PRECISION TESTS OF QED IN STRONG FIELDS: EXPERIMENTS ON HYDROGEN- AND HELIUM-LIKE URANIUM

Atomic Physics Group, GSI Darmstadt, Germany
ESR Group, GSI-Darmstadt, Germany
University of Cracow, Poland
University of Frankfurt, Germany
Kansas State University, Kansas, USA
IMP, Lanzhou, China
Swiatokrzyska Academy, Kielce, Poland
Fudan University, Shanghai, China
PRECISION TESTS OF QED IN STRONG FIELDS: EXPERIMENTS ON HYDROGEN- AND HELIUM-LIKE URANIUM

• **Introduction:** QED, Lamb shift and the structure of one- and two-electron systems at high-Z

• *Experiment at the storage ring ESR at GSI*
 • Production and storage of high-Z few-electron (or bare) ions
 • X-ray spectroscopy at the ESR electron cooler, relativistic doppler effect

• *Results in comparison with theoretical predictions*

• **Summary**

• **Outlook**

 (towards ~1 eV precision)
 • Crystal spectrometer
 • Detector development
QED

- One of the most precise predictions in physics
- Prototype (first) of all field theories
- Fundamental theory of EM interactions
- Fundamental constants
- Masses
- ...
Atomic Physics in Extremely Strong Coulomb Fields

Quantum Dynamics

Intensive Laser

1s-ground state: increase of the electric field strength by six orders of magnitude

H-like Uranium
\[E_K = -132 \times 10^3 \text{ eV} \]
\[\langle E \rangle = 1.8 \times 10^{16} \text{ V/cm} \]

Hydrogen
\[E_K = -13.6 \text{ eV} \]
\[\langle E \rangle = 1 \times 10^{10} \text{ V/cm} \]
The Atomic Structure of One-electron System

The Lamb shift:
The sum of all corrections which lead to the discrepancy from the predictions of the Dirac-Theory for a point-like nucleus.

- Decrease of the binding energies
- dominantly for s-states

- Decrease of the binding energies
- dominantly for s-states
Bound-State QED: 1s Lamb shift

Self-energy

Vacuum-polarization

U^{91+} SE VP NS
355.0 eV -88.6 eV 198.7 eV

\[\Delta E = \frac{\alpha}{\pi} (\alpha Z)^4 F(\alpha Z) m_e c^2 \]

Low Z-regime: \(\alpha Z \ll 1 \)
F(\alpha Z): expansion in \(\alpha Z \)

High Z-regime: \(\alpha Z \approx 1 \)
F(\alpha Z): expansion in \(\alpha Z \) not applicable (calculation of all orders)

Tests of Bound-state QED

\pm 1 \text{ eV}
Production of highly charged heavy ions

Traps (EBIT): production of highly charged ions by collisions with high energy electron beams

Accelerator: production of highly-charged ions by fast collisions with target atoms.

Charge-state distribution for Uranium

200 keV electron energy (ions at rest)

Super-EBIT

SIS

300 MeV/u

Experimental Area
GSI-ACCELERATOR FACILITY

UNILAC
11.4 MeV/u
U^{73+}

SIS
10 - 500 MeV/u
U^{92+}

up to 1000 MeV/u
U^{92+}

ESR
Experiments at the ESR

- $\beta \approx 0.65$
- $E \approx 300 \text{ MeV/u}$
- Revolution Frequency $f: \approx 10^6 \text{ 1/s}$

ESR
- Circumference: 108 m
- Number of Ions: 10^8
Electron cooler

Voltage: 5 to 200 kV

Current: 10 to 1000 mA

2.5 m interaction zone
COOLED HEAVY-ION BEAMS

ions interact 10^6 1/s with the collinear cold electron beam

properties of cold ion beams

momentum width $\Delta p/p : 10^{-4} - 10^{-5}$

size 2 mm
Experiments at the ESR

\[\beta \approx 0.65 \]

\[E \approx 300 \text{ MeV/u} \]

Revolution Frequency
\[f: \approx 10^6 \text{ 1/s} \]

ESR

circumference: 108 m
number of ions: \(10^8\)
Spectroscopy at the Electron Cooler

- Maximum blueshift
 \[\beta \approx 0.29 \Rightarrow E_{\text{lab}} \approx 1.43 \times E_{\text{proj}} \]

- \[\Delta \theta_{\text{LAB}} \] not critical, minimum Doppler broadening

- Uncertainty due to \[\Delta \beta \] maximum

H-like Uranium

- Balmer
- L-RR
- K-RR

Energy vs. Energetics

- \(\bar{\text{h}} \omega \)
- \(E_{\text{kin}} \)
- \(\infty \)
- \(L \)
- \(K \)

Rate vs. Energy

- \(\text{Ereignisse} \)
- \(\text{Energie [keV]} \)
The Experimental Challenge

Relativistic Doppler-Transformation

\[E_{\text{lab}} = \frac{E_{\text{proj}}}{\gamma \cdot (1 - \beta \cdot \cos \theta_{\text{lab}})} \]

- \(E_{\text{lab}} \): Photon energy in the laboratory frame
- \(E_{\text{proj}} \): Photon energy in the Emitter frame

Doppler correction

*Strong dependence on velocity \(v \) and on observation angle \(\theta_{\text{LAB}} \)

\[\gamma = \frac{1}{\sqrt{1 - \beta^2}} ; \beta = \frac{v}{c} \]
Experiments at the ESR

\[\beta \approx 0.65 \]

\[E \approx 300 \text{ MeV/u} \]

Revolution Frequency
\[f \approx 10^6 \text{ 1/s} \]

300 MeV/u
deceleration
4 MeV/u

ESR
- Circumference: 108 m
- Number of Ions: \(10^8\)

Ions from SIS
electron cooler
gas jet
Ge(i) Detector
Recombination into Rydberg states leads to the delayed Lyman emission, by up to microsecond.
Tails disappear when one applies a proper condition to the time spectrum.
The Ground State Lamb Shift in H-like Uranium

1s Lamb shift in U$^{91+}$

460.2±2.3±3.5 eV

statistical

4.6 eV

uncertainty in the β
Experimental Results in Comparison with Theory

Experiment: 460.2 ± 4.6 eV

Theory (Yerokhin et al. 2003): 464.26 ± 0.5 eV

$SE = 355.0$ eV, $VP = -88.6$ eV

$NS = 198.7$ eV, $HO \sim 1.8$ eV

1% sensitivity to the 1s Lamb shift
4% Sensitivity to the self energy
15% Sensitivity to the vacuum polarization
Relative Measurement of the Two-electron Contribution to the Ground State Binding Energy in He-like Uranium

Electron-Electron Interaction in Strong Fields

Relativistic Many Body (RMB) + 2eQED

Ionization Energy, I_H

ΔE: Two-Electron Contribution to the Ionization potential in the He-like System

Ionization Energy, I_{He}

$\Delta E = I_H - I_{He}$

$E_{Kin} + I_H = \hbar \omega_H$

$E_{Kin} + I_{He} = \hbar \omega_{He}$

$\Delta E (\hbar \omega_H - \hbar \omega_{He}) = I_H - I_{He}$

Relative measurement

All one electron contributions cancel out (e.g. finite nuclear size)
Relative Measurement of the Two-electron Contribution to the Ground State Binding Energy in He-like Uranium

- Data subdivided into several groups
- Checked for consistency

Statistical uncertainty for ΔE: 9 eV

Uncertainty caused by doppler shift:

The result for the splitting ΔE is 2248 ± 9 eV

![Graph showing data points with error bars and a shaded region, indicating the statistical and doppler uncertainties.](image)
Experimental Results in Comparison with Theory

ESR (First experiment for the two-contribution U^{90+}): 2248(9) eV

Theory (Yerokhin et al. 1997): 2246 eV

2 photon exchange \sim 14 eV 2eSE \sim 9.7 eV

Super-EBIT (First measurement of the 2e contribution)
(Marrs et al, 1995)

But!! Results limited by counting statistics (Z<83)

As an example; for Bismuth an uncertainty of 14 eV has been achieved for the value of 1876 eV. 2eQED \sim 6.7 eV

- Our result agrees well with the most recent theoretical value.
- The experimental uncertainty is of the order of two-electron QED contributions.
- Compared to the former studies at Super-EBIT in Livermore, we could substantially improve the statistical accuracy and extend studies to the higher-Z regime.
SUMMARY AND OUTLOOK

- Two-electron QED Studies at the ESR
 - First measurement for helium-like uranium (U90+)
 - Improvement of experimental sensitivity by a factor of two compared to former exp.
 - Result sensitive to two-electron self energy (2eSE) contribution
 - The result is limited only by counting statistics.

Simultaneous measurement at 0 and 180 deg.
High resolution detection devices; spectrometer + PSG, calorimeter

Excellent agreement between experimental results and theory for both cases

‘No test can prove a theory but any single test can disprove it.’

Karl Popper