ZTrees.h

Go to the documentation of this file.
00001 /* @(#)root/zip:$Id: ZTrees.h 20882 2007-11-19 11:31:26Z rdm $ */
00002 /* Author: */
00003 /*
00004 
00005  Copyright (C) 1990-1993 Mark Adler, Richard B. Wales, Jean-loup Gailly,
00006  Kai Uwe Rommel and Igor Mandrichenko.
00007  For conditions of distribution and use, see copyright notice in zlib.h
00008 
00009 */
00010 
00011 /*
00012  *  trees.c by Jean-loup Gailly
00013  *
00014  *  This is a new version of im_ctree.c originally written by Richard B. Wales
00015  *  for the defunct implosion method.
00016  *
00017  *  PURPOSE
00018  *
00019  *      Encode various sets of source values using variable-length
00020  *      binary code trees.
00021  *
00022  *  DISCUSSION
00023  *
00024  *      The PKZIP "deflation" process uses several Huffman trees. The more
00025  *      common source values are represented by shorter bit sequences.
00026  *
00027  *      Each code tree is stored in the ZIP file in a compressed form
00028  *      which is itself a Huffman encoding of the lengths of
00029  *      all the code strings (in ascending order by source values).
00030  *      The actual code strings are reconstructed from the lengths in
00031  *      the UNZIP process, as described in the "application note"
00032  *      (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
00033  *
00034  *  REFERENCES
00035  *
00036  *      Lynch, Thomas J.
00037  *          Data Compression:  Techniques and Applications, pp. 53-55.
00038  *          Lifetime Learning Publications, 1985.  ISBN 0-534-03418-7.
00039  *
00040  *      Storer, James A.
00041  *          Data Compression:  Methods and Theory, pp. 49-50.
00042  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
00043  *
00044  *      Sedgewick, R.
00045  *          Algorithms, p290.
00046  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
00047  *
00048  *  INTERFACE
00049  *
00050  *      void ct_init (ush *attr, int *method)
00051  *          Allocate the match buffer, initialize the various tables and save
00052  *          the location of the internal file attribute (ascii/binary) and
00053  *          method (DEFLATE/STORE)
00054  *
00055  *      void ct_tally (int dist, int lc);
00056  *          Save the match info and tally the frequency counts.
00057  *
00058  *      long flush_block (char *buf, ulg stored_len, int eof)
00059  *          Determine the best encoding for the current block: dynamic trees,
00060  *          static trees or store, and output the encoded block to the zip
00061  *          file. Returns the total compressed length for the file so far.
00062  *
00063  */
00064 
00065 #include <ctype.h>
00066 /* #include "zip.h" */
00067 /* #include "ZIP.h" */
00068 
00069 /* ===========================================================================
00070  * Constants
00071  */
00072 
00073 #define MAX_BITS 15
00074 /* All codes must not exceed MAX_BITS bits */
00075 
00076 #define MAX_BL_BITS 7
00077 /* Bit length codes must not exceed MAX_BL_BITS bits */
00078 
00079 #define LENGTH_CODES 29
00080 /* number of length codes, not counting the special END_BLOCK code */
00081 
00082 #define LITERALS  256
00083 /* number of literal bytes 0..255 */
00084 
00085 #define END_BLOCK 256
00086 /* end of block literal code */
00087 
00088 #define L_CODES (LITERALS+1+LENGTH_CODES)
00089 /* number of Literal or Length codes, including the END_BLOCK code */
00090 
00091 #define D_CODES   30
00092 /* number of distance codes */
00093 
00094 #define BL_CODES  19
00095 /* number of codes used to transfer the bit lengths */
00096 
00097 
00098 local int near extra_lbits[LENGTH_CODES] /* extra bits for each length code */
00099    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
00100 
00101 local int near extra_dbits[D_CODES] /* extra bits for each distance code */
00102    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
00103 
00104 local int near extra_blbits[BL_CODES]/* extra bits for each bit length code */
00105    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
00106 
00107 #define STORED_BLOCK 0
00108 #define STATIC_TREES 1
00109 #define DYN_TREES    2
00110 /* The three kinds of block type */
00111 
00112 #ifndef LIT_BUFSIZE
00113 #  ifdef SMALL_MEM
00114 #    define LIT_BUFSIZE  0x2000
00115 #  else
00116 #  ifdef MEDIUM_MEM
00117 #    define LIT_BUFSIZE  0x4000
00118 #  else
00119 #    define LIT_BUFSIZE  0x8000
00120 #  endif
00121 #  endif
00122 #endif
00123 #define DIST_BUFSIZE  LIT_BUFSIZE
00124 /* Sizes of match buffers for literals/lengths and distances.  There are
00125  * 4 reasons for limiting LIT_BUFSIZE to 64K:
00126  *   - frequencies can be kept in 16 bit counters
00127  *   - if compression is not successful for the first block, all input data is
00128  *     still in the window so we can still emit a stored block even when input
00129  *     comes from standard input.  (This can also be done for all blocks if
00130  *     LIT_BUFSIZE is not greater than 32K.)
00131  *   - if compression is not successful for a file smaller than 64K, we can
00132  *     even emit a stored file instead of a stored block (saving 5 bytes).
00133  *   - creating new Huffman trees less frequently may not provide fast
00134  *     adaptation to changes in the input data statistics. (Take for
00135  *     example a binary file with poorly compressible code followed by
00136  *     a highly compressible string table.) Smaller buffer sizes give
00137  *     fast adaptation but have of course the overhead of transmitting trees
00138  *     more frequently.
00139  *   - I can't count above 4
00140  * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
00141  * memory at the expense of compression). Some optimizations would be possible
00142  * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
00143  */
00144 
00145 #define REP_3_6      16
00146 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
00147 
00148 #define REPZ_3_10    17
00149 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
00150 
00151 #define REPZ_11_138  18
00152 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
00153 
00154 /* ===========================================================================
00155  * Local data
00156  */
00157 
00158 /* Data structure describing a single value and its code string. */
00159 typedef struct ct_data {
00160     union {
00161         ush  freq;       /* frequency count */
00162         ush  code;       /* bit string */
00163     } fc;
00164     union {
00165         ush  dad;        /* father node in Huffman tree */
00166         ush  len;        /* length of bit string */
00167     } dl;
00168 } ct_data;
00169 
00170 #define Freq fc.freq
00171 #define Code fc.code
00172 #define Dad  dl.dad
00173 #define Len  dl.len
00174 
00175 #define HEAP_SIZE (2*L_CODES+1)
00176 /* maximum heap size */
00177 
00178 local ct_data near dyn_ltree[HEAP_SIZE];   /* literal and length tree */
00179 local ct_data near dyn_dtree[2*D_CODES+1]; /* distance tree */
00180 
00181 local ct_data near static_ltree[L_CODES+2];
00182 /* The static literal tree. Since the bit lengths are imposed, there is no
00183  * need for the L_CODES extra codes used during heap construction. However
00184  * The codes 286 and 287 are needed to build a canonical tree (see ct_init
00185  * below).
00186  */
00187 
00188 local ct_data near static_dtree[D_CODES];
00189 /* The static distance tree. (Actually a trivial tree since all codes use
00190  * 5 bits.)
00191  */
00192 
00193 local ct_data near bl_tree[2*BL_CODES+1];
00194 /* Huffman tree for the bit lengths */
00195 
00196 typedef struct tree_desc {
00197     ct_data near *dyn_tree;      /* the dynamic tree */
00198     ct_data near *static_tree;   /* corresponding static tree or NULL */
00199     int     near *extra_bits;    /* extra bits for each code or NULL */
00200     int     extra_base;          /* base index for extra_bits */
00201     int     elems;               /* max number of elements in the tree */
00202     int     max_length;          /* max bit length for the codes */
00203     int     max_code;            /* largest code with non zero frequency */
00204 } tree_desc;
00205 
00206 local tree_desc near l_desc =
00207 {dyn_ltree, static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS, 0};
00208 
00209 local tree_desc near d_desc =
00210 {dyn_dtree, static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS, 0};
00211 
00212 local tree_desc near bl_desc =
00213 {bl_tree, NULL,       extra_blbits, 0,         BL_CODES, MAX_BL_BITS, 0};
00214 
00215 
00216 local ush near bl_count[MAX_BITS+1];
00217 /* number of codes at each bit length for an optimal tree */
00218 
00219 local uch near bl_order[BL_CODES]
00220    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
00221 /* The lengths of the bit length codes are sent in order of decreasing
00222  * probability, to avoid transmitting the lengths for unused bit length codes.
00223  */
00224 
00225 local int near heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
00226 local int heap_len;               /* number of elements in the heap */
00227 local int heap_max;               /* element of largest frequency */
00228 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
00229  * The same heap array is used to build all trees.
00230  */
00231 
00232 local uch near depth[2*L_CODES+1];
00233 /* Depth of each subtree used as tie breaker for trees of equal frequency */
00234 
00235 local uch length_code[MAX_MATCH-MIN_MATCH+1];
00236 /* length code for each normalized match length (0 == MIN_MATCH) */
00237 
00238 local uch dist_code[512];
00239 /* distance codes. The first 256 values correspond to the distances
00240  * 3 .. 258, the last 256 values correspond to the top 8 bits of
00241  * the 15 bit distances.
00242  */
00243 
00244 local int near base_length[LENGTH_CODES];
00245 /* First normalized length for each code (0 = MIN_MATCH) */
00246 
00247 local int near base_dist[D_CODES];
00248 /* First normalized distance for each code (0 = distance of 1) */
00249 
00250 #ifndef DYN_ALLOC
00251   local uch far l_buf[LIT_BUFSIZE];  /* buffer for literals/lengths */
00252   local ush far d_buf[DIST_BUFSIZE]; /* buffer for distances */
00253 #else
00254   local uch far *l_buf;
00255   local ush far *d_buf;
00256 #endif
00257 
00258 local uch near flag_buf[(LIT_BUFSIZE/8)];
00259 /* flag_buf is a bit array distinguishing literals from lengths in
00260  * l_buf, and thus indicating the presence or absence of a distance.
00261  */
00262 
00263 local unsigned last_lit;    /* running index in l_buf */
00264 local unsigned last_dist;   /* running index in d_buf */
00265 local unsigned last_flags;  /* running index in flag_buf */
00266 local uch flags;            /* current flags not yet saved in flag_buf */
00267 local uch flag_bit;         /* current bit used in flags */
00268 /* bits are filled in flags starting at bit 0 (least significant).
00269  * Note: these flags are overkill in the current code since we don't
00270  * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
00271  */
00272 
00273 local ulg opt_len;        /* bit length of current block with optimal trees */
00274 local ulg static_len;     /* bit length of current block with static trees */
00275 
00276 local ulg compressed_len; /* total bit length of compressed file */
00277 
00278 local ulg input_len;      /* total byte length of input file */
00279 /* input_len is for debugging only since we can get it by other means. */
00280 
00281 ush *R__file_type;        /* pointer to UNKNOWN, BINARY or ASCII */
00282 int *R__file_method;      /* pointer to DEFLATE or STORE */
00283 
00284 #ifdef DEBUG
00285 /* extern ulg R__bits_sent; */ /* bit length of the compressed data */
00286 /* extern ulg R__isize;     */ /* byte length of input file */
00287 #endif
00288 
00289 /* extern long R__block_start;       */ /* window offset of current block */
00290 /* extern unsigned near R__strstart; */ /* window offset of current string */
00291 
00292 /* ===========================================================================
00293  * Local (static) routines in this file.
00294  */
00295 
00296 local void R__init_block     OF((void));
00297 local void R__pqdownheap     OF((ct_data near *tree, int k));
00298 local void R__gen_bitlen     OF((tree_desc near *desc));
00299 local void R__gen_codes      OF((ct_data near *tree, int max_code));
00300 local void R__build_tree     OF((tree_desc near *desc));
00301 local void R__scan_tree      OF((ct_data near *tree, int max_code));
00302 local void R__send_tree      OF((ct_data near *tree, int max_code));
00303 local int  R__build_bl_tree  OF((void));
00304 local void R__send_all_trees OF((int lcodes, int dcodes, int blcodes));
00305 local void R__compress_block OF((ct_data near *ltree, ct_data near *dtree));
00306 local void R__set_file_type  OF((void));
00307 
00308 
00309 #ifndef DEBUG
00310 #  define send_code(c, tree) R__send_bits(tree[c].Code, tree[c].Len)
00311    /* Send a code of the given tree. c and tree must not have side effects */
00312 
00313 #else /* DEBUG */
00314 #  define send_code(c, tree) \
00315      { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \
00316        R__send_bits(tree[c].Code, tree[c].Len); }
00317 #endif
00318 
00319 #define d_code(dist) \
00320    ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
00321 /* Mapping from a distance to a distance code. dist is the distance - 1 and
00322  * must not have side effects. dist_code[256] and dist_code[257] are never
00323  * used.
00324  */
00325 
00326 #define MAX(a,b) (a >= b ? a : b)
00327 /* the arguments must not have side effects */
00328 
00329 /* ===========================================================================
00330  * Allocate the match buffer, initialize the various tables and save the
00331  * location of the internal file attribute (ascii/binary) and method
00332  * (DEFLATE/STORE).
00333  */
00334 void R__ct_init(ush *attr, int *method)
00335     /* ush  *attr;    pointer to internal file attribute */
00336     /* int  *method;  pointer to compression method */
00337 {
00338     int n;        /* iterates over tree elements */
00339     int bits;     /* bit counter */
00340     int length;   /* length value */
00341     int code;     /* code value */
00342     int dist;     /* distance index */
00343 
00344     R__file_type   = attr;
00345     R__file_method = method;
00346     compressed_len = input_len = 0L;
00347 
00348     if (static_dtree[0].Len != 0) return; /* ct_init already called */
00349 
00350 #ifdef DYN_ALLOC
00351     d_buf = (ush far*) fcalloc(DIST_BUFSIZE, sizeof(ush));
00352     l_buf = (uch far*) fcalloc(LIT_BUFSIZE/2, 2);
00353     /* Avoid using the value 64K on 16 bit machines */
00354     if (l_buf == NULL || d_buf == NULL) R__error("R__ct_init: out of memory");
00355 #endif
00356 
00357     /* Initialize the mapping length (0..255) -> length code (0..28) */
00358     length = 0;
00359     for (code = 0; code < LENGTH_CODES-1; code++) {
00360         base_length[code] = length;
00361         for (n = 0; n < (1<<extra_lbits[code]); n++) {
00362             length_code[length++] = (uch)code;
00363         }
00364     }
00365     Assert (length == 256, "R__ct_init: length != 256");
00366     /* Note that the length 255 (match length 258) can be represented
00367      * in two different ways: code 284 + 5 bits or code 285, so we
00368      * overwrite length_code[255] to use the best encoding:
00369      */
00370     length_code[length-1] = (uch)code;
00371 
00372     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
00373     dist = 0;
00374     for (code = 0 ; code < 16; code++) {
00375         base_dist[code] = dist;
00376         for (n = 0; n < (1<<extra_dbits[code]); n++) {
00377             dist_code[dist++] = (uch)code;
00378         }
00379     }
00380     Assert (dist == 256, "R__ct_init: dist != 256");
00381     dist >>= 7; /* from now on, all distances are divided by 128 */
00382     for ( ; code < D_CODES; code++) {
00383         base_dist[code] = dist << 7;
00384         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
00385             dist_code[256 + dist++] = (uch)code;
00386         }
00387     }
00388     Assert (dist == 256, "R__ct_init: 256+dist != 512");
00389 
00390     /* Construct the codes of the static literal tree */
00391     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
00392     n = 0;
00393     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
00394     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
00395     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
00396     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
00397     /* Codes 286 and 287 do not exist, but we must include them in the
00398      * tree construction to get a canonical Huffman tree (longest code
00399      * all ones)
00400      */
00401     R__gen_codes((ct_data near *)static_ltree, L_CODES+1);
00402 
00403     /* The static distance tree is trivial: */
00404     for (n = 0; n < D_CODES; n++) {
00405         static_dtree[n].Len = 5;
00406         static_dtree[n].Code = R__bi_reverse(n, 5);
00407     }
00408 
00409     /* Initialize the first block of the first file: */
00410     R__init_block();
00411 }
00412 
00413 /* ===========================================================================
00414  * Initialize a new block.
00415  */
00416 local void R__init_block()
00417 {
00418     int n; /* iterates over tree elements */
00419 
00420     /* Initialize the trees. */
00421     for (n = 0; n < L_CODES;  n++) dyn_ltree[n].Freq = 0;
00422     for (n = 0; n < D_CODES;  n++) dyn_dtree[n].Freq = 0;
00423     for (n = 0; n < BL_CODES; n++) bl_tree[n].Freq = 0;
00424 
00425     dyn_ltree[END_BLOCK].Freq = 1;
00426     opt_len = static_len = 0L;
00427     last_lit = last_dist = last_flags = 0;
00428     flags = 0; flag_bit = 1;
00429 }
00430 
00431 #define SMALLEST 1
00432 /* Index within the heap array of least frequent node in the Huffman tree */
00433 
00434 
00435 /* ===========================================================================
00436  * Remove the smallest element from the heap and recreate the heap with
00437  * one less element. Updates heap and heap_len.
00438  */
00439 #define pqremove(tree, top) \
00440 {\
00441     top = heap[SMALLEST]; \
00442     heap[SMALLEST] = heap[heap_len--]; \
00443     R__pqdownheap(tree, SMALLEST); \
00444 }
00445 
00446 /* ===========================================================================
00447  * Compares to subtrees, using the tree depth as tie breaker when
00448  * the subtrees have equal frequency. This minimizes the worst case length.
00449  */
00450 #define smaller(tree, n, m) \
00451    (tree[n].Freq < tree[m].Freq || \
00452    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
00453 
00454 /* ===========================================================================
00455  * Restore the heap property by moving down the tree starting at node k,
00456  * exchanging a node with the smallest of its two sons if necessary, stopping
00457  * when the heap property is re-established (each father smaller than its
00458  * two sons).
00459  */
00460 local void R__pqdownheap(ct_data near *tree, int k)
00461     /* ct_data near *tree;   the tree to restore */
00462     /* int k;                node to move down */
00463 {
00464     int v = heap[k];
00465     int j = k << 1;  /* left son of k */
00466     int htemp;       /* required because of bug in SASC compiler */
00467 
00468     while (j <= heap_len) {
00469         /* Set j to the smallest of the two sons: */
00470         if (j < heap_len && smaller(tree, heap[j+1], heap[j])) j++;
00471 
00472         /* Exit if v is smaller than both sons */
00473         htemp = heap[j];
00474         if (smaller(tree, v, htemp)) break;
00475 
00476         /* Exchange v with the smallest son */
00477         heap[k] = htemp;
00478         k = j;
00479 
00480         /* And continue down the tree, setting j to the left son of k */
00481         j <<= 1;
00482     }
00483     heap[k] = v;
00484 }
00485 
00486 /* ===========================================================================
00487  * Compute the optimal bit lengths for a tree and update the total bit length
00488  * for the current block.
00489  * IN assertion: the fields freq and dad are set, heap[heap_max] and
00490  *    above are the tree nodes sorted by increasing frequency.
00491  * OUT assertions: the field len is set to the optimal bit length, the
00492  *     array bl_count contains the frequencies for each bit length.
00493  *     The length opt_len is updated; static_len is also updated if stree is
00494  *     not null.
00495  */
00496 local void R__gen_bitlen(tree_desc near *desc)
00497     /* tree_desc near *desc;  the tree descriptor */
00498 {
00499     ct_data near *tree  = desc->dyn_tree;
00500     int near *extra     = desc->extra_bits;
00501     int base            = desc->extra_base;
00502     int max_code        = desc->max_code;
00503     int max_length      = desc->max_length;
00504     ct_data near *stree = desc->static_tree;
00505     int h;              /* heap index */
00506     int n, m;           /* iterate over the tree elements */
00507     int bits;           /* bit length */
00508     int xbits;          /* extra bits */
00509     ush f;              /* frequency */
00510     int overflow = 0;   /* number of elements with bit length too large */
00511 
00512     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
00513 
00514     /* In a first pass, compute the optimal bit lengths (which may
00515      * overflow in the case of the bit length tree).
00516      */
00517     tree[heap[heap_max]].Len = 0; /* root of the heap */
00518 
00519     for (h = heap_max+1; h < HEAP_SIZE; h++) {
00520         n = heap[h];
00521         bits = tree[tree[n].Dad].Len + 1;
00522         if (bits > max_length) bits = max_length, overflow++;
00523         tree[n].Len = bits;
00524         /* We overwrite tree[n].Dad which is no longer needed */
00525 
00526         if (n > max_code) continue; /* not a leaf node */
00527 
00528         bl_count[bits]++;
00529         xbits = 0;
00530         if (n >= base) xbits = extra[n-base];
00531         f = tree[n].Freq;
00532         opt_len += (ulg)f * (bits + xbits);
00533         if (stree) static_len += (ulg)f * (stree[n].Len + xbits);
00534     }
00535     if (overflow == 0) return;
00536 
00537     Trace((stderr,"\nbit length overflow\n"));
00538     /* This happens for example on obj2 and pic of the Calgary corpus */
00539 
00540     /* Find the first bit length which could increase: */
00541     do {
00542         bits = max_length-1;
00543         while (bl_count[bits] == 0) bits--;
00544         bl_count[bits]--;      /* move one leaf down the tree */
00545         bl_count[bits+1] += 2; /* move one overflow item as its brother */
00546         bl_count[max_length]--;
00547         /* The brother of the overflow item also moves one step up,
00548          * but this does not affect bl_count[max_length]
00549          */
00550         overflow -= 2;
00551     } while (overflow > 0);
00552 
00553     /* Now recompute all bit lengths, scanning in increasing frequency.
00554      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
00555      * lengths instead of fixing only the wrong ones. This idea is taken
00556      * from 'ar' written by Haruhiko Okumura.)
00557      */
00558     for (bits = max_length; bits != 0; bits--) {
00559         n = bl_count[bits];
00560         while (n != 0) {
00561             m = heap[--h];
00562             if (m > max_code) continue;
00563             if (tree[m].Len != (unsigned) bits) {
00564                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
00565                 opt_len += ((long)bits-(long)tree[m].Len)*(long)tree[m].Freq;
00566                 tree[m].Len = bits;
00567             }
00568             n--;
00569         }
00570     }
00571 }
00572 
00573 /* ===========================================================================
00574  * Generate the codes for a given tree and bit counts (which need not be
00575  * optimal).
00576  * IN assertion: the array bl_count contains the bit length statistics for
00577  * the given tree and the field len is set for all tree elements.
00578  * OUT assertion: the field code is set for all tree elements of non
00579  *     zero code length.
00580  */
00581 local void R__gen_codes (ct_data near *tree, int max_code)
00582     /* ct_data near *tree;         the tree to decorate */
00583     /* int max_code;               largest code with non zero frequency */
00584 {
00585     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
00586     ush code = 0;              /* running code value */
00587     int bits;                  /* bit index */
00588     int n;                     /* code index */
00589 
00590     /* The distribution counts are first used to generate the code values
00591      * without bit reversal.
00592      */
00593     for (bits = 1; bits <= MAX_BITS; bits++) {
00594         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
00595     }
00596     /* Check that the bit counts in bl_count are consistent. The last code
00597      * must be all ones.
00598      */
00599     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
00600             "inconsistent bit counts");
00601     Tracev((stderr,"\nR__gen_codes: max_code %d ", max_code));
00602 
00603     for (n = 0;  n <= max_code; n++) {
00604         int len = tree[n].Len;
00605         if (len == 0) continue;
00606         /* Now reverse the bits */
00607         tree[n].Code = R__bi_reverse(next_code[len]++, len);
00608 
00609         Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
00610              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
00611     }
00612 }
00613 
00614 /* ===========================================================================
00615  * Construct one Huffman tree and assigns the code bit strings and lengths.
00616  * Update the total bit length for the current block.
00617  * IN assertion: the field freq is set for all tree elements.
00618  * OUT assertions: the fields len and code are set to the optimal bit length
00619  *     and corresponding code. The length opt_len is updated; static_len is
00620  *     also updated if stree is not null. The field max_code is set.
00621  */
00622 local void R__build_tree(tree_desc near *desc)
00623     /* tree_desc near *desc;  the tree descriptor */
00624 {
00625     ct_data near *tree   = desc->dyn_tree;
00626     ct_data near *stree  = desc->static_tree;
00627     int elems            = desc->elems;
00628     int n, m;          /* iterate over heap elements */
00629     int max_code = -1; /* largest code with non zero frequency */
00630     int node = elems;  /* next internal node of the tree */
00631 
00632     /* Construct the initial heap, with least frequent element in
00633      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
00634      * heap[0] is not used.
00635      */
00636     heap_len = 0, heap_max = HEAP_SIZE;
00637 
00638     for (n = 0; n < elems; n++) {
00639         if (tree[n].Freq != 0) {
00640             heap[++heap_len] = max_code = n;
00641             depth[n] = 0;
00642         } else {
00643             tree[n].Len = 0;
00644         }
00645     }
00646 
00647     /* The pkzip format requires that at least one distance code exists,
00648      * and that at least one bit should be sent even if there is only one
00649      * possible code. So to avoid special checks later on we force at least
00650      * two codes of non zero frequency.
00651      */
00652     while (heap_len < 2) {
00653         int new1 = heap[++heap_len] = (max_code < 2 ? ++max_code : 0);
00654         tree[new1].Freq = 1;
00655         depth[new1] = 0;
00656         opt_len--; if (stree) static_len -= stree[new1].Len;
00657         /* new is 0 or 1 so it does not have extra bits */
00658     }
00659     desc->max_code = max_code;
00660 
00661     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
00662      * establish sub-heaps of increasing lengths:
00663      */
00664     for (n = heap_len/2; n >= 1; n--) R__pqdownheap(tree, n);
00665 
00666     /* Construct the Huffman tree by repeatedly combining the least two
00667      * frequent nodes.
00668      */
00669     do {
00670         pqremove(tree, n);   /* n = node of least frequency */
00671         m = heap[SMALLEST];  /* m = node of next least frequency */
00672 
00673         heap[--heap_max] = n; /* keep the nodes sorted by frequency */
00674         heap[--heap_max] = m;
00675 
00676         /* Create a new node father of n and m */
00677         tree[node].Freq = tree[n].Freq + tree[m].Freq;
00678         depth[node] = (uch) (MAX(depth[n], depth[m]) + 1);
00679         tree[n].Dad = tree[m].Dad = node;
00680 #ifdef DUMP_BL_TREE
00681         if (tree == bl_tree) {
00682             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
00683                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
00684         }
00685 #endif
00686         /* and insert the new node in the heap */
00687         heap[SMALLEST] = node++;
00688         R__pqdownheap(tree, SMALLEST);
00689 
00690     } while (heap_len >= 2);
00691 
00692     heap[--heap_max] = heap[SMALLEST];
00693 
00694     /* At this point, the fields freq and dad are set. We can now
00695      * generate the bit lengths.
00696      */
00697     R__gen_bitlen((tree_desc near *)desc);
00698 
00699     /* The field len is now set, we can generate the bit codes */
00700     R__gen_codes ((ct_data near *)tree, max_code);
00701 }
00702 
00703 /* ===========================================================================
00704  * Scan a literal or distance tree to determine the frequencies of the codes
00705  * in the bit length tree. Updates opt_len to take into account the repeat
00706  * counts. (The contribution of the bit length codes will be added later
00707  * during the construction of bl_tree.)
00708  */
00709 local void R__scan_tree (ct_data near *tree, int max_code)
00710     /* ct_data near *tree;  the tree to be scanned */
00711     /* int max_code;        and its largest code of non zero frequency */
00712 {
00713     int n;                     /* iterates over all tree elements */
00714     int prevlen = -1;          /* last emitted length */
00715     int curlen;                /* length of current code */
00716     int nextlen = tree[0].Len; /* length of next code */
00717     int count = 0;             /* repeat count of the current code */
00718     int max_count = 7;         /* max repeat count */
00719     int min_count = 4;         /* min repeat count */
00720 
00721     if (nextlen == 0) max_count = 138, min_count = 3;
00722     tree[max_code+1].Len = (ush)-1; /* guard */
00723 
00724     for (n = 0; n <= max_code; n++) {
00725         curlen = nextlen; nextlen = tree[n+1].Len;
00726         if (++count < max_count && curlen == nextlen) {
00727             continue;
00728         } else if (count < min_count) {
00729             bl_tree[curlen].Freq += count;
00730         } else if (curlen != 0) {
00731             if (curlen != prevlen) bl_tree[curlen].Freq++;
00732             bl_tree[REP_3_6].Freq++;
00733         } else if (count <= 10) {
00734             bl_tree[REPZ_3_10].Freq++;
00735         } else {
00736             bl_tree[REPZ_11_138].Freq++;
00737         }
00738         count = 0; prevlen = curlen;
00739         if (nextlen == 0) {
00740             max_count = 138, min_count = 3;
00741         } else if (curlen == nextlen) {
00742             max_count = 6, min_count = 3;
00743         } else {
00744             max_count = 7, min_count = 4;
00745         }
00746     }
00747 }
00748 
00749 /* ===========================================================================
00750  * Send a literal or distance tree in compressed form, using the codes in
00751  * bl_tree.
00752  */
00753 local void R__send_tree (ct_data near *tree, int max_code)
00754     /* ct_data near *tree;  the tree to be scanned */
00755     /* int max_code;        and its largest code of non zero frequency */
00756 {
00757     int n;                     /* iterates over all tree elements */
00758     int prevlen = -1;          /* last emitted length */
00759     int curlen;                /* length of current code */
00760     int nextlen = tree[0].Len; /* length of next code */
00761     int count = 0;             /* repeat count of the current code */
00762     int max_count = 7;         /* max repeat count */
00763     int min_count = 4;         /* min repeat count */
00764 
00765     /* tree[max_code+1].Len = -1; */  /* guard already set */
00766     if (nextlen == 0) max_count = 138, min_count = 3;
00767 
00768     for (n = 0; n <= max_code; n++) {
00769         curlen = nextlen; nextlen = tree[n+1].Len;
00770         if (++count < max_count && curlen == nextlen) {
00771             continue;
00772         } else if (count < min_count) {
00773             do { send_code(curlen, bl_tree); } while (--count != 0);
00774 
00775         } else if (curlen != 0) {
00776             if (curlen != prevlen) {
00777                 send_code(curlen, bl_tree); count--;
00778             }
00779             Assert(count >= 3 && count <= 6, " 3_6?");
00780             send_code(REP_3_6, bl_tree); R__send_bits(count-3, 2);
00781 
00782         } else if (count <= 10) {
00783             send_code(REPZ_3_10, bl_tree); R__send_bits(count-3, 3);
00784 
00785         } else {
00786             send_code(REPZ_11_138, bl_tree); R__send_bits(count-11, 7);
00787         }
00788         count = 0; prevlen = curlen;
00789         if (nextlen == 0) {
00790             max_count = 138, min_count = 3;
00791         } else if (curlen == nextlen) {
00792             max_count = 6, min_count = 3;
00793         } else {
00794             max_count = 7, min_count = 4;
00795         }
00796     }
00797 }
00798 
00799 /* ===========================================================================
00800  * Construct the Huffman tree for the bit lengths and return the index in
00801  * bl_order of the last bit length code to send.
00802  */
00803 local int R__build_bl_tree()
00804 {
00805     int max_blindex;  /* index of last bit length code of non zero freq */
00806 
00807     /* Determine the bit length frequencies for literal and distance trees */
00808     R__scan_tree((ct_data near *)dyn_ltree, l_desc.max_code);
00809     R__scan_tree((ct_data near *)dyn_dtree, d_desc.max_code);
00810 
00811     /* Build the bit length tree: */
00812     R__build_tree((tree_desc near *)(&bl_desc));
00813     /* opt_len now includes the length of the tree representations, except
00814      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
00815      */
00816 
00817     /* Determine the number of bit length codes to send. The pkzip format
00818      * requires that at least 4 bit length codes be sent. (appnote.txt says
00819      * 3 but the actual value used is 4.)
00820      */
00821     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
00822         if (bl_tree[bl_order[max_blindex]].Len != 0) break;
00823     }
00824     /* Update opt_len to include the bit length tree and counts */
00825     opt_len += 3*(max_blindex+1) + 5+5+4;
00826     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", opt_len, static_len));
00827 
00828     return max_blindex;
00829 }
00830 
00831 /* ===========================================================================
00832  * Send the header for a block using dynamic Huffman trees: the counts, the
00833  * lengths of the bit length codes, the literal tree and the distance tree.
00834  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
00835  */
00836 local void R__send_all_trees(int lcodes, int dcodes, int blcodes)
00837     /* int lcodes, dcodes, blcodes;  number of codes for each tree */
00838 {
00839     int rank;                    /* index in bl_order */
00840 
00841     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
00842     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
00843             "too many codes");
00844     Tracev((stderr, "\nbl counts: "));
00845     R__send_bits(lcodes-257, 5);
00846     /* not +255 as stated in appnote.txt 1.93a or -256 in 2.04c */
00847     R__send_bits(dcodes-1,   5);
00848     R__send_bits(blcodes-4,  4); /* not -3 as stated in appnote.txt */
00849     for (rank = 0; rank < blcodes; rank++) {
00850         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
00851         R__send_bits(bl_tree[bl_order[rank]].Len, 3);
00852     }
00853     Tracev((stderr, "\nbl tree: sent %ld", R__bits_sent));
00854 
00855     R__send_tree((ct_data near *)dyn_ltree, lcodes-1); /* send the literal tree */
00856     Tracev((stderr, "\nlit tree: sent %ld", R__bits_sent));
00857 
00858     R__send_tree((ct_data near *)dyn_dtree, dcodes-1); /* send the distance tree */
00859     Tracev((stderr, "\ndist tree: sent %ld", R__bits_sent));
00860 }
00861 
00862 /* ===========================================================================
00863  * Determine the best encoding for the current block: dynamic trees, static
00864  * trees or store, and output the encoded block to the zip file. This function
00865  * returns the total compressed length for the file so far.
00866  */
00867 ulg R__flush_block(char *buf, ulg stored_len, int eof)
00868     /* char *buf;         input block, or NULL if too old */
00869     /* ulg stored_len;    length of input block */
00870     /* int eof;           true if this is the last block for a file */
00871 {
00872     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
00873     int max_blindex;  /* index of last bit length code of non zero freq */
00874 
00875     flag_buf[last_flags] = flags; /* Save the flags for the last 8 items */
00876 
00877      /* Check if the file is ascii or binary */
00878     if (*R__file_type == (ush)UNKNOWN) R__set_file_type();
00879 
00880     /* Construct the literal and distance trees */
00881     R__build_tree((tree_desc near *)(&l_desc));
00882     Tracev((stderr, "\nlit data: dyn %ld, stat %ld", opt_len, static_len));
00883 
00884     R__build_tree((tree_desc near *)(&d_desc));
00885     Tracev((stderr, "\ndist data: dyn %ld, stat %ld", opt_len, static_len));
00886     /* At this point, opt_len and static_len are the total bit lengths of
00887      * the compressed block data, excluding the tree representations.
00888      */
00889 
00890     /* Build the bit length tree for the above two trees, and get the index
00891      * in bl_order of the last bit length code to send.
00892      */
00893     max_blindex = R__build_bl_tree();
00894 
00895     /* Determine the best encoding. Compute first the block length in bytes */
00896     opt_lenb = (opt_len+3+7)>>3;
00897     static_lenb = (static_len+3+7)>>3;
00898     input_len += stored_len; /* for debugging only */
00899 
00900     Trace((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
00901             opt_lenb, opt_len, static_lenb, static_len, stored_len,
00902             last_lit, last_dist));
00903 
00904     if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
00905 
00906 #ifndef PGP /* PGP can't handle stored blocks */
00907     /* If compression failed and this is the first and last block,
00908      * and if the zip file can be seeked (to rewrite the local header),
00909      * the whole file is transformed into a stored file:
00910      */
00911 #ifdef FORCE_METHOD
00912     if (level == 1 && eof && compressed_len == 0L) { /* force stored file */
00913 #else
00914     if (stored_len <= opt_lenb && eof && compressed_len == 0L && R__seekable()) {
00915 #endif
00916         /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
00917         if (buf == (char *) NULL) R__error ("block vanished");
00918 
00919         R__copy_block(buf, (unsigned)stored_len, 0); /* without header */
00920         compressed_len = stored_len << 3;
00921         *R__file_method = STORE;
00922     } else
00923 #endif /* PGP */
00924 
00925 #ifdef FORCE_METHOD
00926     if (level == 2 && buf != (char*)NULL) { /* force stored block */
00927 #else
00928     if (stored_len+4 <= opt_lenb && buf != (char*)NULL) {
00929                        /* 4: two words for the lengths */
00930 #endif
00931         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
00932          * Otherwise we can't have processed more than WSIZE input bytes since
00933          * the last block flush, because compression would have been
00934          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
00935          * transform a block into a stored block.
00936          */
00937         R__send_bits((STORED_BLOCK<<1)+eof, 3);  /* send block type */
00938         compressed_len = (compressed_len + 3 + 7) & ~7L;
00939         compressed_len += (stored_len + 4) << 3;
00940 
00941         R__copy_block(buf, (unsigned)stored_len, 1); /* with header */
00942 
00943 #ifdef FORCE_METHOD
00944     } else if (level == 3) { /* force static trees */
00945 #else
00946     } else if (static_lenb == opt_lenb) {
00947 #endif
00948         R__send_bits((STATIC_TREES<<1)+eof, 3);
00949         R__compress_block( (ct_data near *)static_ltree,
00950                         (ct_data near *)static_dtree );
00951         compressed_len += 3 + static_len;
00952     } else {
00953         R__send_bits((DYN_TREES<<1)+eof, 3);
00954         R__send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1);
00955         R__compress_block((ct_data near *)dyn_ltree, (ct_data near *)dyn_dtree);
00956         compressed_len += 3 + opt_len;
00957     }
00958     Assert (compressed_len == R__bits_sent, "bad compressed size");
00959     R__init_block();
00960 
00961     if (eof) {
00962 #if defined(PGP) && !defined(MMAP)
00963         /* Wipe out sensitive data for pgp */
00964 /*
00965  *# ifdef DYN_ALLOC
00966  *       extern uch *R__window;
00967  *# else
00968  *       extern uch R__window[];
00969  *# endif
00970  */
00971         memset(R__window, 0, (unsigned)(2*WSIZE-1)); /* -1 needed if WSIZE=32K */
00972 #else /* !PGP */
00973         Assert (input_len == R__isize, "bad input size");
00974 #endif
00975         R__bi_windup();
00976         compressed_len += 7;  /* align on byte boundary */
00977     }
00978     Tracev((stderr,"\ncomprlen %lu(%lu) ", compressed_len>>3,
00979            compressed_len-7*eof));
00980 
00981     return compressed_len >> 3;
00982 }
00983 
00984 /* ===========================================================================
00985  * Save the match info and tally the frequency counts. Return true if
00986  * the current block must be flushed.
00987  */
00988 int R__ct_tally (int dist, int lc)
00989     /* int dist;   distance of matched string */
00990     /* int lc;     match length-MIN_MATCH or unmatched char (if dist==0) */
00991 {
00992     l_buf[last_lit++] = (uch)lc;
00993     if (dist == 0) {
00994         /* lc is the unmatched char */
00995         dyn_ltree[lc].Freq++;
00996     } else {
00997         /* Here, lc is the match length - MIN_MATCH */
00998         dist--;             /* dist = match distance - 1 */
00999         Assert((ush)dist < (ush)MAX_DIST &&
01000                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
01001                (ush)d_code(dist) < (ush)D_CODES,  "R__ct_tally: bad match");
01002 
01003         dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
01004         dyn_dtree[d_code(dist)].Freq++;
01005 
01006         d_buf[last_dist++] = dist;
01007         flags |= flag_bit;
01008     }
01009     flag_bit <<= 1;
01010 
01011     /* Output the flags if they fill a byte: */
01012     if ((last_lit & 7) == 0) {
01013         flag_buf[last_flags++] = flags;
01014         flags = 0, flag_bit = 1;
01015     }
01016     /* Try to guess if it is profitable to stop the current block here */
01017     if (level > 2 && (last_lit & 0xfff) == 0) {
01018         /* Compute an upper bound for the compressed length */
01019         ulg out_length = (ulg)last_lit*8L;
01020         ulg in_length = (ulg)R__strstart-R__block_start;
01021         int dcode;
01022         for (dcode = 0; dcode < D_CODES; dcode++) {
01023             out_length += (ulg)dyn_dtree[dcode].Freq*(5L+extra_dbits[dcode]);
01024         }
01025         out_length >>= 3;
01026         Trace((stderr,"\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
01027                last_lit, last_dist, in_length, out_length,
01028                100L - out_length*100L/in_length));
01029         if (last_dist < last_lit/2 && out_length < in_length/2) return 1;
01030     }
01031     return (last_lit == LIT_BUFSIZE-1 || last_dist == DIST_BUFSIZE);
01032     /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
01033      * on 16 bit machines and because stored blocks are restricted to
01034      * 64K-1 bytes.
01035      */
01036 }
01037 
01038 /* ===========================================================================
01039  * Send the block data compressed using the given Huffman trees
01040  */
01041 local void R__compress_block(ct_data near *ltree, ct_data near *dtree)
01042     /* ct_data near *ltree;  literal tree */
01043     /* ct_data near *dtree;  distance tree */
01044 {
01045     unsigned dist;      /* distance of matched string */
01046     int lc;             /* match length or unmatched char (if dist == 0) */
01047     unsigned lx = 0;    /* running index in l_buf */
01048     unsigned dx = 0;    /* running index in d_buf */
01049     unsigned fx = 0;    /* running index in flag_buf */
01050     uch flag = 0;       /* current flags */
01051     unsigned code;      /* the code to send */
01052     int extra;          /* number of extra bits to send */
01053 
01054     if (last_lit != 0) do {
01055         if ((lx & 7) == 0) flag = flag_buf[fx++];
01056         lc = l_buf[lx++];
01057         if ((flag & 1) == 0) {
01058             send_code(lc, ltree); /* send a literal byte */
01059             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
01060         } else {
01061             /* Here, lc is the match length - MIN_MATCH */
01062             code = length_code[lc];
01063             send_code(code+LITERALS+1, ltree); /* send the length code */
01064             extra = extra_lbits[code];
01065             if (extra != 0) {
01066                 lc -= base_length[code];
01067                 R__send_bits(lc, extra);        /* send the extra length bits */
01068             }
01069             dist = d_buf[dx++];
01070             /* Here, dist is the match distance - 1 */
01071             code = d_code(dist);
01072             Assert (code < D_CODES, "bad d_code");
01073 
01074             send_code(code, dtree);       /* send the distance code */
01075             extra = extra_dbits[code];
01076             if (extra != 0) {
01077                 dist -= base_dist[code];
01078                 R__send_bits(dist, extra);   /* send the extra distance bits */
01079             }
01080         } /* literal or match pair ? */
01081         flag >>= 1;
01082     } while (lx < last_lit);
01083 
01084     send_code(END_BLOCK, ltree);
01085 }
01086 
01087 /* ===========================================================================
01088  * Set the file type to ASCII or BINARY, using a crude approximation:
01089  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
01090  * IN assertion: the fields freq of dyn_ltree are set and the total of all
01091  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
01092  */
01093 local void R__set_file_type()
01094 {
01095     int n = 0;
01096     unsigned ascii_freq = 0;
01097     unsigned bin_freq = 0;
01098     while (n < 7)        bin_freq += dyn_ltree[n++].Freq;
01099     while (n < 128)    ascii_freq += dyn_ltree[n++].Freq;
01100     while (n < LITERALS) bin_freq += dyn_ltree[n++].Freq;
01101     *R__file_type = bin_freq > (ascii_freq >> 2) ? BINARY : ASCII;
01102 #ifndef PGP
01103 #if 0
01104     if (*R__file_type == BINARY && translate_eol) {
01105         warn("-l used on binary file", "");
01106     }
01107 #endif
01108 #endif
01109     if (verbose) { }
01110 }

Generated on Tue Jul 5 14:12:05 2011 for ROOT_528-00b_version by  doxygen 1.5.1