RegressionVariance.h

Go to the documentation of this file.
00001 // @(#)root/tmva $Id: RegressionVariance.h 29122 2009-06-22 06:51:30Z brun $
00002 // Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss 
00003 
00004 /**********************************************************************************
00005  * Project: TMVA - a Root-integrated toolkit for multivariate data analysis       *
00006  * Package: TMVA                                                                  *
00007  * Class  : RegressionVariance                                                    *
00008  * Web    : http://tmva.sourceforge.net                                           *
00009  *                                                                                *
00010  * Description: Calculate the separation critiera useded in regression            *
00011  *                                                                                *
00012  *          There are two things: the Separation Index, and the Separation Gain   *
00013  *          Separation Index:                                                     *
00014  *          Measure of the "Variance" of a sample.                                *
00015  *                                                                                *
00016  *          Separation Gain:                                                      *
00017  *          the measure of how the quality of separation of the sample increases  *
00018  *          by splitting the sample e.g. into a "left-node" and a "right-node"    *
00019  *          (N * Index_parent) - (N_left * Index_left) - (N_right * Index_right)  *
00020  *          this is then the quality crition which is optimized for when trying   *
00021  *          to increase the information in the system (making the best selection  *
00022  *                                                                                *
00023  *                                                                                *
00024  * Authors (alphabetical):                                                        *
00025  *      Helge Voss      <Helge.Voss@cern.ch>     - MPI-K Heidelberg, Germany      *
00026  *                                                                                *
00027  * Copyright (c) 2005:                                                            *
00028  *      CERN, Switzerland                                                         * 
00029  *      U. of Victoria, Canada                                                    * 
00030  *      Heidelberg U., Germany                                                    * 
00031  *                                                                                *
00032  * Redistribution and use in source and binary forms, with or without             *
00033  * modification, are permitted according to the terms listed in LICENSE           *
00034  * (http://tmva.sourceforge.net/LICENSE)                                          *
00035  **********************************************************************************/
00036 
00037 #ifndef ROOT_TMVA_RegressionVariance
00038 #define ROOT_TMVA_RegressionVariance
00039 
00040 //////////////////////////////////////////////////////////////////////////
00041 //                                                                      //
00042 // RegressionVariance                                                   //
00043 //                                                                      //
00044 // Calculate the "SeparationGain" for Regression analysis               //
00045 // separation critiera used in various training algorithms              //
00046 //                                                                      //
00047 // There are two things: the Separation Index, and the Separation Gain  //
00048 // Separation Index:                                                    //
00049 // Measure of the "Variance" of a sample.                               //
00050 //                                                                      //
00051 // Separation Gain:                                                     //
00052 // the measure of how the quality of separation of the sample increases //
00053 // by splitting the sample e.g. into a "left-node" and a "right-node"   //
00054 // (N * Index_parent) - (N_left * Index_left) - (N_right * Index_right) //
00055 // this is then the quality crition which is optimized for when trying  //
00056 // to increase the information in the system (making the best selection //            
00057 //                                                                      //
00058 //////////////////////////////////////////////////////////////////////////
00059 
00060 #ifndef ROOT_Rtypes
00061 #include "Rtypes.h"
00062 #endif
00063 
00064 #ifndef ROOT_TString
00065 #include "TString.h"
00066 #endif
00067 
00068 namespace TMVA {
00069 
00070    class RegressionVariance {
00071 
00072    public:
00073 
00074       //default constructor
00075       RegressionVariance(){fName = "Variance for Regression";}
00076 
00077       //copy constructor
00078       RegressionVariance( const RegressionVariance& s ): fName ( s.fName ) {}
00079 
00080       // destructor
00081       virtual ~RegressionVariance(){}
00082 
00083       // Return the gain in separation of the original sample is splitted in two sub-samples
00084       // (N * Index_parent) - (N_left * Index_left) - (N_right * Index_right) 
00085       Double_t GetSeparationGain( const Double_t &nLeft, const Double_t &targetLeft, const Double_t &target2Left,
00086                                   const Double_t &nTot, const Double_t &targetTot, const Double_t &target2Tot );
00087 
00088       // Return the separation index (a measure for "purity" of the sample")
00089       virtual Double_t GetSeparationIndex( const Double_t &n, const Double_t &target, const Double_t &target2 );
00090 
00091       // Return the name of the concrete Index implementation
00092       TString GetName() { return fName; }
00093 
00094    protected:
00095 
00096       TString fName;  // name of the concrete Separation Index impementation
00097  
00098       ClassDef(RegressionVariance,0) // Interface to different separation critiera used in training algorithms
00099    };
00100 
00101 
00102 } // namespace TMVA
00103 
00104 #endif

Generated on Tue Jul 5 14:27:33 2011 for ROOT_528-00b_version by  doxygen 1.5.1