

Furthermore, for std::unique_ptr<std::array<Incomplete, N>>, instantiation on ADL can oc-

cur in many more places; for example on range-based for loops as shown in Listing 2. The reason

1 class Incomplete ;
2 using Data = std::array <Incomplete , 3>;
3 using Ptr = std::unique_ptr <Data >;
4

5 void assert_nonnull (std::span <Ptr > x)
6 {
7 for (const Ptr &ptr : x) // ERROR: 'std :: array <_Tp , _Nm >:: _M_elems ' has
8 assert (ptr); // incomplete type
9 }

Listing 2: Iteration over std::span<std::unique_ptr<std::array<Incomplete, N>>> is ill-formed

for the error in Listing 2 isn’t the lookup of begin and end (it would be if x had no begin or end
members) but rather that operators applied to the iterator lead to ADL which instantiates std::
array<Incomplete, 3>. Thus, to write an iterator that doesn’t break on legitimate use of incom-

plete types a library developer has to use the ADL-proofing pattern from Listing 3 as explained by

O’Dwyer [P2538R0]. We might expect standard library developers to learn and apply this pattern.

But we should not expect from any other C++ library developer to work around ADL surprises.

2 OTOH, unique_ptr is not boolean-testable, so maybe users should simply learn to cast unique_ptr, optional, etc to
bool?

2

— February 13, 2023 at 23:30 —

D
26
00
R1

D2600R1 1 Introduction

1 template <typename T>
2 struct IteratorImpl {
3 class type {
4 // ...
5 };
6 };
7

8 template <typename T>
9 using Iterator = typename IteratorImpl <T >:: type;

Listing 3: ADL-proofed iterator type

1.2 instantiation via adl interferes with the evolution of C++

With the current behavior of ADL, adding non-member operator[] or overloadable operator?:
[P0917R3] to the language3 is a breaking change. Existing code that currently compiles just fine

would suddenly instantiate templates through ADL and thus potentially lead to ill-formed instanti-

ation.

Instantiation via ADL is a concern that needs to be considered for language and library evolution

whenever ADL is required for a new feature. This proposal makes language and library evolution

simpler (or even turn breaking changes into non-breaking changes).

1.3 less need for adl proofing

To complete the picture, note that the issue is not specific to operators (e.g. Listing 4). However,

for operators there’s no simple “always fully qualify your calls” rule to avoid ADL.

1 template <class T> struct Holder { T t; };
2 struct Incomplete ;
3 Holder <Incomplete > *p;
4 int f(Holder <Incomplete >*);
5 int x = f(p); // error: Holder <Incomplete > is an associated entity
6 int y = ::f(p); // ok: no ADL

Listing 4:Minimal example triggering ill-formed instantiation, as presented in [P2538R0]

O’Dwyer [P2538R0] goes on to show how the original definition of std::projected leads to

ill-formed instantiation on ADL. His proposed solution requires ADL-proofing of std::projected,
which requires a change in how the class template is defined.

This proposal makes ADL-proofing for avoiding ill-formed instantiation unnecessary4. The lan-

guage would lose one sharp edge at a minor cost (more complex wording & new, unlikely, and easy

to work around corner case for users).

3 Motivation is / will be given in their own papers.

4 ADL-proofing is still a useful tool for avoiding ADL hijacking.

3

— February 13, 2023 at 23:30 —

D
26
00
R1

D2600R1 2 Proposed solution

1.4 history

To estimate how much code might be affected by limiting template instantiation on ADL to the

argument type itself, it is helpful to know that template instantiation via ADL had not been imple-

mented in compilers for a long time. Template instantiation via ADL works since GCC 4.5.0 (April

2010), Clang 3.1.0 (May 2012), and since an ICC release between ICC 14 and 165.

2 PROPOSED SOLUTION

Let us consider a simple solution to make ADL avoid the above situations:

Don’t instantiate templates via ADL except for the argument type itself.

Rationale: If a given associated entity has not been instantiated at this point in the translation,

1. the usermight have avoided instantiation intentionally since instantiationwould be ill-formed;

and

2. the type was not important enough up to this point that instantiation was necessary — the

chances for it to make a semantic difference are small —.

If I interpret the current wording correctly, the reason compilers instantiate templates via ADL is

[temp.inst] p2:

[temp.inst]
2 Unless a class template specialization is a declared specialization, the class template specialization is implicitly

instantiated when the specialization is referenced in a context that requires a completely-defined object type or
when the completeness of the class type affects the semantics of the program. […]

In basically all cases, the completeness of the class type does not affect the semantics of the pro-

gram, though. But the compiler cannot know that instantiation is unnecessary until after it instanti-

ated the template. The subsequent note in [temp.inst] clarifies that the knowledge about whether

a name exists or not is considered affecting semantics. Therefore implementations have no choice

of avoiding instantiation, even if they kept track of ADL-relevant names (i.e. hidden friends).

2.1 necessary instantiation

The one case where instantiation via ADL is still required is shown in Listing 5. The situation in

Listing 5 is unlikely (but certainly not impossible6), since almost every other use of the lvalue x
would lead to instantiation.

Therefore, given an argument of reference to T, ADL should instantiate T and its bases but none

of its template arguments.

5 I have only been able to test with the compilers available on Compiler Explorer

6 E.g. https://gcc.gnu.org/PR34870, which lead to GCC instantiating templates via ADL

4

— February 13, 2023 at 23:30 —

https://gcc.gnu.org/PR34870

D
26
00
R1

D2600R1 2 Proposed solution

1 template <typename T>
2 struct A {
3 friend void f(const A&);
4 };
5

6 void g(const A<int >& x) {
7 f(x);
8 }

Listing 5: Requires instantiation or reasonable code could break.

2.2 namespaces of base classes

Consider Listing 6which defines a base class in a different namespace (A) than the derived class tem-

plate. In order for ADL to consider A as associated namespace when an argument of type C<int>*

1 namespace A {
2 class B {};
3 void f(B*);
4 }
5 void f(void *);
6

7 template <class T> class C : public A::B {};
8

9 void g(C<int >* p) {
10 f(p); // calls ::f because C<int > has not been instantiated
11 A::B* other_ptr = p; // instantiates C<int > to find its base types
12 f(p); // calls A::f because C<int > has been instantiated before ADL
13 }
14

15 // analogue situation with incomplete types:
16 class I;
17 void g0(I* p) { f(p); } // calls ::f
18 class I : public A::B {};
19 void g1(I* p) { f(p); } // calls A::f

Listing 6: ADL in namespace of base class

is used, the base types of the class template need to be know. However, if ADL were not to in-

stantiate C<int> anymore, the behavior would depend on the preceding code: whether C<int> had
already been instantiated or not. The analogue issue for an incomplete type I exhibits the same

behavior change in ADL after defining I. However, for the incomplete type it is more obvious why

the base types’ namespaces are not considered (“You didn’t say that A::B is a base!”).
Note that overload resolution still has to instantiate class templates to find bases, as shown in

Listing 7. It is an open question whether template instantiation via ADL on arguments of pointer

type is enough of a problem towarrant the surprising behavior of the (contrived) example in Listing 7

5

— February 13, 2023 at 23:30 —

D
26
00
R1

D2600R1 2 Proposed solution

1 class B0 {};
2 namespace A {
3 class B : public B0 {};
4 void f(B*);
5 }
6 void f(void *);
7 void f(B0 *);
8

9 template <class T> class C : public A::B {};
10

11 void g(C<int >* p) {
12 f(p); // calls ::f(B0*)
13 // candidates : ::f(void *) and ::f(B0*), overload resolution instantiates
14 // C<int > and picks ::f(B0*), i.e. overload resolution works unchanged
15 f(p); // calls A::f(A::B*)
16 // because ADL now finds the additional candidate A::f(A::B*)
17 }

Listing 7: Class template instantiation on overload resolution if ADL does not instantiate C<int>

(vs. the surprising behavior of Listing 4). As a more conservative change to ADL, given an argument

of pointer to T, let ADL instantiate T and its bases but none of its template arguments.

Beyond references and pointers — as far as I have seen — there is little use in ADL instantiating

templates. I propose to modify [basic.lookup.argdep] and/or [temp.inst] to treat not-yet-instanti-

ated-template types like incomplete types except if the not-yet-instantiated-template type is the

type of the function argument7.

2.3 std::reference_wrapper example

std::reference_wrapper<X>, where X implements hidden friends, is the canonical example where

this proposal has the potential for breaking existing code.An idea for avoiding the breaking change is

presented in Section 4.1. Note that, since C++20, std::reference_wrapper<T> does not require T to
be complete andwe can therefore construct valid examples with the type std::reference_wrapper
<Wrap<Incomplete>>. The relevant class of examples follows the pattern shown in Listing 8. This

pattern relies on:

1. std::reference_wrapper<X> is convertible to X, and

2. ADL looks into X for hidden friends when std::reference_wrapper<X> is a function argu-

ment (operand).

Note that X doesn’t need to know about (or even spell out) std::reference_wrapper and can there-
fore work with any type that has a conversion operator to X and where X is an associated entity.

Notably, and inconsistently, function arguments of type XRef, as defined in Listing 9, will not find

7 stops handwaving; this is nowhere near wording …

6

— February 13, 2023 at 23:30 —

D
26
00
R1

D2600R1 2 Proposed solution

1 struct X {
2 friend constexpr int f(const X&) { return 1; }
3 friend constexpr bool operator !(const X&) { return false; }
4 };
5

6 int g(std:: reference_wrapper <X> ref) {
7 return !ref ? 0 : f(ref); // returns 1
8 }

Listing 8: std::reference_wrapper is transparent for hidden friends

1 struct XRef {
2 X* ptr;
3 constexpr operator X&() const noexcept { return *ptr; }
4 };

Listing 9: A non-template reference wrapper is not transparent for hidden friends

hidden friends of X on name lookup. See Section 4.1 for an idea that would resolve the inconsis-

tency.

With the following ingredients we can build an example (see Listing 10) that would break with

the proposed language change:

• A class template specialization X<Y> that has not been instantiated yet.

• A hidden friend in X<Y>.

• A function call (or operator) which wants to find said hidden friend in name lookup.

• Wrap everything as std::reference_wrapper<X<Y>>.

1 template <typename T>
2 struct X
3 {
4 T data;
5 friend auto operator <=>(const X&, const X&) = default ;
6 };
7

8 // static_assert (std :: totally_ordered <X<int >>);
9 // the following fails unless X<int > was instantiated already (e.g. with the
10 // line above)
11 static_assert (std:: totally_ordered <std:: reference_wrapper <X<int >>>);

Listing 10: std::reference_wrapper example which would fail unless line 8 is uncommented

As far as I can tell there is no class template in the standard library that fits this description.

However, the std::experimental::simd<T, Abi> class template of the Parallelism TS 2 specifies

7

— February 13, 2023 at 23:30 —

D
26
00
R1

D2600R1 3 Implementation Experience

its operators as hidden friends. Consequently, the example in Listing 11 would not instantiate simd
<float> anymore via ADL and thus fail to compile.

1 # include <experimental /simd >
2 # include <functional >
3

4 auto f(std:: reference_wrapper <std:: experimental ::simd <float >> x) {
5 return x == x; // would not instantiate simd <float > anymore
6 }

Listing 11: Regression when combining std::reference_wrapper with std::experimental::simd.

An example similar to Listing 11 is still highly unlikely to occur outside of code snippets specif-

ically written for demonstrating the issue. In general, an expression instantiating simd<float> (i.e.

the wrapped type) would precede the use of the reference wrapper with high probability. More

importantly, the explicit use of std::reference_wrapper or similar reference types is not common.

At least reference_wrapper is unwrapped transparently for std::bind and typically unwraps auto-

matically when a function with a reference to the wrapped type is called.

While the chance of breakage after restricting instantiation via ADL may be close to zero, we

have no way of making a more substantial statement. It is impossible to prove that no breakage will

occur, because the absence of certain code patterns cannot be proven.

3 IMPLEMENTATION EXPERIENCE

I implemented the presented idea for GCC. In this implementation the type of a pointer argument

is not instantiated (cf. Section 2.2). The necessary change to the ADL code was straightforward:

In principle the change involved only making template instantiation conditional on whether the

type is the argument type itself or an associated entity. A modified GCC 12.1 can be obtained at

https://github.com/mattkretz/gcc/tree/7266f1c5f75fc7a970de.
One test of GCC’s testsuite (shown in Listing 12) broke with the change. The test case started

1 template <typename > struct g { static const int h = 0; };
2 template <typename i> void declval () { static_assert (!g<i >::h,""); }
3 template <typename > struct a {
4 template <typename d, typename c>
5 friend auto f(d &&, c &&)
6 noexcept (declval <c>) -> decltype (declval <c >); // { dg -error " different exception " }
7 };
8 template <typename d, typename c> auto f(d &&, c &&) -> decltype (declval <c >);
9 struct e {};
10 static_assert ((e{}, declval <a<int >>),""); // { dg -error "no context to resolve type" }

Listing 12: GCC test that broke after implementation of less eager ADL (declval<a<int>> without
parenthesis is no error — with parenthesis a<int> isn’t an associated entity)

8

— February 13, 2023 at 23:30 —

https://github.com/mattkretz/gcc/tree/7266f1c5f75fc7a970de

D
26
00
R1

D2600R1 4 Alternative solutions / additional ADL ideas

failing because the expression (e, declval<a<int>>) requires name lookup of operator, and the

type a<int> is an associated entity and thereforewas instantiated (i.e. GCCwas looking for a hidden

friend comma operator in a<int>) which lead to the actual failure this test was looking for. To me

Listing 12 is no motivation for holding back on this proposal, rather the opposite. For what it’s

worth, Clang doesn’t even instantiate a<int> for this test case.
I found no further code breakage.

4 ALTERNATIVE SOLUTIONS / ADDITIONAL ADL IDEAS

I believe the above suggestion would be a strict improvement of the C++ language and better than

the alternatives listed in the following. However, in order to reduce the potential for breaking ex-

isting code and to resolve an inconsistency of ADLwith regard to reference wrappers, I believe the

idea in Section 4.1 should be part of the final solution.

4.1 add conversion operator return types to associated entities

Observe the inconsistency in Listing 13. Each of the three types ref<foo>, int_ref, and foo_-
ref (partially) model a reference (conversion operator defined as for std::reference_wrapper). But
they behave considerably different because name lookup is different.

To make Listing 13 consistent, we could add another rule to ADL and add the return types of

all conversion operators as associated entities. Since these types are much more likely to make a

semantic difference on name lookup, template instantiation should be performed. However, only

the conversion operators of the function argument type itself must be considered; conversion

operators of return types of conversion operators are irrelevant, as are conversion operators of

template arguments. As a consequence the examples in Listing 10 and Listing 11would work again.

Obviously, more ADL has the potential to add more problems. But if this is introduced together

with not instantiating templates anymore, the net effect should be positive. Counter-examples are

welcome to improve the discussion of the idea.

I have implemented this idea in GCC and found no regressions in the GCC and libstdc++ test

suites. More testers are welcome. A modified GCC 12.1 can be obtained at https://github.com/
mattkretz/gcc/tree/7895934f858fbb2e6039.

4.2 opt-out/in adl

If the committee cannot agree on changing the way ADL and template instantiation work, we are

basically only left with new opt-in/out syntax, if we want to solve this problem. I am not ready to

explore this idea. I mention it here to give a complete picture of the solution space.

As a straw-man example consider Listing 14. Note that such an opt-in/out solution would not

open a path for the evolution of non-member operator[] and overloadable operator?:.

9

— February 13, 2023 at 23:30 —

https://github.com/mattkretz/gcc/tree/7895934f858fbb2e6039
https://github.com/mattkretz/gcc/tree/7895934f858fbb2e6039

D
26
00
R1

D2600R1 4 Alternative solutions / additional ADL ideas

1 struct foo {
2 friend bool operator !(const foo &) noexcept ;
3 };
4

5 template <class T>
6 struct ref {
7 T* data;
8 constexpr operator T&() const noexcept { return *data; }
9 };
10

11 struct int_ref {
12 int* data;
13 constexpr operator int &() const noexcept { return *data; }
14 };
15

16 struct foo_ref {
17 foo* data;
18 constexpr operator foo &() const noexcept { return *data; }
19 };
20

21 void f(const ref <foo >& r0 , const int_ref & r1 , const foo_ref & r2) {
22 !r0; // finds foo :: operator ! because foo is an associated entity
23 !r1; // OK
24 !r2; // ERROR
25 }

Listing 13: Different name lookup for three reference types that should be equivalent (https://
godbolt.org/z/83fqT76vn)

1 // opts out of considering implicit associated entities ; instead `bar ` and its
2 // associated entities are the associated entities of foo <T>:
3 template <typename T>
4 struct foo : adl bar { /* ... */ };
5

6 // no associated entities :
7 template <typename T>
8 struct meow : adl void { /* ... */ };
9

10 // fix the `unique_ptr ` problem from Listing 1
11 namespace std {
12 template <class T, class D = default_delete <T>>
13 class unique_ptr : adl void {
14 // ...
15 };
16 }

Listing 14: Straw-man opt-in/out syntax for ADL

10

— February 13, 2023 at 23:30 —

https://godbolt.org/z/83fqT76vn
https://godbolt.org/z/83fqT76vn

D
26
00
R1

D2600R1 5 Wording

4.3 tentative instantiation

It seems like an obvious solution to require IFINAE (instantiation failure is not an error) on ADL, i.e.

to require tentative template instantiation. However, this would place a huge burden on implemen-

tations: The instantiation depth might be very deep, before the condition is found. IFINAE requires

a rollback of all unfinished instantiations that lead to the issue. It seems like a huge but solvable

task for compilers, but without implementation experience it is not a realistic path forward.

4.4 inhibit instantiation if a template parameter is incomplete

A minimal solution for solving the problem in Listing 1 inhibits instantiation on ADL if a template

parameter is incomplete. This would cover some of the cases where ADL appears too eager. How-

ever, only minor variations of such examples would instantiate the class templates again, leading

to the same errors we were trying to fix. The solution would thus appear to be rather fragile and

potentially more confusing than helpful.

4.5 instantiation if and only if there are hidden friends with a matching name

The current wording already makes instantiation conditional on whether “the completeness of the

class type affects the semantics of the program”. Can we take this a step further, and require instan-

tiation only if the compiler determines name lookup will find something it wouldn’t find otherwise?

Such a condition would come close to tentative instantiation but isn’t necessarily the same thing.

Name lookup requires less information of the complete type. Only when determining viability and

performing overload resolution is the completely instantiated type unavoidable.

An implementation would have to

1. keep a list of names of all hidden friends, and

2. be able to determine additional associated namespaces from base classes.

Instantiation is only necessary if a hidden friend was found via name lookup. For the other case

instantiation will likely be required for overload resolution, though.

5 WORDING

TBD.

6 SUGGESTED STRAW POLLS

None at this point.

11

— February 13, 2023 at 23:30 —

D
26
00
R1

D2600R1 7 Acknowledgements

7 ACKNOWLEDGEMENTS

This paper and my implementation for GCC are a reaction to a discussion on the CWG list with

input from a Jonathan Wakely, Richard Smith, Peter Dimov, Barry Revzin, Arthur O’Dwyer, Ville

Voutilainen, and Daveed Vandevoorde. Arthur O’Dwyer suggested to consider std::reference_-
wrapper examples and strengthen the motivation.

A BIBLIOGRAPHY

[P0917R3] Matthias Kretz. P0917R3:Making operator?: overloadable. ISO/IECC++ Standards Com-

mittee Paper. 2019. url: https://wg21.link/p0917r3.

[P2538R0] Arthur O’Dwyer. P2538R0: ADL-proof std::projected. ISO/IEC C++ Standards Commit-

tee Paper. 2022. url: https://wg21.link/p2538r0.

12

— February 13, 2023 at 23:30 —

https://wg21.link/p0917r3
https://wg21.link/p2538r0

	1 Introduction
	1.1 Is this a real problem?
	1.2 Instantiation via ADL interferes with the evolution of C++
	1.3 less need for ADL proofing
	1.4 History

	2 Proposed solution
	2.1 Necessary instantiation
	2.2 Namespaces of base classes
	2.3 std::reference_wrapper example

	3 Implementation Experience
	4 Alternative solutions / additional ADL ideas
	4.1 Add conversion operator return types to associated entities
	4.2 Opt-out/in ADL
	4.3 Tentative instantiation
	4.4 Inhibit instantiation if a template parameter is incomplete
	4.5 Instantiation if and only if there are hidden friends with a matching name

	5 Wording
	6 Suggested Straw Polls
	7 Acknowledgements
	A Bibliography

