00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190 #include "TRolke.h"
00191 #include "TMath.h"
00192 #include "Riostream.h"
00193
00194 ClassImp(TRolke)
00195
00196
00197 TRolke::TRolke(Double_t CL, Option_t * )
00198 : fCL(CL),
00199 fUpperLimit(0.0),
00200 fLowerLimit(0.0),
00201 fBounding(false),
00202 fNumWarningsDeprecated1(0),
00203 fNumWarningsDeprecated2(0)
00204 {
00205
00206
00207
00208 SetModelParameters();
00209 }
00210
00211
00212 TRolke::~TRolke()
00213 {
00214 }
00215
00216
00217 void TRolke::SetPoissonBkgBinomEff(Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m)
00218 {
00219
00220
00221
00222
00223
00224
00225 SetModelParameters(
00226 x ,
00227 y ,
00228 z ,
00229 0 ,
00230 0 ,
00231 0 ,
00232 1 ,
00233 0 ,
00234 0 ,
00235 tau,
00236 0 ,
00237 m);
00238 }
00239
00240 void TRolke::SetPoissonBkgGaussEff(Int_t x, Int_t y, Double_t em, Double_t tau, Double_t sde)
00241 {
00242
00243
00244
00245
00246
00247
00248 SetModelParameters(
00249 x ,
00250 y ,
00251 0 ,
00252 0 ,
00253 em ,
00254 0 ,
00255 2 ,
00256 sde,
00257 0 ,
00258 tau,
00259 0 ,
00260 0);
00261
00262 }
00263
00264 void TRolke::SetGaussBkgGaussEff(Int_t x, Double_t bm, Double_t em, Double_t sde, Double_t sdb)
00265 {
00266
00267
00268
00269
00270
00271
00272 SetModelParameters(
00273 x ,
00274 0 ,
00275 0 ,
00276 bm ,
00277 em ,
00278 0 ,
00279 3 ,
00280 sde,
00281 sdb,
00282 0 ,
00283 0 ,
00284 0);
00285
00286 }
00287
00288 void TRolke::SetPoissonBkgKnownEff(Int_t x, Int_t y, Double_t tau, Double_t e)
00289 {
00290
00291
00292
00293
00294
00295 SetModelParameters(
00296 x ,
00297 y ,
00298 0 ,
00299 0 ,
00300 0 ,
00301 e ,
00302 4 ,
00303 0 ,
00304 0 ,
00305 tau,
00306 0 ,
00307 0);
00308
00309 }
00310
00311 void TRolke::SetGaussBkgKnownEff(Int_t x, Double_t bm, Double_t sdb, Double_t e)
00312 {
00313
00314
00315
00316
00317
00318 SetModelParameters(
00319 x ,
00320 0 ,
00321 0 ,
00322 bm ,
00323 0 ,
00324 e ,
00325 5 ,
00326 0 ,
00327 sdb,
00328 0 ,
00329 0 ,
00330 0);
00331
00332 }
00333
00334 void TRolke::SetKnownBkgBinomEff(Int_t x, Int_t z, Int_t m, Double_t b)
00335 {
00336
00337
00338
00339
00340
00341 SetModelParameters(
00342 x ,
00343 0 ,
00344 z ,
00345 0 ,
00346 0 ,
00347 0 ,
00348 6 ,
00349 0 ,
00350 0 ,
00351 0 ,
00352 b ,
00353 m);
00354
00355 }
00356
00357 void TRolke::SetKnownBkgGaussEff(Int_t x, Double_t em, Double_t sde, Double_t b)
00358 {
00359
00360
00361
00362
00363
00364 SetModelParameters(
00365 x ,
00366 0 ,
00367 0 ,
00368 0 ,
00369 em ,
00370 0 ,
00371 7 ,
00372 sde,
00373 0 ,
00374 0 ,
00375 b ,
00376 0);
00377
00378 }
00379
00380 bool TRolke::GetLimits(Double_t& low, Double_t& high)
00381 {
00382
00383 if ((f_mid<1)||(f_mid>7)) {
00384 std::cerr << "TRolke - Error: Model id "<< f_mid<<std::endl;
00385 if (f_mid<1) {
00386 std::cerr << "TRolke - Please specify a model with e.g. 'SetGaussBkgGaussEff' (read the docs in Rolke.cxx )"<<std::endl;
00387 }
00388 return false;
00389 }
00390
00391 ComputeInterval(f_x, f_y, f_z, f_bm, f_em, f_e, f_mid, f_sde, f_sdb, f_tau, f_b, f_m);
00392 low = fLowerLimit;
00393 high = fUpperLimit;
00394 if (low < high) {
00395 return true;
00396 }else{
00397 std::cerr << "TRolke - Warning: no limits found" <<std::endl;
00398 return false;
00399 }
00400 }
00401
00402 Double_t TRolke::GetUpperLimit()
00403 {
00404
00405 Double_t low(0), high(0);
00406 GetLimits(low,high);
00407 return fUpperLimit;
00408 }
00409
00410 Double_t TRolke::GetLowerLimit()
00411 {
00412
00413 Double_t low(0), high(0);
00414 GetLimits(low,high);
00415 return fLowerLimit;
00416 }
00417
00418 Double_t TRolke::GetBackground()
00419 {
00420
00421 Double_t background = 0;
00422 switch (f_mid) {
00423 case 1:
00424 case 2:
00425 case 4:
00426 background = f_y / f_tau;
00427 break;
00428 case 3:
00429 case 5:
00430 background = f_bm;
00431 break;
00432 case 6:
00433 case 7:
00434 background = f_b;
00435 break;
00436 default:
00437 std::cerr << "TRolke::GetBackground(): Model NR: " <<
00438 f_mid << " unknown"<<std::endl;
00439 return 0;
00440 }
00441 return background;
00442 }
00443
00444 bool TRolke::GetSensitivity(Double_t& low, Double_t& high, Double_t pPrecision)
00445 {
00446
00447
00448 Double_t background = GetBackground();
00449
00450 Double_t weight = 0;
00451 Double_t weightSum = 0;
00452
00453 int loop_x = 0;
00454
00455 while (1) {
00456 ComputeInterval(loop_x, f_y, f_z, f_bm, f_em, f_e, f_mid, f_sde, f_sdb, f_tau, f_b, f_m);
00457 weight = TMath::PoissonI(loop_x, background);
00458 low += fLowerLimit * weight;
00459 high += fUpperLimit * weight;
00460 weightSum += weight;
00461 if (loop_x > (background + 1)) {
00462 if ((weightSum > (1 - pPrecision)) || (weight < 1e-12)) break;
00463 }
00464 loop_x++;
00465 }
00466 low /= weightSum;
00467 high /= weightSum;
00468
00469 return (low < high);
00470 }
00471
00472
00473 bool TRolke::GetLimitsQuantile(Double_t& low, Double_t& high, Int_t& out_x, Double_t integral)
00474 {
00475
00476
00477
00478
00479
00480
00481
00482 Double_t background = GetBackground();
00483 Double_t weight = 0;
00484 Double_t weightSum = 0;
00485 Int_t loop_x = 0;
00486
00487 while (1) {
00488 weight = TMath::PoissonI(loop_x, background);
00489 weightSum += weight;
00490 if (weightSum >= integral) {
00491 break;
00492 }
00493 loop_x++;
00494 }
00495
00496 out_x = loop_x;
00497
00498 ComputeInterval(loop_x, f_y, f_z, f_bm, f_em, f_e, f_mid, f_sde, f_sdb, f_tau, f_b, f_m);
00499 low = fLowerLimit;
00500 high = fUpperLimit;
00501 return (low < high);
00502
00503 }
00504
00505 bool TRolke::GetLimitsML(Double_t& low, Double_t& high, Int_t& out_x)
00506 {
00507
00508
00509
00510 Double_t background = GetBackground();
00511
00512 Int_t loop_x = 0;
00513 Int_t loop_max = 1000 + (Int_t)background;
00514
00515 Double_t max = TMath::PoissonI(loop_x, background);
00516 while (loop_x <= loop_max) {
00517 if (TMath::PoissonI(loop_x + 1, background) < max) {
00518 break;
00519 }
00520 loop_x++;
00521 max = TMath::PoissonI(loop_x, background);
00522 }
00523 if (loop_x >= loop_max) {
00524 std::cout << "internal error finding maximum of distribution" << endl;
00525 return false;
00526 }
00527
00528 out_x = loop_x;
00529
00530 ComputeInterval(loop_x, f_y, f_z, f_bm, f_em, f_e, f_mid, f_sde, f_sdb, f_tau, f_b, f_m);
00531 low = fLowerLimit;
00532 high = fUpperLimit;
00533 return (low < high);
00534
00535 }
00536
00537 bool TRolke::GetCriticalNumber(Int_t& ncrit, Int_t maxtry)
00538 {
00539
00540
00541
00542
00543 Double_t background = GetBackground();
00544
00545 int j = 0;
00546 int rolke_ncrit = -1;
00547 int maxj =maxtry ;
00548 if(maxtry<1){
00549 maxj = 1000 + (Int_t)background;
00550 }
00551 for (j = 0;j < maxj;j++) {
00552 Int_t rolke_x = j;
00553 ComputeInterval(rolke_x, f_y, f_z, f_bm, f_em, f_e, f_mid, f_sde, f_sdb, f_tau, f_b, f_m);
00554 double rolke_ll = fLowerLimit;
00555 if (rolke_ll > 0) {
00556 rolke_ncrit = j;
00557 break;
00558 }
00559 }
00560
00561 if (rolke_ncrit == -1) {
00562 std::cerr << "TRolke GetCriticalNumber : Error: problem finding rolke inverse. Specify a larger maxtry value. maxtry was: " << maxj << ". highest x considered was j "<< j<< endl;
00563 ncrit = -1;
00564 return false;
00565 } else {
00566 ncrit = rolke_ncrit;
00567 return true;
00568 }
00569 }
00570
00571 void TRolke::SetSwitch(bool bnd) {
00572
00573 if(fNumWarningsDeprecated1<2){
00574 std::cerr << "*******************************************" <<std::endl;
00575 std::cerr << "TRolke - Warning: 'SetSwitch' is depricated and may be removed from future releases:" <<std::endl;
00576 std::cerr << " - Use 'SetBounding' instead "<<std::endl;
00577 std::cerr << "*******************************************" <<std::endl;
00578 fNumWarningsDeprecated1++;
00579 }
00580 SetBounding(bnd);
00581 }
00582
00583 void TRolke::Print(Option_t*) const {
00584
00585 std::cout << "*******************************************" <<std::endl;
00586 std::cout << "* TRolke::Print() - dump of internals: " <<std::endl;
00587 std::cout << "*"<<std::endl;
00588 std::cout << "* model id, mid = "<<f_mid <<endl;
00589 std::cout << "*"<<std::endl;
00590 std::cout << "* x = "<<f_x <<std::endl;
00591 std::cout << "* bm = "<<f_bm <<endl;
00592 std::cout << "* em = "<<f_em <<endl;
00593 std::cout << "* sde = "<<f_sde <<endl;
00594 std::cout << "* sdb = "<<f_sdb <<endl;
00595 std::cout << "* y = "<<f_y <<endl;
00596 std::cout << "* tau = "<<f_tau <<endl;
00597 std::cout << "* e = "<<f_e <<endl;
00598 std::cout << "* b = "<<f_b <<endl;
00599 std::cout << "* m = "<<f_m <<endl;
00600 std::cout << "* z = "<<f_z <<endl;
00601 std::cout << "*"<<std::endl;
00602 std::cout << "* CL = "<<fCL <<endl;
00603 std::cout << "* Bounding = "<<fBounding <<endl;
00604 std::cout << "*"<<std::endl;
00605 std::cout << "* calculated on demand only:"<<std::endl;
00606 std::cout << "* fUpperLimit = "<<fUpperLimit<<endl;
00607 std::cout << "* fLowerLimit = "<<fLowerLimit<<endl;
00608 std::cout << "*******************************************" <<std::endl;
00609 }
00610
00611
00612 Double_t TRolke::CalculateInterval(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m){
00613
00614
00615
00616
00617
00618
00619
00620
00621
00622
00623
00624
00625
00626
00627
00628 if (fNumWarningsDeprecated2<2 ) {
00629 std::cerr << "*******************************************" <<std::endl;
00630 std::cerr << "TRolke - Warning: 'CalculateInterval' is depricated and may be removed from future releases:" <<std::endl;
00631 std::cerr << " - Use e.g. 'SetGaussBkgGaussEff' and 'GetLimits' instead (read the docs in Rolke.cxx )"<<std::endl;
00632 std::cerr << "*******************************************" <<std::endl;
00633 fNumWarningsDeprecated2++;
00634 }
00635 SetModelParameters(
00636 x,
00637 y,
00638 z,
00639 bm,
00640 em,
00641 e,
00642 mid,
00643 sde,
00644 sdb,
00645 tau,
00646 b,
00647 m);
00648 return ComputeInterval(f_x, f_y, f_z, f_bm, f_em, f_e, f_mid, f_sde, f_sdb, f_tau, f_b, f_m);
00649 }
00650
00651
00652
00653 void TRolke::SetModelParameters(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m)
00654 {
00655
00656
00657
00658
00659
00660
00661
00662
00663
00664
00665
00666
00667
00668 f_x = x ;
00669 f_y = y ;
00670 f_z = z ;
00671 f_bm = bm ;
00672 f_em = em ;
00673 f_e = e ;
00674 f_mid = mid ;
00675 f_sde = sde ;
00676 f_sdb = sdb ;
00677 f_tau = tau ;
00678 f_b = b ;
00679 f_m = m ;
00680 }
00681
00682 void TRolke::SetModelParameters()
00683 {
00684
00685 SetModelParameters(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
00686 f_mid=0;
00687 }
00688
00689
00690 Double_t TRolke::ComputeInterval(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m)
00691 {
00692
00693
00694
00695
00696
00697
00698
00699
00700
00701
00702
00703
00704
00705
00706
00707
00708 Int_t done = 0;
00709 Double_t limit[2];
00710
00711 limit[1] = Interval(x, y, z, bm, em, e, mid, sde, sdb, tau, b, m);
00712
00713 if (limit[1] > 0) {
00714 done = 1;
00715 }
00716
00717 if (! fBounding) {
00718
00719 Int_t trial_x = x;
00720
00721 while (done == 0) {
00722 trial_x++;
00723 limit[1] = Interval(trial_x, y, z, bm, em, e, mid, sde, sdb, tau, b, m);
00724 if (limit[1] > 0) done = 1;
00725 }
00726 }
00727
00728 return limit[1];
00729 }
00730
00731 Double_t TRolke::Interval(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m)
00732 {
00733
00734
00735
00736
00737
00738
00739
00740
00741
00742
00743
00744
00745
00746
00747
00748
00749 Double_t dchi2 = TMath::ChisquareQuantile(fCL, 1);
00750 Double_t tempxy[2], limits[2] = {0, 0};
00751 Double_t slope, fmid, low, flow, high, fhigh, test, ftest, mu0, maximum, target, l, f0;
00752 Double_t med = 0;
00753 Double_t maxiter = 1000, acc = 0.00001;
00754 Int_t i;
00755 Int_t bp = 0;
00756
00757 if ((mid != 3) && (mid != 5)) bm = y;
00758 if ((mid == 3) || (mid == 5)) {
00759 if (bm == 0) bm = 0.00001;
00760 }
00761
00762 if ((mid == 6) || (mid == 7)) {
00763 if (bm == 0) bm = 0.00001;
00764 }
00765
00766 if ((mid <= 2) || (mid == 4)) bp = 1;
00767
00768
00769 if (bp == 1 && x == 0 && bm > 0) {
00770 for (i = 0; i < 2; i++) {
00771 x++;
00772 tempxy[i] = Interval(x, y, z, bm, em, e, mid, sde, sdb, tau, b, m);
00773 }
00774
00775 slope = tempxy[1] - tempxy[0];
00776 limits[1] = tempxy[0] - slope;
00777 limits[0] = 0.0;
00778 if (limits[1] < 0) limits[1] = 0.0;
00779 goto done;
00780 }
00781
00782 if (bp != 1 && x == 0) {
00783
00784 for (i = 0; i < 2; i++) {
00785 x++;
00786 tempxy[i] = Interval(x, y, z, bm, em, e, mid, sde, sdb, tau, b, m);
00787 }
00788 slope = tempxy[1] - tempxy[0];
00789 limits[1] = tempxy[0] - slope;
00790 limits[0] = 0.0;
00791 if (limits[1] < 0) limits[1] = 0.0;
00792 goto done;
00793 }
00794
00795 if (bp != 1 && bm == 0) {
00796 for (i = 0; i < 2; i++) {
00797 bm++;
00798 limits[1] = Interval(x, y, z, bm, em, e, mid, sde, sdb, tau, b, m);
00799 tempxy[i] = limits[1];
00800 }
00801 slope = tempxy[1] - tempxy[0];
00802 limits[1] = tempxy[0] - slope;
00803 if (limits[1] < 0) limits[1] = 0;
00804 goto done;
00805 }
00806
00807 if (x == 0 && bm == 0) {
00808 x++;
00809 bm++;
00810 limits[1] = Interval(x, y, z, bm, em, e, mid, sde, sdb, tau, b, m);
00811 tempxy[0] = limits[1];
00812 x = 1;
00813 bm = 2;
00814 limits[1] = Interval(x, y, z, bm, em, e, mid, sde, sdb, tau, b, m);
00815 tempxy[1] = limits[1];
00816 x = 2;
00817 bm = 1;
00818 limits[1] = Interval(x, y, z, bm, em, e, mid, sde, sdb, tau, b, m);
00819 limits[1] = 3 * tempxy[0] - tempxy[1] - limits[1];
00820 if (limits[1] < 0) limits[1] = 0;
00821 goto done;
00822 }
00823
00824 mu0 = Likelihood(0, x, y, z, bm, em, mid, sde, sdb, tau, b, m, 1);
00825 maximum = Likelihood(0, x, y, z, bm, em, mid, sde, sdb, tau, b, m, 2);
00826 test = 0;
00827 f0 = Likelihood(test, x, y, z, bm, em, mid, sde, sdb, tau, b, m, 3);
00828 if (fBounding) {
00829 if (mu0 < 0) maximum = f0;
00830 }
00831
00832 target = maximum - dchi2;
00833 if (f0 > target) {
00834 limits[0] = 0;
00835 } else {
00836 if (mu0 < 0) {
00837 limits[0] = 0;
00838 limits[1] = 0;
00839 }
00840
00841 low = 0;
00842 flow = f0;
00843 high = mu0;
00844 fhigh = maximum;
00845 for (i = 0; i < maxiter; i++) {
00846 l = (target - fhigh) / (flow - fhigh);
00847 if (l < 0.2) l = 0.2;
00848 if (l > 0.8) l = 0.8;
00849 med = l * low + (1 - l) * high;
00850 if (med < 0.01) {
00851 limits[1] = 0.0;
00852 goto done;
00853 }
00854 fmid = Likelihood(med, x, y, z, bm, em, mid, sde, sdb, tau, b, m, 3);
00855 if (fmid > target) {
00856 high = med;
00857 fhigh = fmid;
00858 } else {
00859 low = med;
00860 flow = fmid;
00861 }
00862 if ((high - low) < acc*high) break;
00863 }
00864 limits[0] = med;
00865 }
00866
00867 if (mu0 > 0) {
00868 low = mu0;
00869 flow = maximum;
00870 } else {
00871 low = 0;
00872 flow = f0;
00873 }
00874
00875 test = low + 1 ;
00876 ftest = Likelihood(test, x, y, z, bm, em, mid, sde, sdb, tau, b, m, 3);
00877 if (ftest < target) {
00878 high = test;
00879 fhigh = ftest;
00880 } else {
00881 slope = (ftest - flow) / (test - low);
00882 high = test + (target - ftest) / slope;
00883 fhigh = Likelihood(high, x, y, z, bm, em, mid, sde, sdb, tau, b, m, 3);
00884 }
00885
00886 for (i = 0; i < maxiter; i++) {
00887 l = (target - fhigh) / (flow - fhigh);
00888 if (l < 0.2) l = 0.2;
00889 if (l > 0.8) l = 0.8;
00890 med = l * low + (1. - l) * high;
00891 fmid = Likelihood(med, x, y, z, bm, em, mid, sde, sdb, tau, b, m, 3);
00892
00893 if (fmid < target) {
00894 high = med;
00895 fhigh = fmid;
00896 } else {
00897 low = med;
00898 flow = fmid;
00899 }
00900
00901 if (high - low < acc*high) break;
00902 }
00903
00904 limits[1] = med;
00905
00906 done:
00907
00908
00909 if ((mid == 4) || (mid == 5)) {
00910 limits[0] /= e;
00911 limits[1] /= e;
00912 }
00913
00914 fUpperLimit = limits[1];
00915 fLowerLimit = TMath::Max(limits[0], 0.0);
00916
00917 return limits[1];
00918 }
00919
00920
00921 Double_t TRolke::Likelihood(Double_t mu, Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m, Int_t what)
00922 {
00923
00924
00925
00926
00927
00928
00929 switch (mid) {
00930 case 1:
00931 return EvalLikeMod1(mu, x, y, z, tau, m, what);
00932 case 2:
00933 return EvalLikeMod2(mu, x, y, em, sde, tau, what);
00934 case 3:
00935 return EvalLikeMod3(mu, x, bm, em, sde, sdb, what);
00936 case 4:
00937 return EvalLikeMod4(mu, x, y, tau, what);
00938 case 5:
00939 return EvalLikeMod5(mu, x, bm, sdb, what);
00940 case 6:
00941 return EvalLikeMod6(mu, x, z, b, m, what);
00942 case 7:
00943 return EvalLikeMod7(mu, x, em, sde, b, what);
00944 default:
00945 std::cerr << "TRolke::Likelihood(...): Model NR: " <<
00946 f_mid << " unknown"<<std::endl;
00947 return 0;
00948 }
00949
00950 return 0;
00951 }
00952
00953 Double_t TRolke::EvalLikeMod1(Double_t mu, Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m, Int_t what)
00954 {
00955
00956
00957
00958
00959
00960
00961
00962
00963 Double_t f = 0;
00964 Double_t zm = Double_t(z) / m;
00965
00966 if (what == 1) {
00967 f = (x - y / tau) / zm;
00968 }
00969
00970 if (what == 2) {
00971 mu = (x - y / tau) / zm;
00972 Double_t b = y / tau;
00973 Double_t e = zm;
00974 f = LikeMod1(mu, b, e, x, y, z, tau, m);
00975 }
00976
00977 if (what == 3) {
00978 if (mu == 0) {
00979 Double_t b = (x + y) / (1.0 + tau);
00980 Double_t e = zm;
00981 f = LikeMod1(mu, b, e, x, y, z, tau, m);
00982 } else {
00983 Double_t e = 0;
00984 Double_t b = 0;
00985 ProfLikeMod1(mu, b, e, x, y, z, tau, m);
00986 f = LikeMod1(mu, b, e, x, y, z, tau, m);
00987 }
00988 }
00989
00990 return f;
00991 }
00992
00993
00994 Double_t TRolke::LikeMod1(Double_t mu, Double_t b, Double_t e, Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m)
00995 {
00996
00997
00998
00999
01000 double s = e*mu+b;
01001 double lls = - s;
01002 if (x > 0) lls = x*TMath::Log(s) - s - LogFactorial(x);
01003 double bg = tau*b;
01004 double llb = -bg;
01005 if ( y > 0) llb = y*TMath::Log( bg) - bg - LogFactorial(y);
01006
01007 double lle = 0;
01008 if (z == 0) lle = m * TMath::Log(1-e);
01009 else if ( z == m) lle = m * TMath::Log(e);
01010 else lle = z * TMath::Log(e) + (m - z)*TMath::Log(1 - e) + LogFactorial(m) - LogFactorial(m-z) - LogFactorial(z);
01011
01012 double f = 2*( lls + llb + lle);
01013 return f;
01014 }
01015
01016
01017
01018 struct LikeFunction1 {
01019 };
01020
01021 void TRolke::ProfLikeMod1(Double_t mu, Double_t &b, Double_t &e, Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m)
01022 {
01023
01024
01025
01026
01027 Double_t med = 0.0, fmid;
01028 Int_t maxiter = 1000;
01029 Double_t acc = 0.00001;
01030 Double_t emin = ((m + mu * tau) - TMath::Sqrt((m + mu * tau) * (m + mu * tau) - 4 * mu * tau * z)) / 2 / mu / tau;
01031
01032 Double_t low = TMath::Max(1e-10, emin + 1e-10);
01033 Double_t high = 1 - 1e-10;
01034
01035 for (Int_t i = 0; i < maxiter; i++) {
01036 med = (low + high) / 2.;
01037
01038 fmid = LikeGradMod1(med, mu, x, y, z, tau, m);
01039
01040 if (high < 0.5) acc = 0.00001 * high;
01041 else acc = 0.00001 * (1 - high);
01042
01043 if ((high - low) < acc*high) break;
01044
01045 if (fmid > 0) low = med;
01046 else high = med;
01047 }
01048
01049 e = med;
01050 Double_t eta = Double_t(z) / e - Double_t(m - z) / (1 - e);
01051
01052 b = Double_t(y) / (tau - eta / mu);
01053 }
01054
01055
01056 Double_t TRolke::LikeGradMod1(Double_t e, Double_t mu, Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m)
01057 {
01058
01059 Double_t eta, etaprime, bprime, f;
01060 eta = static_cast<double>(z) / e - static_cast<double>(m - z) / (1.0 - e);
01061 etaprime = (-1) * (static_cast<double>(m - z) / ((1.0 - e) * (1.0 - e)) + static_cast<double>(z) / (e * e));
01062 Double_t b = y / (tau - eta / mu);
01063 bprime = (b * b * etaprime) / mu / y;
01064 f = (mu + bprime) * (x / (e * mu + b) - 1) + (y / b - tau) * bprime + eta;
01065 return f;
01066 }
01067
01068
01069 Double_t TRolke::EvalLikeMod2(Double_t mu, Int_t x, Int_t y, Double_t em, Double_t sde, Double_t tau, Int_t what)
01070 {
01071
01072
01073
01074
01075
01076
01077 Double_t v = sde * sde;
01078 Double_t coef[4], roots[3];
01079 Double_t f = 0;
01080
01081 if (what == 1) {
01082 f = (x - y / tau) / em;
01083 }
01084
01085 if (what == 2) {
01086 mu = (x - y / tau) / em;
01087 Double_t b = y / tau;
01088 Double_t e = em;
01089 f = LikeMod2(mu, b, e, x, y, em, tau, v);
01090 }
01091
01092 if (what == 3) {
01093 if (mu == 0) {
01094 Double_t b = (x + y) / (1 + tau);
01095 Double_t e = em ;
01096 f = LikeMod2(mu, b, e, x, y, em, tau, v);
01097 } else {
01098 coef[3] = mu;
01099 coef[2] = mu * mu * v - 2 * em * mu - mu * mu * v * tau;
01100 coef[1] = (- x) * mu * v - mu * mu * mu * v * v * tau - mu * mu * v * em + em * mu * mu * v * tau + em * em * mu - y * mu * v;
01101 coef[0] = x * mu * mu * v * v * tau + x * em * mu * v - y * mu * mu * v * v + y * em * mu * v;
01102
01103 TMath::RootsCubic(coef, roots[0], roots[1], roots[2]);
01104
01105 Double_t e = roots[1];
01106 Double_t b;
01107 if ( v > 0) b = y / (tau + (em - e) / mu / v);
01108 else b = y/tau;
01109 f = LikeMod2(mu, b, e, x, y, em, tau, v);
01110 }
01111 }
01112
01113 return f;
01114 }
01115
01116
01117 Double_t TRolke::LikeMod2(Double_t mu, Double_t b, Double_t e, Int_t x, Int_t y, Double_t em, Double_t tau, Double_t v)
01118 {
01119
01120
01121
01122 double s = e*mu+b;
01123 double lls = - s;
01124 if (x > 0) lls = x*TMath::Log(s) - s - LogFactorial(x);
01125 double bg = tau*b;
01126 double llb = -bg;
01127 if ( y > 0) llb = y*TMath::Log( bg) - bg - LogFactorial(y);
01128 double lle = 0;
01129 if ( v > 0) lle = - 0.9189385 - TMath::Log(v) / 2 - (em - e)*(em - e) / v / 2;
01130
01131 return 2*( lls + llb + lle);
01132 }
01133
01134
01135 Double_t TRolke::EvalLikeMod3(Double_t mu, Int_t x, Double_t bm, Double_t em, Double_t sde, Double_t sdb, Int_t what)
01136 {
01137
01138
01139
01140
01141
01142
01143
01144 Double_t f = 0.;
01145 Double_t v = sde * sde;
01146 Double_t u = sdb * sdb;
01147
01148 if (what == 1) {
01149 f = (x - bm) / em;
01150 }
01151
01152
01153 if (what == 2) {
01154 mu = (x - bm) / em;
01155 Double_t b = bm;
01156 Double_t e = em;
01157 f = LikeMod3(mu, b, e, x, bm, em, u, v);
01158 }
01159
01160
01161 if (what == 3) {
01162 if (mu == 0.0) {
01163 Double_t b = ((bm - u) + TMath::Sqrt((bm - u) * (bm - u) + 4 * x * u)) / 2.;
01164 Double_t e = em;
01165 f = LikeMod3(mu, b, e, x, bm, em, u, v);
01166 } else {
01167 Double_t e = em;
01168 Double_t b = bm;
01169 if ( v > 0) {
01170 Double_t temp[3];
01171 temp[0] = mu * mu * v + u;
01172 temp[1] = mu * mu * mu * v * v + mu * v * u - mu * mu * v * em + mu * v * bm - 2 * u * em;
01173 temp[2] = mu * mu * v * v * bm - mu * v * u * em - mu * v * bm * em + u * em * em - mu * mu * v * v * x;
01174 e = (-temp[1] + TMath::Sqrt(temp[1] * temp[1] - 4 * temp[0] * temp[2])) / 2 / temp[0];
01175 b = bm - (u * (em - e)) / v / mu;
01176 }
01177 f = LikeMod3(mu, b, e, x, bm, em, u, v);
01178 }
01179 }
01180
01181 return f;
01182 }
01183
01184
01185 Double_t TRolke::LikeMod3(Double_t mu, Double_t b, Double_t e, Int_t x, Double_t bm, Double_t em, Double_t u, Double_t v)
01186 {
01187
01188
01189
01190 double s = e*mu+b;
01191 double lls = - s;
01192 if (x > 0) lls = x*TMath::Log(s) - s - LogFactorial(x);
01193 double llb = 0;
01194 if ( u > 0) llb = - 0.9189385 - TMath::Log(u) / 2 - (bm - b)*(bm - b) / u / 2;
01195 double lle = 0;
01196 if ( v > 0) lle = - 0.9189385 - TMath::Log(v) / 2 - (em - e)*(em - e) / v / 2;
01197
01198 return 2*( lls + llb + lle);
01199
01200 }
01201
01202
01203 Double_t TRolke::EvalLikeMod4(Double_t mu, Int_t x, Int_t y, Double_t tau, Int_t what)
01204 {
01205
01206
01207
01208
01209
01210
01211 Double_t f = 0.0;
01212
01213 if (what == 1) f = x - y / tau;
01214 if (what == 2) {
01215 mu = x - y / tau;
01216 Double_t b = y / tau;
01217 f = LikeMod4(mu, b, x, y, tau);
01218 }
01219 if (what == 3) {
01220 if (mu == 0.0) {
01221 Double_t b = Double_t(x + y) / (1 + tau);
01222 f = LikeMod4(mu, b, x, y, tau);
01223 } else {
01224 Double_t b = (x + y - (1 + tau) * mu + sqrt((x + y - (1 + tau) * mu) * (x + y - (1 + tau) * mu) + 4 * (1 + tau) * y * mu)) / 2 / (1 + tau);
01225 f = LikeMod4(mu, b, x, y, tau);
01226 }
01227 }
01228 return f;
01229 }
01230
01231
01232 Double_t TRolke::LikeMod4(Double_t mu, Double_t b, Int_t x, Int_t y, Double_t tau)
01233 {
01234
01235
01236
01237 double s = mu+b;
01238 double lls = - s;
01239 if (x > 0) lls = x*TMath::Log(s) - s - LogFactorial(x);
01240 double bg = tau*b;
01241 double llb = -bg;
01242 if ( y > 0) llb = y*TMath::Log( bg) - bg - LogFactorial(y);
01243
01244 return 2*( lls + llb);
01245 }
01246
01247
01248 Double_t TRolke::EvalLikeMod5(Double_t mu, Int_t x, Double_t bm, Double_t sdb, Int_t what)
01249 {
01250
01251
01252
01253
01254
01255
01256
01257 Double_t u = sdb * sdb;
01258 Double_t f = 0;
01259
01260 if (what == 1) {
01261 f = x - bm;
01262 }
01263 if (what == 2) {
01264 mu = x - bm;
01265 Double_t b = bm;
01266 f = LikeMod5(mu, b, x, bm, u);
01267 }
01268
01269 if (what == 3) {
01270 Double_t b = ((bm - u - mu) + TMath::Sqrt((bm - u - mu) * (bm - u - mu) - 4 * (mu * u - mu * bm - u * x))) / 2;
01271 f = LikeMod5(mu, b, x, bm, u);
01272 }
01273 return f;
01274 }
01275
01276
01277 Double_t TRolke::LikeMod5(Double_t mu, Double_t b, Int_t x, Double_t bm, Double_t u)
01278 {
01279
01280
01281
01282 double s = mu+b;
01283 double lls = - s;
01284 if (x > 0) lls = x*TMath::Log(s) - s - LogFactorial(x);
01285 double llb = 0;
01286 if ( u > 0) llb = - 0.9189385 - TMath::Log(u) / 2 - (bm - b)*(bm - b) / u / 2;
01287
01288 return 2*( lls + llb);
01289 }
01290
01291
01292 Double_t TRolke::EvalLikeMod6(Double_t mu, Int_t x, Int_t z, Double_t b, Int_t m, Int_t what)
01293 {
01294
01295
01296
01297
01298
01299
01300
01301 Double_t coef[4], roots[3];
01302 Double_t f = 0.;
01303 Double_t zm = Double_t(z) / m;
01304
01305 if (what == 1) {
01306 f = (x - b) / zm;
01307 }
01308
01309 if (what == 2) {
01310 mu = (x - b) / zm;
01311 Double_t e = zm;
01312 f = LikeMod6(mu, b, e, x, z, m);
01313 }
01314 if (what == 3) {
01315 Double_t e;
01316 if (mu == 0) {
01317 e = zm;
01318 } else {
01319 coef[3] = mu * mu;
01320 coef[2] = mu * b - mu * x - mu * mu - mu * m;
01321 coef[1] = mu * x - mu * b + mu * z - m * b;
01322 coef[0] = b * z;
01323 TMath::RootsCubic(coef, roots[0], roots[1], roots[2]);
01324 e = roots[1];
01325 }
01326 f = LikeMod6(mu, b, e, x, z, m);
01327 }
01328 return f;
01329 }
01330
01331
01332 Double_t TRolke::LikeMod6(Double_t mu, Double_t b, Double_t e, Int_t x, Int_t z, Int_t m)
01333 {
01334
01335
01336
01337 double s = e*mu+b;
01338 double lls = - s;
01339 if (x > 0) lls = x*TMath::Log(s) - s - LogFactorial(x);
01340
01341 double lle = 0;
01342 if (z == 0) lle = m * TMath::Log(1-e);
01343 else if ( z == m) lle = m * TMath::Log(e);
01344 else lle = z * TMath::Log(e) + (m - z)*TMath::Log(1 - e) + LogFactorial(m) - LogFactorial(m-z) - LogFactorial(z);
01345
01346 return 2* (lls + lle);
01347 }
01348
01349
01350
01351 Double_t TRolke::EvalLikeMod7(Double_t mu, Int_t x, Double_t em, Double_t sde, Double_t b, Int_t what)
01352 {
01353
01354
01355
01356
01357
01358
01359
01360 Double_t v = sde * sde;
01361 Double_t f = 0.;
01362
01363 if (what == 1) {
01364 f = (x - b) / em;
01365 }
01366
01367 if (what == 2) {
01368 mu = (x - b) / em;
01369 Double_t e = em;
01370 f = LikeMod7(mu, b, e, x, em, v);
01371 }
01372
01373 if (what == 3) {
01374 Double_t e;
01375 if (mu == 0) {
01376 e = em;
01377 } else {
01378 e = (-(mu * em - b - mu * mu * v) - TMath::Sqrt((mu * em - b - mu * mu * v) * (mu * em - b - mu * mu * v) + 4 * mu * (x * mu * v - mu * b * v + b * em))) / (- mu) / 2;
01379 }
01380 f = LikeMod7(mu, b, e, x, em, v);
01381 }
01382
01383 return f;
01384 }
01385
01386
01387 Double_t TRolke::LikeMod7(Double_t mu, Double_t b, Double_t e, Int_t x, Double_t em, Double_t v)
01388 {
01389
01390
01391
01392 double s = e*mu+b;
01393 double lls = - s;
01394 if (x > 0) lls = x*TMath::Log(s) - s - LogFactorial(x);
01395
01396 double lle = 0;
01397 if ( v > 0) lle = - 0.9189385 - TMath::Log(v) / 2 - (em - e)*(em - e) / v / 2;
01398
01399 return 2*( lls + lle);
01400 }
01401
01402
01403 Double_t TRolke::EvalPolynomial(Double_t x, const Int_t coef[], Int_t N)
01404 {
01405
01406 const Int_t *p;
01407 p = coef;
01408 Double_t ans = *p++;
01409 Int_t i = N;
01410
01411 do
01412 ans = ans * x + *p++;
01413 while (--i);
01414
01415 return ans;
01416 }
01417
01418
01419 Double_t TRolke::EvalMonomial(Double_t x, const Int_t coef[], Int_t N)
01420 {
01421
01422 Double_t ans;
01423 const Int_t *p;
01424
01425 p = coef;
01426 ans = x + *p++;
01427 Int_t i = N - 1;
01428
01429 do
01430 ans = ans * x + *p++;
01431 while (--i);
01432
01433 return ans;
01434 }
01435
01436
01437 Double_t TRolke::LogFactorial(Int_t n)
01438 {
01439
01440
01441 return TMath::LnGamma(n+1);
01442 }
01443
01444