00001 // @(#)root/minuit:$Id: TLinearFitter.h 27022 2008-12-19 10:34:54Z pcanal $ 00002 // Author: Anna Kreshuk 04/03/2005 00003 00004 /************************************************************************* 00005 * Copyright (C) 1995-2005, Rene Brun and Fons Rademakers. * 00006 * All rights reserved. * 00007 * * 00008 * For the licensing terms see $ROOTSYS/LICENSE. * 00009 * For the list of contributors see $ROOTSYS/README/CREDITS. * 00010 *************************************************************************/ 00011 00012 #ifndef ROOT_TLinearFitter 00013 #define ROOT_TLinearFitter 00014 00015 ////////////////////////////////////////////////////////////////////////// 00016 // 00017 // The Linear Fitter - fitting functions that are LINEAR IN PARAMETERS 00018 // 00019 // Linear fitter is used to fit a set of data points with a linear 00020 // combination of specified functions. Note, that "linear" in the name 00021 // stands only for the model dependency on parameters, the specified 00022 // functions can be nonlinear. 00023 // The general form of this kind of model is 00024 // 00025 // y(x) = a[0] + a[1]*f[1](x)+...a[n]*f[n](x) 00026 // 00027 // Functions f are fixed functions of x. For example, fitting with a 00028 // polynomial is linear fitting in this sense. 00029 // 00030 // The fitting method 00031 // 00032 // The fit is performed using the Normal Equations method with Cholesky 00033 // decomposition. 00034 // 00035 // Why should it be used? 00036 // 00037 // The linear fitter is considerably faster than general non-linear 00038 // fitters and doesn't require to set the initial values of parameters. 00039 // 00040 // Using the fitter: 00041 // 00042 // 1.Adding the data points: 00043 // 1.1 To store or not to store the input data? 00044 // - There are 2 options in the constructor - to store or not 00045 // store the input data. The advantages of storing the data 00046 // are that you'll be able to reset the fitting model without 00047 // adding all the points again, and that for very large sets 00048 // of points the chisquare is calculated more precisely. 00049 // The obvious disadvantage is the amount of memory used to 00050 // keep all the points. 00051 // - Before you start adding the points, you can change the 00052 // store/not store option by StoreData() method. 00053 // 1.2 The data can be added: 00054 // - simply point by point - AddPoint() method 00055 // - an array of points at once: 00056 // If the data is already stored in some arrays, this data 00057 // can be assigned to the linear fitter without physically 00058 // coping bytes, thanks to the Use() method of 00059 // TVector and TMatrix classes - AssignData() method 00060 // 00061 // 2.Setting the formula 00062 // 2.1 The linear formula syntax: 00063 // -Additive parts are separated by 2 plus signes "++" 00064 // --for example "1 ++ x" - for fitting a straight line 00065 // -All standard functions, undrestood by TFormula, can be used 00066 // as additive parts 00067 // --TMath functions can be used too 00068 // -Functions, used as additive parts, shouldn't have any parameters, 00069 // even if those parameters are set. 00070 // --for example, if normalizing a sum of a gaus(0, 1) and a 00071 // gaus(0, 2), don't use the built-in "gaus" of TFormula, 00072 // because it has parameters, take TMath::Gaus(x, 0, 1) instead. 00073 // -Polynomials can be used like "pol3", .."polN" 00074 // -If fitting a more than 3-dimensional formula, variables should 00075 // be numbered as follows: 00076 // -- x0, x1, x2... For example, to fit "1 ++ x0 ++ x1 ++ x2 ++ x3*x3" 00077 // 2.2 Setting the formula: 00078 // 2.2.1 If fitting a 1-2-3-dimensional formula, one can create a 00079 // TF123 based on a linear expression and pass this function 00080 // to the fitter: 00081 // --Example: 00082 // TLinearFitter *lf = new TLinearFitter(); 00083 // TF2 *f2 = new TF2("f2", "x ++ y ++ x*x*y*y", -2, 2, -2, 2); 00084 // lf->SetFormula(f2); 00085 // --The results of the fit are then stored in the function, 00086 // just like when the TH1::Fit or TGraph::Fit is used 00087 // --A linear function of this kind is by no means different 00088 // from any other function, it can be drawn, evaluated, etc. 00089 // 2.2.2 There is no need to create the function if you don't want to, 00090 // the formula can be set by expression: 00091 // --Example: 00092 // // 2 is the number of dimensions 00093 // TLinearFitter *lf = new TLinearFitter(2); 00094 // lf->SetFormula("x ++ y ++ x*x*y*y"); 00095 // --That's the only way to go, if you want to fit in more 00096 // than 3 dimensions 00097 // 2.2.3 The fastest functions to compute are polynomials and hyperplanes. 00098 // --Polynomials are set the usual way: "pol1", "pol2",... 00099 // --Hyperplanes are set by expression "hyp3", "hyp4", ... 00100 // ---The "hypN" expressions only work when the linear fitter 00101 // is used directly, not through TH1::Fit or TGraph::Fit. 00102 // To fit a graph or a histogram with a hyperplane, define 00103 // the function as "1++x++y". 00104 // ---A constant term is assumed for a hyperplane, when using 00105 // the "hypN" expression, so "hyp3" is in fact fitting with 00106 // "1++x++y++z" function. 00107 // --Fitting hyperplanes is much faster than fitting other 00108 // expressions so if performance is vital, calculate the 00109 // function values beforehand and give them to the fitter 00110 // as variables 00111 // --Example: 00112 // You want to fit "sin(x)|cos(2*x)" very fast. Calculate 00113 // sin(x) and cos(2*x) beforehand and store them in array *data. 00114 // Then: 00115 // TLinearFitter *lf=new TLinearFitter(2, "hyp2"); 00116 // lf->AssignData(npoint, 2, data, y); 00117 // 00118 // 2.3 Resetting the formula 00119 // 2.3.1 If the input data is stored (or added via AssignData() function), 00120 // the fitting formula can be reset without re-adding all the points. 00121 // --Example: 00122 // TLinearFitter *lf=new TLinearFitter("1++x++x*x"); 00123 // lf->AssignData(n, 1, x, y, e); 00124 // lf->Eval() 00125 // //looking at the parameter significance, you see, 00126 // // that maybe the fit will improve, if you take out 00127 // // the constant term 00128 // lf->SetFormula("x++x*x"); 00129 // lf->Eval(); 00130 // ... 00131 // 2.3.2 If the input data is not stored, the fitter will have to be 00132 // cleared and the data will have to be added again to try a 00133 // different formula. 00134 // 00135 // 3.Accessing the fit results 00136 // 3.1 There are methods in the fitter to access all relevant information: 00137 // --GetParameters, GetCovarianceMatrix, etc 00138 // --the t-values of parameters and their significance can be reached by 00139 // GetParTValue() and GetParSignificance() methods 00140 // 3.2 If fitting with a pre-defined TF123, the fit results are also 00141 // written into this function. 00142 // 00143 ////////////////////////////////////////////////////////////////////////// 00144 00145 #ifndef ROOT_TVectorD 00146 #include "TVectorD.h" 00147 #endif 00148 #ifndef ROOT_TMatrixD 00149 #include "TMatrixD.h" 00150 #endif 00151 #ifndef ROOT_TFormula 00152 #include "TFormula.h" 00153 #endif 00154 #ifndef ROOT_TVirtualFitter 00155 #include "TVirtualFitter.h" 00156 #endif 00157 00158 00159 class TLinearFitter: public TVirtualFitter { 00160 00161 private: 00162 TVectorD fParams; //vector of parameters 00163 TMatrixDSym fParCovar; //matrix of parameters' covariances 00164 TVectorD fTValues; //T-Values of parameters 00165 TVectorD fParSign; //significance levels of parameters 00166 TMatrixDSym fDesign; //matrix AtA 00167 TMatrixDSym fDesignTemp; //! temporary matrix, used for num.stability 00168 TMatrixDSym fDesignTemp2; //! 00169 TMatrixDSym fDesignTemp3; //! 00170 00171 TVectorD fAtb; //vector Atb 00172 TVectorD fAtbTemp; //! temporary vector, used for num.stability 00173 TVectorD fAtbTemp2; //! 00174 TVectorD fAtbTemp3; //! 00175 00176 TObjArray fFunctions; //array of basis functions 00177 TVectorD fY; //the values being fit 00178 Double_t fY2; //sum of square of y, used for chisquare 00179 Double_t fY2Temp; //! temporary variable used for num.stability 00180 TMatrixD fX; //values of x 00181 TVectorD fE; //the errors if they are known 00182 TFormula *fInputFunction; //the function being fit 00183 Double_t fVal[1000]; //! temporary 00184 00185 Int_t fNpoints; //number of points 00186 Int_t fNfunctions; //number of basis functions 00187 Int_t fFormulaSize; //length of the formula 00188 Int_t fNdim; //number of dimensions in the formula 00189 Int_t fNfixed; //number of fixed parameters 00190 Int_t fSpecial; //=100+n if fitting a polynomial of deg.n 00191 //=200+n if fitting an n-dimensional hyperplane 00192 char *fFormula; //the formula 00193 Bool_t fIsSet; //Has the formula been set? 00194 Bool_t fStoreData; //Is the data stored? 00195 Double_t fChisquare; //Chisquare of the fit 00196 00197 Int_t fH; //number of good points in robust fit 00198 Bool_t fRobust; //true when performing a robust fit 00199 TBits fFitsample; //indices of points, used in the robust fit 00200 00201 Bool_t *fFixedParams; //[fNfixed] array of fixed/released params 00202 00203 void AddToDesign(Double_t *x, Double_t y, Double_t e); 00204 void ComputeTValues(); 00205 Int_t GraphLinearFitter(Double_t h); 00206 Int_t Graph2DLinearFitter(Double_t h); 00207 Int_t HistLinearFitter(); 00208 Int_t MultiGraphLinearFitter(Double_t h); 00209 00210 //robust fitting functions: 00211 Int_t Partition(Int_t nmini, Int_t *indsubdat); 00212 void RDraw(Int_t *subdat, Int_t *indsubdat); 00213 void CreateSubset(Int_t ntotal, Int_t h, Int_t *index); 00214 Double_t CStep(Int_t step, Int_t h, Double_t *residuals, Int_t *index, Int_t *subdat, Int_t start, Int_t end); 00215 Bool_t Linf(); 00216 00217 public: 00218 TLinearFitter(); 00219 TLinearFitter(Int_t ndim, const char *formula, Option_t *opt="D"); 00220 TLinearFitter(Int_t ndim); 00221 TLinearFitter(TFormula *function, Option_t *opt="D"); 00222 TLinearFitter(const TLinearFitter& tlf); 00223 virtual ~TLinearFitter(); 00224 00225 TLinearFitter& operator=(const TLinearFitter& tlf); 00226 virtual void Add(TLinearFitter *tlf); 00227 virtual void AddPoint(Double_t *x, Double_t y, Double_t e=1); 00228 virtual void AddTempMatrices(); 00229 virtual void AssignData(Int_t npoints, Int_t xncols, Double_t *x, Double_t *y, Double_t *e=0); 00230 00231 virtual void Clear(Option_t *option=""); 00232 virtual void ClearPoints(); 00233 virtual void Chisquare(); 00234 virtual Int_t Eval(); 00235 virtual Int_t EvalRobust(Double_t h=-1); 00236 virtual Int_t ExecuteCommand(const char *command, Double_t *args, Int_t nargs); 00237 virtual void FixParameter(Int_t ipar); 00238 virtual void FixParameter(Int_t ipar, Double_t parvalue); 00239 virtual void GetAtbVector(TVectorD &v); 00240 virtual Double_t GetChisquare(); 00241 virtual void GetConfidenceIntervals(Int_t n, Int_t ndim, const Double_t *x, Double_t *ci, Double_t cl=0.95); 00242 virtual void GetConfidenceIntervals(TObject *obj, Double_t cl=0.95); 00243 virtual Double_t* GetCovarianceMatrix() const; 00244 virtual void GetCovarianceMatrix(TMatrixD &matr); 00245 virtual Double_t GetCovarianceMatrixElement(Int_t i, Int_t j) const {return fParCovar(i, j);} 00246 virtual void GetDesignMatrix(TMatrixD &matr); 00247 virtual void GetErrors(TVectorD &vpar); 00248 virtual Int_t GetNumberTotalParameters() const {return fNfunctions;} 00249 virtual Int_t GetNumberFreeParameters() const {return fNfunctions-fNfixed;} 00250 virtual Int_t GetNpoints() { return fNpoints; } 00251 virtual void GetParameters(TVectorD &vpar); 00252 virtual Double_t GetParameter(Int_t ipar) const {return fParams(ipar);} 00253 virtual Int_t GetParameter(Int_t ipar,char* name,Double_t& value,Double_t& /*verr*/,Double_t& /*vlow*/, Double_t& /*vhigh*/) const; 00254 virtual const char *GetParName(Int_t ipar) const; 00255 virtual Double_t GetParError(Int_t ipar) const; 00256 virtual Double_t GetParTValue(Int_t ipar); 00257 virtual Double_t GetParSignificance(Int_t ipar); 00258 virtual void GetFitSample(TBits& bits); 00259 virtual Double_t GetY2() const {return fY2;} 00260 virtual Bool_t IsFixed(Int_t ipar) const {return fFixedParams[ipar];} 00261 virtual Int_t Merge(TCollection *list); 00262 virtual void PrintResults(Int_t level, Double_t amin=0) const; 00263 virtual void ReleaseParameter(Int_t ipar); 00264 virtual void SetBasisFunctions(TObjArray * functions); 00265 virtual void SetDim(Int_t n); 00266 virtual void SetFormula(const char* formula); 00267 virtual void SetFormula(TFormula *function); 00268 virtual void StoreData(Bool_t store) {fStoreData=store;} 00269 00270 virtual Bool_t UpdateMatrix(); 00271 00272 //dummy functions for TVirtualFitter: 00273 virtual Double_t Chisquare(Int_t /*npar*/, Double_t * /*params*/) const {return 0;} 00274 virtual Int_t GetErrors(Int_t /*ipar*/,Double_t & /*eplus*/, Double_t & /*eminus*/, Double_t & /*eparab*/, Double_t & /*globcc*/) const {return 0;} 00275 00276 virtual Int_t GetStats(Double_t& /*amin*/, Double_t& /*edm*/, Double_t& /*errdef*/, Int_t& /*nvpar*/, Int_t& /*nparx*/) const {return 0;} 00277 virtual Double_t GetSumLog(Int_t /*i*/) {return 0;} 00278 virtual void SetFitMethod(const char * /*name*/) {;} 00279 virtual Int_t SetParameter(Int_t /*ipar*/,const char * /*parname*/,Double_t /*value*/,Double_t /*verr*/,Double_t /*vlow*/, Double_t /*vhigh*/) {return 0;} 00280 00281 ClassDef(TLinearFitter, 2) //fit a set of data points with a linear combination of functions 00282 }; 00283 00284 #endif