mprint of conservation laws in correlated particle production

Anar Rustamov, Peter Braun-Munzinger, Johanna Stachel

GSI, EMMI, Universität Heidelberg

<u>a.rustamov@gsi.de</u>

Outline

- Phase diagram and fluctuations
 - Correlations in rapidity space
 - Canonical Ensemble
- Obtained results and comparison to experiments
 - Implications from long range correlations
 - The quest for proton clusters
- Conclusions

Phase diagram and fluctuations

A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Nature 561, 321–330 (2018) H. T. Ding et al [HotQCD], arXiv:1903.04801, A. Bazavov et al [HotQCD], arXiv:1812.08235

decoding the phase structure of matter with E-by-E fluctuations

A. Rustamov, Quark Matter 22, Kraków, Poland, 3-10 April, 2022

E-by-E fluctuations are predicted within **Grand Canonical Ensemble**

 κ_n - cumulants (measurable in experiment) $\hat{\chi}_n^B$ - susceptibilities (e.g. from IQCD)

Minimal baseline: GCE + Ideal Gas EoS

$$\kappa_n(N_B - N_{\bar{B}}) = \langle N_B \rangle + (-1)^n \langle N_{\bar{B}} \rangle \equiv k_n(Skellam)$$

P. Braun-Munzinger, AR, J. Stachel, NPA 982 (2019) 307-310

Formulation of the problem

 $\stackrel{\scriptstyle \swarrow}{=}$ no fluctuations in 4π

finite fluctuations inside acceptance

P. Braun-Munzinger, B. Friman, K. Redlich, AR., J. Stachel, NPA 1008 (2021) 122141 V. Vovchenko, V. Koch, Ch. Shen, Phys.Rev.C 105 (2022) 1,014904

novelty in this presentation: <u>correlations in rapidity space</u>

A. Rustamov, Quark Matter 22, Kraków, Poland, 3-10 April, 2022

exploiting Canonical Ensemble in the full phase space

akin to experiments

essential for understanding baryon production mechanism

introducing correlations in rapidity space

Cholesky decomposition

 $\{x_1, x_2\}$: pairs of random variables; how to introduce correlations between them?

 $\rho = \frac{cov[x_1, x_2]}{\sigma_1 \sigma_2}$

correlation coefficient

Cholesky decomposition:

covariance matri

André-Louis Cholesky (1875-1918)

posthumously published: Bulletin Géodésiqu

 \Im get correlated $\{x_1, x_2\}$ pairs

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \langle x_1 \rangle \\ \langle x_2 \rangle \end{pmatrix} + L \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$

works only for Gaussian distributions

A. Rustamov, Quark Matter 22, Kraków, Poland, 3-10 April, 2022

$$cov[x_1, x_2] = \langle x_1 x_2 \rangle - \langle x_1 \rangle \langle x_2 \rangle \qquad \sigma_i^2 = \langle x_i^2 \rangle - \langle x_1 \rangle \langle x_2 \rangle$$

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_2 \sigma_1 & \sigma_2^2 \end{pmatrix} = \begin{pmatrix} \sigma_1 & 0 \\ \rho \sigma_2 & \sqrt{1 - \rho^2} \sigma_2 \end{pmatrix} \begin{bmatrix} \sigma_1 & \rho \sigma_2 \\ 0 & \sqrt{1 - \rho^2} \sigma_2 \end{bmatrix}$$

$$E \text{ (in French). 2: 66-67 (1924)} \qquad L$$

 \forall generate uncorrelated variables from Standard Normal Distribution ($\sigma = 1, \mu = 0$)

 $\Sigma_z \equiv \mathbb{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ uncorrelated

correlated

$$\Sigma_{x} = \begin{pmatrix} \sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\ \rho \sigma_{2} \sigma_{1} & \sigma_{2}^{2} \end{pmatrix}$$

Metropolis algorithm (Simulated annealing)

start with uncorrelated $\{y_B\}, \{y_{\bar{B}}\}$

works for arbitrary distributions

Quantifying correlations

eigenequation of covariance matrix:

Canonical Ensemble (CE)+correlations

$$Z_{B}(V,T) = \sum_{N_{B}=0}^{\infty} \sum_{N_{\bar{B}}=0}^{\infty} \frac{(\lambda_{B} z_{B})^{N_{B}}}{N_{B}!} \frac{(\lambda_{\bar{B}} z_{\bar{B}})^{N_{\bar{B}}}}{N_{\bar{B}}!} \delta(N_{B} - N_{\bar{B}} - B) = \left(\frac{\lambda_{B} z_{B}}{\lambda_{\bar{B}} z_{\bar{B}}}\right)^{\frac{B}{2}} I_{B}(2 z \sqrt{\lambda_{B} \lambda_{\bar{B}}})$$

B net baryon number, conserved in each event modified Bessel function of the first kind I_R single particle partition functions for baryons, anti baryons $Z_{B}, Z_{\overline{R}}$ auxiliary parameters for calculating cumulants of baryons, anti baryons $\lambda_R, \lambda_{\bar{R}}$

+

baryon number conservation (CE partition function)

Input from experiments

baryon rapidity distributions $\stackrel{>}{=}$ measured (canonical) $\langle N_{R} \rangle$, $\langle N_{\bar{R}} \rangle$

- P. Braun-Munzinger, B. Friman, K. Redlich, AR., J. Stachel, NPA 1008 (2021) 122141 A. Bzdak, V. Koch, V. Skokov, Phys.Rev.C 87 (2013) 1,014901

$$\langle N_B \rangle = \lambda_B \frac{\partial \ln Z_B}{\partial \lambda_B} \Big|_{\lambda_B, \lambda_{\bar{B}} = 1} = z \frac{I_{B-1}(2z)}{I_B(2z)}$$

comparison to experimental data

A. Rustamov, Quark Matter 22, Kraków, Poland, 3-10 April, 2022

10

Results at LHC energies

CE baseline: P. Braun-Munzinger, B. Friman, K. Redlich, AR., J. Stachel, NPA 1008 (2021) 122141 $\frac{K_2(B-\overline{B})}{< n_B + n_B}$ 1.5 • $\rho = 0.10 \iff \Delta y_{corr} = 12.0$ • $\rho = 0.80 \iff \Delta y_{corr} = 5.6$ • $\rho = 0.95 \iff \Delta y_{corr} = 2.8$ • $\rho = 0.99 \iff \Delta y_{corr} = 1.3$ -CE baseline predictions 0.5 0^{L}_{0} 0.2 0.4 8.0 0.6 $\alpha = \langle n_R^{acc} \rangle / \langle n_R^{4\pi} \rangle$

> \mathbb{P} Alice data: best description with $\rho = 0.1$ ($\Delta y_{corr} = 12$) \leftrightarrow Global baryon number conservation Find (Lund String Fragmentation) results are in conflict with the ALICE data are consistent with $\rho = 0.98$ ($\Delta y_{corr} = 1.7$) \leftrightarrow Strong local correlations

comparison to ALICE

Baryon production in string models

comparison to ALICE

Hjing (Lund String Fragmentation) results are in conflict with the ALICE data

A. Rustamov, Quark Matter 22, Kraków, Poland, 3-10 April, 2022

Lund String Fragmentation

baryon production $q\bar{q}$ pair is replaced by $qq-\bar{q}\bar{q}$ pair

diquark-antidiquark popcorn mechanism

induces short range correlations in rapidity space

B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand Phys.Rept. 97 (1983) 31-145

$\kappa_2(p-\bar{p})$ measurements are essential to constrain baryon production mechanisms

~3%

The quest for proton clusters

correlations between baryons (extra option of the model)

 \mathbb{I} for large values of ρ and small values of Δy it is more probable to treat protons in pairs this process increases the finally measured proton number fluctuations

The quest for proton clusters

correlations between baryons (extra option of the model)

 \mathbb{I} for large values of ρ and small values of Δy it is more probable to treat protons in pairs this process increases the finally measured proton number fluctuations

The quest for proton clusters

CE baseline: P. Braun-Munzinger, B. Friman, K. Redlich, AR., J. Stachel, NPA 1008 (2021) 122141

correlated proton production enhances $\kappa_3(p)/\kappa_2(p)$ and $\kappa_4(p)/\kappa_2(p)$ wrt CE baseline

Comparison to STAR data

STAR: Phys.Rev.Lett. 126 (2021) 9, 092301 CE Baseline: P. Braun-Munzinger, B. Friman, K. Redlich, AR, J. Stachel, NPA 1008 (2021) 122141

> Final with $\rho = 0.8$ where the second states of the second states are the second states of t at the current precision of the data there is no evidence for critical behaviour!

Solution with the long range correlations ($\rho = 0.1$) (no clustering)

Conclusions

- rapidity space.
 - \mathbf{V} The method allows to introduce correlations between $\overline{B}\overline{B}$, $B\overline{B}$ and BB pairs
- $\overline{\mathbf{M}}$ The ALICE data exclude short range $B\overline{B}$ correlations \mathbf{M} The data are best described with the correlation coefficient $\rho = 0.1 \leftrightarrow \Delta y_{corr} = 12$ **M** This behaviour is at odds with the Lund String Fragmentation model for baryon production
- \checkmark The STAR data are best described with ρ =0.1 (no evidence for clustering) The current experimental precision, however, does not exclude a scenario with the correlation coefficient $\rho = 0.8$

Canonical Ensemble + Metropolis algorithm is applied for the first time to account for correlations in

