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Abstract
The complexity of the GSI/FAIR accelerator facility de-

mands a high level of automation to maximize the time for
physics experiments. Accelerator laboratories worldwide
are exploring a large variety of techniques to achieve this,
from classical optimization and Bayesian optimization (BO)
to reinforcement learning. This paper reports on the first
results of using Geoff (Generic Optimization Framework &
Frontend) at GSI for automatic optimization of various beam
manipulations. Geoff is an open-source framework that har-
monizes access to the automation techniques mentioned
above and simplifies the transition towards and between
them. It is maintained as part of the EURO-LABS project
in cooperation between CERN and GSI. In dedicated beam
experiments, the beam loss of the multi-turn injection into
the SIS18 synchrotron has been reduced from 40% to 15%
in about 15 minutes, where manual adjustment can take up
to 2 hours. Geoff has also been used successfully at the GSI
Fragment Separator (FRS) for beam steering. Further exper-
imental activities include closed-orbit correction for specific
broken-symmetry high-transition-energy SIS18 optics with
BO in comparison to traditional SVD-based correction.

GEOFF AT GSI
FAIR – the Facility for Antiproton and Ion Research –

will constitute an international center of heavy-ion accelera-
tors that will drive the forefront of heavy-ion and antimatter
research [1]. The complexity of the FAIR facility requires
a high level of automation for future operation [2]. One
part of this automation effort is to provide a framework that
allows both machine experts and operators to solve certain,
focused optimization problems and to make these solutions
reusable in an operational context. We call this project the
“Generic Optimization Framework and Frontend”, or Ge-
off for short [3]. It is based on Python, a programming
language that is widely used in scientific research, has a
vibrant ecosystem of machine learning algorithms, and is
perceived as very beginner-friendly. Both language and
framework have proven themselves flexible enough to be
quickly adapted to new problems. Geoff is already used
extensively at CERN, from linacs to SPS and ISOLDE. It
is usually embedded into a GUI application, but can also
be used in command-line scripting. Geoff standardizes in-
terfaces for optimization tasks [4] and provides adapters
for various third-party packages, for example: SciPy, Sta-
ble Baselines 3, Scikit-Optimize. Geoff tasks can scale to
arbitrary complexity and depend on any Python package;
they can use any controls systems and even communicate
with external simulation tools, as long as they have Python
bindings (see Fig. 1).

Figure 1: Model of Geoff and its components. The optimizer
interface includes BOBYQA, Bayesian optimization (BO),
and reinforcement learning (RL).

Figure 2 shows an optimization run that used Geoff for
beam steering in the TK transfer channel at GSI. To shorten
the loop between code changes and test runs, we used Geoff
in a command-line script and ran it inside a terminal window.
Custom figures can be shown and updated continuously to
monitor the algorithm’s progress.

Figure 2: Screenshot of a typical optimization run using
Geoff. Shown is the usage in a scripting context: the terminal
window with logging messages is in the background, live
graphs for monitoring in the foreground.

MULTI-TURN
INJECTION OPTIMIZATION

Loss-induced vacuum degradation limits the intensity of
intermediate-charge-state ion beams and so is a considerable
concern for FAIR [5, 6]. To prevent a decrease in the per-
formance of the SIS18 synchrotron due to this degradation,
it is crucial to reduce injection losses during the multi-turn
injection (MTI) process [7].
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Figure 3: Automatic BOBYQA minimization of beam loss
using SIS18 injection parameters and TK steerers. Each
point is a measurement, so three points make up one iteration
of the algorithm. The gray area marks the initialization
phase1.

To work around Liouville’s theorem, four bumper mag-
nets create a time-variable closed-orbit bump, such that the
injection septum directs each incoming beamlet into an avail-
able horizontal phase space close to the previous injected
beamlets. MTI losses can occur both at the septum and at
the accelerator’s acceptance [8].

The objective of our online optimization was to minimize
beam loss during injection into SIS18 by adjusting 5 in-
jection parameters and 4 steers in the TK transfer channel.
The parameters were randomized before optimization to en-
sure a sufficiently bad initial state. The loss was estimated
by measuring the beam current in the TK, calculating the
SIS18 current given perfect injection, and subtracting the
measured SIS18 current. To reduce the variance of the ob-
jective function, each evaluation took the median of three
measurements.

One optimization takes 15–20 min. In one instance, the
beam loss was 35% after manual tuning by professional
operators; 25% after automatic optimization of only the
MTI injection; and 20% after simultaneous optimization
of the MTI injection and the beam steering in the TK. (see
Fig. 3) In a previous test in November 2023, it was possible to
decrease the loss from 45% after manual tuning to 15% [9].

We also compared BOBYQA and BO, presenting the re-
sults in Fig. 4. Both algorithms show similar performance
within the same number of iterations.

FRAGMENT SEPARATOR OPTIMIZATION
The task of a fragment separator (FRS) is to identify and

select the different nuclides in a fragment beam produced in a
fixed target. After selection, the nuclides are used for further
studies in downstream experiments. At present, setting up
1 BOBYQA maintains a quadratic model of the objective function, which

must be initialized with 𝑁 ≥ 2𝑛 + 1 evaluations, where 𝑛 = 9 is the
number of optimization parameters.

2 For BO, the length of the initialization phase is is a free parameter and
has here been set to 5.
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Figure 4: Comparison of BOBYQA and BO for an automatic
online optimization of SIS18 injection loss. Each evaluation
of the objective function requires three acceleration cycles.
The gray areas represent the initialization phases of each
algorithm2.

the FRS instrument for experiments takes between two to
three days at the start of each physics run.

As a first step toward possible full automation, we started
with beam steering at a specific point and angle, as measured
by two profile grids in front of the target [10]. Because
classical optimization operates on scalar functions, these
observables have been combined into a single quantity, the
sum of the distance between the beam center and a target
point (𝑥 = 0 mm, 𝑦 = −3 mm) on both grids. The result
of the automatic steering is shown in Fig. 5. While the
algorithm ran for 50 iterations, it had already converged
after fewer than 20.
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Figure 5: Automatic online steering that uses BOBYQA
to minimize the distance between beam center and and the
target point on both grids. The gray area marks the initial-
ization phase of the algorithm.

This is not representative because one of the initialization
points was already very close to the optimum by chance.
Afterward, the algorithm performed soft restarts to escape
potential local minima. All in all, the procedure took about
15 minutes. Speedups are limited by measurements being



bound to the slow-extraction cycle and and by the profile
grids requiring multiple cycles to read out both X and Y
coordinates due to the limited bandwidth of the multiplexer
that they are attached to.

CLOSED ORBIT CORRECTION
Further experimental activities include the exploration

of Bayesian Optimization for closed-orbit correction as an
advanced approach for optics where the standard correction
fails. As optics setting, we chose the particularly challenging
broken-symmetry high-transition-energy SIS18 optics. This
setting shifts the transition energy (𝛾𝑡) by modulating the
lens strength and reducing the superperiodicity. (For more
details, see [11].) The simulated beta functions of the accel-
erator with this optical setting are illustrated in Fig. 6 and
show the reduced superperiodicity of 𝑆 = 6 in the horizontal
direction.

Figure 6: The superperiodicity of 𝑆 = 6 in the horizontal
direction is visible in the simulated beta functions.

This design is advantageous for synchrotrons such as the
SIS18, as it makes the accelerator more adaptable to its di-
verse research needs; however, it can cause the traditional,
SVD-based correction method to fail. An optimization-
based approach should find those corrector magnets setting
that minimize the RMS deviation between a target orbit and
the orbit measured by the BPMs in presence of noise. Sim-
ulations of the influence of noise on the BPMs show that
for higher noise levels, BO achieves better results than SVD.
In addition, the SVD method’s accuracy is decreased by
nonlinearities caused by the chromaticity correction with
sextupoles.

In the BO-based approach, a Gaussian Process acts as a
surrogate model for the machine and in each iteration, the
next evaluation point is selected by minimizing the acqui-
sition function, here LCB (Lower Confidence Bound). As
Fig. 7 shows, the BO-based correction for the SIS18 con-
verged and found good corrector settings where the SVD-
based correction fails. In the standard optics scenario, the
BO-based method yields a significantly smaller value than
in the challenging case, yet requires more iterations than
the SVD method, as illustrated in Fig. 8. Therefore, it is
reasonable to utilise the BO method in situations where the
SVD method is unsuccessful.
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Figure 7: Automatic BO-based correction of closed orbit
using the broken-symmetry high-transition-energy SIS18
optics. Each evaluation of the objective function requires
three acceleration cycles. The gray area marks the initializa-
tion phase of the algorithm.

0 10 20 30 40 50 60 70 80 90 100 110
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

RM
S 

ho
riz

on
ta

l d
ev

ia
tio

n 
[m

m
]

Initial
random
data BO

BO-based
SVD-based

Figure 8: Automatic BO-based correction of closed orbit
using the standard SIS18 optics. Each evaluation of the
objective function requires three acceleration cycles. The
gray area marks the BO initialization phase.

As an additional benefit, the trained surrogate model (in-
cluding a hyperparameter for noise) can be reused, which
speeds up future corrections.

CONCLUSION AND OUTLOOK
We have presented the concept of automation and im-

provement of crucial beam adjustments at GSI using Geoff,
a Python-based framework. Furthermore, in the case of
unique optics, where the conventional SVD-method fails,
the use of BO-based closed orbit correction can be benefi-
cial. Geoff offers uniform interfaces for optimization tasks
and adapters for various packages, and can operate in a pure
scripting environment or as GUI. Geoff is maintained as
part of the EURO-LABS project in collaboration between
CERN and GSI. Developments towards better control room
integration at GSI are planned for improved optimization of
total SIS18 production cycles.
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