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Abstract
In accelerator labs such as GSI / FAIR, automating com-

plex systems is the key to maximize the time spent on
physics experiments. This study explores the application
of a data-driven model predictive control (MPC) to re-
fine the multi-turn injection (MTI) process into the SIS18
synchrotron, departing from conventional numerical op-
timization methods. MPC is distinguished by its reduced
number of optimization steps and its superior ability to
control performance criteria, addressing issues like de-
layed outcomes and safety concerns – in this case septum
protection. The study focuses on a highly sample-efficient
MPC approach based on Gaussian processes, which lies
at the intersection of model-based reinforcement learning
and control theory. This approach merges the strengths of
both fields, offering a unified and optimized solution and
yielding a safe and fast state-based optimization approach
beyond classical reinforcement learning and Bayesian op-
timization. Our study lays the groundwork for enabling
safe online training for the SIS18 MTI issue, showing great
potential to apply data-driven control in similar scenarios.

INTRODUCTION
Data-driven control theory and reinforcement learning

(RL) hold significant potential for addressing control prob-
lems beyond the reach of classical control theory. These
methods learn through direct interaction with the systems
they control. However, RL faces challenges in accelerator
control applications, including the need for large data sets
for reliable performance and the trade-off between train-
ing stability and data efficiency. Enhancing reliability in
particle accelerator control is crucial, particularly with the
advent of new diagnostic tools and increasingly complex
variable schedules. Standard algorithms often fall short,
necessitating new strategies. This paper demonstrates the
potential of data-driven model predictive control on the
highly non-linear SIS18 injection simulation, achieving re-
liable performance within a feasible number of interac-
tions suitable for real-world deployment.

Data-driven model predictive control
Model-Based Reinforcement Learning (MBRL) uses en-

vironment models to predict future states and rewards,
significantly reducing the required amount of interaction
with the real accelerator compared to model-free meth-
ods [1–4]. The accuracy and uncertainty of the model are
crucial for the performance of MBRL algorithms.
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Probabilistic models, specifically Gaussian processes
(GPs), capture the uncertainty in the environment’s dy-
namics and provide a measure of uncertainty in their pre-
dictions, which is essential for safe and efficient explo-
ration. MPC is a control strategy that optimizes control
inputs by solving a finite-horizon optimization problem
at each time step based on predicted future states and
rewards, considering system dynamics and constraints.
GP-MPC [5] uses uncertainty information from the GP
to make more informed decisions and to balance explo-
ration and exploitation. This results in Probabilistic Model
Predictive Control (P-MPC). This approach helps ensure
safety and improve performance by avoiding regions with
high uncertainty. The method requires fewer interactions
with the environment to learn an effective policy, which is
advantageous in scenarios where collecting data is expen-
sive or time-consuming. It is applicable to a wide range
of RL problems, especially those where data efficiency
is critical. Examples beyond accelerator controls include
robotics and autonomous driving. We propose a unified
and optimized solution that yields safe and fast state-based
optimization, situated at the intersection ofMBRL and con-
trol theory. It demonstrates superior ability to control per-
formance criteria and the ability to effectively address is-
sues like delayed outcomes and safety concerns.

PROBLEM DEFINITION AND
FORMULATION

FAIR, the Facility for Antiproton and Ion Research, will
provide antiproton and ion beams of unprecedented in-
tensity and quality, to drive the forefront of research on
heavy-ion and antimatter [6]. Multi-turn injection (MTI)
into SIS18 is one of the main bottlenecks to reach the FAIR
intensity goals. An important limiting factor for interme-
diate charge-state ions is loss-induced vacuum degrada-
tion [7, 8]. Injection losses must be minimized to avoid a
reduction in synchrotron performance due to loss-induced
vacuum degradation [9].
As MTI must fulfill Liouville’s theorem, four bumper mag-
nets create a closed orbit bumpwith a time variable so that
the injection septum deflects the next incoming beamlet
into an available horizontal phase space close to the for-
merly injected beamlets. During injection, loss can occur
both on the septum and on the acceptance. If 𝜂 character-
izes the relationship between the lost and injected parti-
cles, the multiplication factor (i.e, the accumulated beam-
lets) follows

𝑚 = 𝑛(1 − 𝜂). (1)
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Figure 1: Snapshot of a MTI simulation. The red line indi-
cates the septum, and the dashed line indicates acceptance.

𝑛 is the ratio between injection and revolution time. For
loss-free injection, 𝜂 is zero and the multiplication factor𝑚
is equal to the number of injected turns 𝑛. The center of the
beam of the incoming beamlet 𝑥 should be placed approx-
imately so that the edge of the incoming beamlet touches
the outside septum. The incoming beamlets will have a lin-
ear 𝑥 and an angular 𝑥′ displacement with respect to the
closed orbit (𝑥𝑐 , 𝑥′𝑐 ) and will therefore undergo betatron os-
cillations determined due to the horizontal tune 𝑄𝑥 . After
one turn, the injected beamlets pass the injection point
again without hitting the septum. If the orbit is not suffi-
ciently fast, the beamlets will hit the inner side of the sep-
tum after the 𝑛𝑡 revolution turns, depending on the beta-
tron oscillation tune, and get lost. Additionally, the beam-
lets can also be lost at the beam pipe if the curvature of the
incoming beamlet does not adapt to the ring acceptance
curvature, depending on the mismatch between transfer
line and SIS18.
Fig. 1 shows a snapshot of a MTI simulation. The loss

areas, inside and outside the septum, as well as the accep-
tance, are visible. Inner beamlets lost particles in the sep-
tum earlier during the injection process and therefore did
not overlap. The SIS18 MTI model has been implemented
in the XSuite particle tracking code and was carefully val-
idated against experiments [10–12]. For an ideal injection
process without loss, the injected beam current will accu-
mulate and will not be lost later, as shown by the red curve
in Fig. 2. For poorly adjusted injection, during accumula-
tion, particles will be lost and the accumulated beam cur-
rent function diffs (black curve). The square of the root
mean measures these differences and has been chosen for
reward. The description of the state is given by the total
loss after 50 turns, the loss at the septum, and the integral
of the accumulated beam current divided by the point in
time when no new particles are injected (see Fig. 1, 2). The
actions are small Δ values for the six injection parameters
[𝑥𝑐 , 𝑥′𝑐 , 𝑥 , 𝑥′, mismatch, Δreduction].

The Markov decision process (MDP)
The formulation of the problem as an episodic Markov

decision process (MDP) for the injection problem is given
as:

• State = [Reward, LossSeptum, Integral1, Integral2]
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Figure 2: Nominal beam current (black) and the ideal cur-
rent (red) during the injection process. The two integral
values measure, in addition to the loss at the septum and
the reward, the state.

• Reward = ∫ (Lossfree current(𝑡) − SIS18 current(𝑡)) d𝑡
• Action = [Δ𝑥𝑐 , Δ𝑥′𝑐 , Δ𝑥, Δ𝑥′, Δmismatch, Δreduction]
• Episodic design:

– Episodes are initialized with initial values of the
absolute actions uniformly sampled at random.

– Only if a specific threshold is surpassed, the
episode is reset (better reward than −1.9).

– certain limits of the actions are exceeded to em-
ulate hardware restrictions

– if a specific step count of 25 termination has
been reached the episode is truncated and reset.

The goal is that the agent learns to identify actions that
swiftly move the state towards a reward within the speci-
fied threshold, thereby optimizing injection efficiency.

Simulation Results
Fig. 3 and Fig. 4 display the results of the highly-

nonlinear injection problem. The experiment was simpli-
fied for this study due to the reward being concentrated in
a small domain of the action space. The initial state was
intentionally set close to the global optimum to enhance
the likelihood of achieving non-constant, higher rewards.
Fig. 4 shows the trajectories and actions for each episode
within the environment. The top plot illustrates the state
trajectories, with each colored line representing a differ-
ent state and how it evolves over time. The bottom plot
displays the action values taken at each step, with each
action dimension represented by a different color. The x-
axis represents cumulative steps, while the y-axis shows
state and action values, respectively, with legends indicat-
ing the different states and actions for easy identification.
Due to the complex nature of the problem, the policy be-
gins near the optimum but initially overestimates the re-
ward at the upper confidence bound, leading to oscilla-
tions around the solution. Once enough data is gathered,
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Figure 3: A training approach for the data-driven MPC
involves resetting the episodes, which appear as jumps in
the graphs.

the episodes consistently conclude successfully after ap-
proximately 300 interactions. Figure 3 (lower plot) dis-
tinctly illustrates the decease in the uncertainty in the ex-
pected reward (orange-shaded) during the training and the
true reward (black).

Model-free Deep RL algorithms
Model-free off-the-shelf RL algorithms were also eval-

uated. Soft Actor-Critic (SAC) [13] and Proximal Policy
Optimization [14] were successfully tested but required
a considerable number of interactions with the system,
making experiments on the real machine infeasible with-
out prior tuning on a simulation. Fig. 5 shows an experi-
ment employing the SAC algorithm. The training shown,
achieves rewards not as high as an good value found by nu-
merical optimization using BOBYQA within 5000 interac-
tions. Additional numerical optimization techniques, such
as BOBYQA optimization, have been successfully imple-
mented but typically lack state information and do not de-
velop a model incrementally [15,16]. Despite their ease of
use, these methods are likely to be replaced by more adap-
tive solutions over time, as demonstrated in this study.

SUMMARY AND OUTLOOK
This paper discusses the application of data-drivenMPC

integrated with GPs to enhance the MTI process at the
SIS18 synchrotron within the GSI facility. This approach
has demonstrated the ability to reduce the optimization
steps required and improve the efficiency of the MTI pro-
cess. Additionally, we evaluated the limitations of tradi-
tional reinforcement learning methods in terms of their
high demand for interactions, which complicates their ap-
plication without extensive prior simulation adjustments.
Looking forward, the study paves the way for further de-
velopment of data-driven control strategies in particle ac-
celerator operations and similar complex systems. The
next step is to facilitate real-time applications in the oper-
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Figure 4: An experiment showing several episodes during
the learning process.
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Figure 5: Training with Soft Actor Critic (SAC). The red
line indicates the best result with the BOBYQA algorithms.

ational environment in several additional scenarios such
as incorporating the prior knowledge from the simulation.
The integration of advanced machine learning methods
with traditional control systems holds significant promise
for revolutionizing the operational capabilities of research
facilities like GSI/FAIR, moving towards fully automated,
highly efficient systems.
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