TVirtualViewer3D.cxx

Go to the documentation of this file.
00001 // @(#)root/base:$Id: TVirtualViewer3D.cxx 20877 2007-11-19 11:17:07Z rdm $
00002 // Author: Olivier Couet 05/10/2004
00003 
00004 /*************************************************************************
00005  * Copyright (C) 1995-2004, Rene Brun and Fons Rademakers.               *
00006  * All rights reserved.                                                  *
00007  *                                                                       *
00008  * For the licensing terms see $ROOTSYS/LICENSE.                         *
00009  * For the list of contributors see $ROOTSYS/README/CREDITS.             *
00010  *************************************************************************/
00011 
00012 //////////////////////////////////////////////////////////////////////////
00013 //                                                                      //
00014 // TVirtualViewer3D                                                     //
00015 //                                                                      //
00016 // Abstract 3D shapes viewer. The concrete implementations are:         //
00017 //                                                                      //
00018 // TViewerX3D   : X3d viewer                                            //
00019 // TGLViewer    : OpenGL viewer                                         //
00020 //                                                                      //
00021 //////////////////////////////////////////////////////////////////////////
00022 //BEGIN_HTML <!--
00023 /* -->
00024 <h4>3D Viewer Infrastructure Overview</h4>
00025 <p>The 3D Viewer infrastructure consists of:</p>
00026 <ul>
00027   <li> TVirtualViewer3D interface: An abstract handle to the viewer, allowing
00028     client to test preferences, add objects, control the viewer via scripting
00029     (to be added) etc.</li>
00030   <li>TBuffer3D class hierarchy: Used to describe 3D objects
00031     (&quot;shapes&quot;)
00032     - filled /added by negotiation with viewer via TVirtualViewer3D.</li>
00033 </ul>
00034 <p>Together these allow clients to publish objects to any one of the 3D viewers
00035   (currently OpenGL/x3d,TPad), free of viewer specific drawing code. They allow
00036   our simple x3d viewer, and considerably more sophisticated OpenGL one to both
00037   work with both geometry libraries (g3d and geom) efficiently.</p>
00038 <p>Publishing to a viewer consists of the following steps:</p>
00039 <ol>
00040   <li> Create / obtain viewer handle</li>
00041   <li>Begin scene on viewer</li>
00042   <li>Fill mandatory parts of TBuffer3D describing object</li>
00043   <li>Add to viewer</li>
00044   <li>Fill optional parts of TBuffer3D if requested by viewer, and add again<br>
00045      ... repeat 3/4/5
00046   as required</li>
00047   <li>End scene on viewer</li>
00048 </ol>
00049 <h4>Creating / Obtaining Viewer</h4>
00050 <p>Create/obtain the viewer handle via local/global pad - the viewer is always
00051   bound to a TPad object at present [This may be removed as a restriction in
00052   the future] . You should perform the publishing to the viewer described below
00053   in the Paint() method of the object you attach to the pad (via Draw())</p>
00054 <pre>TVirtualViewer3D * v = gPad-&gt;GetViewer3D(&quot;xxxx&quot;);</pre>
00055 <p>&quot; xxxx&quot; is viewer type: OpenGL &quot;ogl&quot;, X3D &quot;x3d&quot; or
00056   Pad &quot;pad&quot; (default). The viewer is created via the plugin manager,
00057   attached to pad, and the interface returned.</p>
00058 <h4> Begin / End Scene</h4>
00059 <p>Objects must be added to viewer between BeginScene/EndScene calls e.g.</p>
00060 <pre>v-&gt;BeginScene();
00061 .....
00062 v-&gt;AddObject(....);
00063 v-&gt;AddObject(....);
00064 .....
00065 v-&gt;EndScene();</pre>
00066 <p>The BeginScene call will cause the viewer to suspend redraws etc, and after
00067   the EndScene the viewer will reset the camera to frame the new scene and redraw.</p>
00068 [x3d viewer does not support changing of scenes - objects added after the
00069   first Open/CloseScene pair will be ignored.]<br>
00070 <h4>Filling TBuffer3D and Adding to Viewer</h4>
00071 <p>The viewers behind the TVirtualViewer3D interface differ greatly in their
00072   capabilities e.g.</p>
00073 <ul>
00074   <li> Some know how to draw certain shapes natively (e.g. spheres/tubes in
00075     OpenGL) - others always require a raw tessellation description of points/lines/segments.</li>
00076   <li>Some
00077       need the 3D object positions in the global frame, others can cope with
00078     local frames + a translation matrix - which can give considerable performance
00079       benefits.</li>
00080 </ul>
00081 <p>To cope with these situations the object buffer is filled out in negotiation
00082   with the viewer. TBuffer3D classes are conceptually divided into enumerated
00083   sections Core, BoundingBox, Raw etc (see TBuffer3D.h for more details). </p>
00084 <p align="center"><img src="gif/TBuffer3D.gif" width="501" height="501"></p>
00085 <p>The<em> SectionsValid() / SetSectionsValid / ClearSectionsValid() </em>methods of TBuffer3D
00086     are used to test/set/clear these section valid flags.</p>
00087 <p>The sections found in TBuffer3D (<em>Core/BoundingBox/Raw Sizes/Raw</em>)
00088   are sufficient to describe any tessellated shape in a generic fashion. An additional <em>ShapeSpecific</em>  section
00089   in derived shape specific classes allows a more abstract shape description
00090   (&quot;a sphere of inner radius x, outer radius y&quot;). This enables a viewer
00091   which knows how to draw (tessellate) the shape itself to do so, which can bring
00092   considerable performance and quality benefits, while providing a generic fallback
00093   suitable for all viewers.</p>
00094 <p>The rules for client negotiation with the viewer are:</p>
00095 <ul>
00096   <li> If suitable specialized TBuffer3D class exists, use it, otherwise use
00097     TBuffer3D.</li>
00098   <li>Complete the mandatory Core section.</li>
00099   <li>Complete the ShapeSpecific section
00100       if applicable.</li>
00101   <li>Complete the BoundingBox if you can.</li>
00102   <li>Pass this buffer to the viewer using
00103       one of the AddObject() methods - see below.</li>
00104 </ul>
00105 <p>If the viewer requires more sections to be completed (Raw/RawSizes) AddObject()
00106   will return flags indicating which ones, otherwise it returns kNone. You must
00107   fill the buffer and mark these sections valid, and pass the buffer again. A
00108   typical code snippet would be:</p>
00109 <pre>TBuffer3DSphere sphereBuffer;
00110 // Fill out kCore...
00111 // Fill out kBoundingBox...
00112 // Fill out kShapeSpecific for TBuffer3DSphere
00113 // Try first add to viewer
00114 Int_t reqSections = viewer-&gt;AddObject(buffer);
00115 if (reqSections != TBuffer3D::kNone) {
00116   if (reqSections &amp; TBuffer3D::kRawSizes) {
00117      // Fill out kRawSizes...
00118   }
00119   if (reqSections &amp; TBuffer3D::kRaw) {
00120      // Fill out kRaw...
00121   }
00122   // Add second time to viewer - ignore return cannot do more
00123   viewer-&gt;AddObject(buffer);
00124   }
00125 }</pre>
00126 <p><em>ShapeSpecific</em>: If the viewer can directly display the buffer without
00127   filling of the kRaw/kRawSizes section it will not need to request client side
00128   tessellation.
00129   Currently we provide the following various shape specific classes, which the
00130   OpenGL viewer can take advantage of (see TBuffer3D.h and TBuffer3DTypes.h)</p>
00131 <ul>
00132   <li>TBuffer3DSphere - solid, hollow and cut spheres*</li>
00133   <li>TBuffer3DTubeSeg - angle tube segment</li>
00134   <li>TBuffer3DCutTube - angle tube segment with plane cut ends.</li>
00135 </ul>
00136 <p>*OpenGL only supports solid spheres at present - cut/hollow ones will be
00137     requested tessellated.</p>
00138 <p>Anyone is free to add new TBuffer3D classes, but it should be clear that the
00139   viewers require updating to be able to take advantage of them. The number of
00140   native shapes in OpenGL will be expanded over time.</p>
00141 <p><em>BoundingBox: </em>You are not obliged to complete this, as any viewer
00142   requiring one internally (OpenGL) will build one for you if you do not provide.
00143   However
00144   to do this the viewer will force you to provide the raw tessellation, and the
00145   resulting box will be axis aligned with the overall scene, which is non-ideal
00146   for rotated shapes.</p>
00147 <p>As we need to support orientated (rotated) bounding boxes, TBuffer3D requires
00148   the 6 vertices of the box. We also provide a convenience function, SetAABoundingBox(),
00149   for simpler case of setting an axis aligned bounding box.</p>
00150 <h4>
00151   Master/Local Reference Frames</h4>
00152 The <em>Core</em> section of TBuffer3D contains two members relating to reference
00153   frames:
00154 <em>fLocalFrame</em> &amp; <em>fLocalMaster</em>. <em>fLocalFrame</em> indicates
00155   if any positions in the buffer (bounding box and tessellation vertexes) are
00156   in local or master (world
00157   frame). <em>fLocalMaster</em> is a standard 4x4 translation matrix (OpenGL
00158   colum major ordering) for placing the object into the 3D master frame.
00159   <p>If <em>fLocalFrame</em> is kFALSE, <em>fLocalMaster</em> should contain an
00160   identity matrix. This is set by default, and can be reset using <em>SetLocalMasterIdentity()</em> function.<br>
00161 Logical &amp; Physical Objects</p>
00162 <p>There are two cases of object addition:</p>
00163 <ul>
00164   <li> Add this object as a single independent entity in the world reference
00165     frame.</li>
00166   <li>Add
00167         a physical placement (copy) of this logical object (described in local
00168     reference frame).</li>
00169 </ul>
00170 <p>The second case is very typical in geometry packages, GEANT4, where we have
00171   very large number repeated placements of relatively few logical (unique) shapes.
00172   Some viewers (OpenGL only at present) are able to take advantage of this by
00173   identifying unique logical shapes from the <em>fID</em> logical ID member of
00174   TBuffer3D. If repeated addition of the same <em>fID</em> is found, the shape
00175   is cached already - and the costly tessellation does not need to be sent again.
00176   The viewer can
00177   also perform internal GL specific caching with considerable performance gains
00178   in these cases.</p>
00179 <p>For this to work correctly the logical object in must be described in TBuffer3D
00180   in the local reference frame, complete with the local/master translation. The
00181   viewer indicates this through the interface method</p>
00182 <pre>PreferLocalFrame()</pre>
00183 <p>If this returns kTRUE you can make repeated calls to AddObject(), with TBuffer3D
00184   containing the same fID, and different <em>fLocalMaster</em> placements.</p>
00185 <p>For viewers supporting logical/physical objects, the TBuffer3D content refers
00186   to the properties of logical object, with the <em>fLocalMaster</em> transform and the
00187   <em>fColor</em> and <em>fTransparency</em> attributes, which can be varied for each physical
00188   object.</p>
00189 <p>As a minimum requirement all clients must be capable of filling the raw tessellation
00190   of the object buffer, in the master reference frame. Conversely viewers must
00191   always be capable of displaying the object described by this buffer.</p>
00192 <h4>
00193   Scene Rebuilds</h4>
00194 <p>It should be understood that AddObject is not an explicit command to the viewer
00195   - it may for various reasons decide to ignore it:</p>
00196 <ul>
00197   <li> It already has the object internally cached .</li>
00198   <li>The object falls outside
00199     some 'interest' limits of the viewer camera.</li>
00200   <li>The object is too small to
00201       be worth drawing.</li>
00202 </ul>
00203 <p>In all these cases AddObject() returns kNone, as it does for successful addition,
00204   simply indicating it does not require you to provide further information about
00205   this object. You should
00206   not try to make any assumptions about what the viewer did with it.</p>
00207 <p>This enables the viewer to be connected to a client which sends potentially
00208   millions of objects, and only accept those that are of interest at a certain
00209   time, caching the relatively small number of CPU/memory costly logical shapes,
00210   and retaining/discarding the physical placements as required. The viewer may
00211   decide to force the client to rebuild (republish) the scene (via
00212   a TPad
00213   repaint
00214   at
00215   present),
00216   and
00217   thus
00218   collect
00219   these
00220   objects if
00221   the
00222   internal viewer state changes. It does this presently by forcing a repaint
00223   on the attached TPad object - hence the reason for putting all publishing to
00224   the viewer in the attached pad objects Paint() method. We will likely remove
00225   this requirement in the future, indicating the rebuild request via a normal
00226 ROOT signal, which the client can detect.</p>
00227 <h4>
00228   Physical IDs</h4>
00229 TVirtualViewer3D provides for two methods of object addition:virtual Int_t AddObject(const
00230 TBuffer3D &amp; buffer, Bool_t * addChildren = 0)<br>
00231 <pre>virtual Int_t AddObject(UInt_t physicalID, const TBuffer3D &amp; buffer, Bool_t * addChildren = 0)</pre>
00232 <p>If you use the first (simple) case a viewer using logical/physical pairs
00233     will generate IDs for each physical object internally. In the second you
00234     can specify
00235       a unique identifier from the client, which allows the viewer to be more
00236     efficient. It can now cache both logical and physical objects, and only discard
00237     physical
00238   objects no longer of interest as part of scene rebuilds.</p>
00239 <h4>
00240   Child Objects</h4>
00241 <p>In many geometries there is a rigid containment hierarchy, and so if the viewer
00242   is not interested in a certain object due to limits/size then it will also
00243   not be interest in any of the contained branch of descendents. Both AddObject()
00244   methods have an addChildren parameter. The viewer will complete this (if passed)
00245 indicating if children (contained within the one just sent) are worth adding.</p>
00246 <h4>
00247   Recyling TBuffer3D </h4>
00248 <p>Once add AddObject() has been called, the contents are copied to the viewer
00249   internally. You are free to destroy this object, or recycle it for the next
00250   object if suitable.</p>
00251 <!--*/
00252 // -->END_HTML
00253 
00254 
00255 #include "TVirtualViewer3D.h"
00256 #include "TVirtualPad.h"
00257 #include "TPluginManager.h"
00258 #include "TError.h"
00259 #include "TClass.h"
00260 
00261 ClassImp(TVirtualViewer3D)
00262 
00263 //______________________________________________________________________________
00264 TVirtualViewer3D* TVirtualViewer3D::Viewer3D(TVirtualPad *pad, Option_t *type)
00265 {
00266    // Create a Viewer 3D of specified type.
00267 
00268    TVirtualViewer3D *viewer = 0;
00269    TPluginHandler *h;
00270    if ((h = gPluginMgr->FindHandler("TVirtualViewer3D", type))) {
00271       if (h->LoadPlugin() == -1)
00272          return 0;
00273 
00274       if (!pad) {
00275          viewer = (TVirtualViewer3D *) h->ExecPlugin(1, gPad);
00276       } else {
00277          viewer = (TVirtualViewer3D *) h->ExecPlugin(1, pad);
00278       }
00279    }
00280    return viewer;
00281 }

Generated on Tue Jul 5 14:11:24 2011 for ROOT_528-00b_version by  doxygen 1.5.1