jcparam.c

Go to the documentation of this file.
00001 /*
00002  * jcparam.c
00003  *
00004  * Copyright (C) 1991-1998, Thomas G. Lane.
00005  * Modified 2003-2008 by Guido Vollbeding.
00006  * This file is part of the Independent JPEG Group's software.
00007  * For conditions of distribution and use, see the accompanying README file.
00008  *
00009  * This file contains optional default-setting code for the JPEG compressor.
00010  * Applications do not have to use this file, but those that don't use it
00011  * must know a lot more about the innards of the JPEG code.
00012  */
00013 
00014 #define JPEG_INTERNALS
00015 #include "jinclude.h"
00016 #include "jpeglib.h"
00017 
00018 
00019 /*
00020  * Quantization table setup routines
00021  */
00022 
00023 GLOBAL(void)
00024 jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
00025                       const unsigned int *basic_table,
00026                       int scale_factor, boolean force_baseline)
00027 /* Define a quantization table equal to the basic_table times
00028  * a scale factor (given as a percentage).
00029  * If force_baseline is TRUE, the computed quantization table entries
00030  * are limited to 1..255 for JPEG baseline compatibility.
00031  */
00032 {
00033   JQUANT_TBL ** qtblptr;
00034   int i;
00035   long temp;
00036 
00037   /* Safety check to ensure start_compress not called yet. */
00038   if (cinfo->global_state != CSTATE_START)
00039     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
00040 
00041   if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
00042     ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
00043 
00044   qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
00045 
00046   if (*qtblptr == NULL)
00047     *qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
00048 
00049   for (i = 0; i < DCTSIZE2; i++) {
00050     temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
00051     /* limit the values to the valid range */
00052     if (temp <= 0L) temp = 1L;
00053     if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
00054     if (force_baseline && temp > 255L)
00055       temp = 255L;              /* limit to baseline range if requested */
00056     (*qtblptr)->quantval[i] = (UINT16) temp;
00057   }
00058 
00059   /* Initialize sent_table FALSE so table will be written to JPEG file. */
00060   (*qtblptr)->sent_table = FALSE;
00061 }
00062 
00063 
00064 /* These are the sample quantization tables given in JPEG spec section K.1.
00065  * The spec says that the values given produce "good" quality, and
00066  * when divided by 2, "very good" quality.
00067  */
00068 static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
00069   16,  11,  10,  16,  24,  40,  51,  61,
00070   12,  12,  14,  19,  26,  58,  60,  55,
00071   14,  13,  16,  24,  40,  57,  69,  56,
00072   14,  17,  22,  29,  51,  87,  80,  62,
00073   18,  22,  37,  56,  68, 109, 103,  77,
00074   24,  35,  55,  64,  81, 104, 113,  92,
00075   49,  64,  78,  87, 103, 121, 120, 101,
00076   72,  92,  95,  98, 112, 100, 103,  99
00077 };
00078 static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
00079   17,  18,  24,  47,  99,  99,  99,  99,
00080   18,  21,  26,  66,  99,  99,  99,  99,
00081   24,  26,  56,  99,  99,  99,  99,  99,
00082   47,  66,  99,  99,  99,  99,  99,  99,
00083   99,  99,  99,  99,  99,  99,  99,  99,
00084   99,  99,  99,  99,  99,  99,  99,  99,
00085   99,  99,  99,  99,  99,  99,  99,  99,
00086   99,  99,  99,  99,  99,  99,  99,  99
00087 };
00088 
00089 
00090 GLOBAL(void)
00091 jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline)
00092 /* Set or change the 'quality' (quantization) setting, using default tables
00093  * and straight percentage-scaling quality scales.
00094  * This entry point allows different scalings for luminance and chrominance.
00095  */
00096 {
00097   /* Set up two quantization tables using the specified scaling */
00098   jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
00099                        cinfo->q_scale_factor[0], force_baseline);
00100   jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
00101                        cinfo->q_scale_factor[1], force_baseline);
00102 }
00103 
00104 
00105 GLOBAL(void)
00106 jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
00107                          boolean force_baseline)
00108 /* Set or change the 'quality' (quantization) setting, using default tables
00109  * and a straight percentage-scaling quality scale.  In most cases it's better
00110  * to use jpeg_set_quality (below); this entry point is provided for
00111  * applications that insist on a linear percentage scaling.
00112  */
00113 {
00114   /* Set up two quantization tables using the specified scaling */
00115   jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
00116                        scale_factor, force_baseline);
00117   jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
00118                        scale_factor, force_baseline);
00119 }
00120 
00121 
00122 GLOBAL(int)
00123 jpeg_quality_scaling (int quality)
00124 /* Convert a user-specified quality rating to a percentage scaling factor
00125  * for an underlying quantization table, using our recommended scaling curve.
00126  * The input 'quality' factor should be 0 (terrible) to 100 (very good).
00127  */
00128 {
00129   /* Safety limit on quality factor.  Convert 0 to 1 to avoid zero divide. */
00130   if (quality <= 0) quality = 1;
00131   if (quality > 100) quality = 100;
00132 
00133   /* The basic table is used as-is (scaling 100) for a quality of 50.
00134    * Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
00135    * note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
00136    * to make all the table entries 1 (hence, minimum quantization loss).
00137    * Qualities 1..50 are converted to scaling percentage 5000/Q.
00138    */
00139   if (quality < 50)
00140     quality = 5000 / quality;
00141   else
00142     quality = 200 - quality*2;
00143 
00144   return quality;
00145 }
00146 
00147 
00148 GLOBAL(void)
00149 jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
00150 /* Set or change the 'quality' (quantization) setting, using default tables.
00151  * This is the standard quality-adjusting entry point for typical user
00152  * interfaces; only those who want detailed control over quantization tables
00153  * would use the preceding three routines directly.
00154  */
00155 {
00156   /* Convert user 0-100 rating to percentage scaling */
00157   quality = jpeg_quality_scaling(quality);
00158 
00159   /* Set up standard quality tables */
00160   jpeg_set_linear_quality(cinfo, quality, force_baseline);
00161 }
00162 
00163 
00164 /*
00165  * Huffman table setup routines
00166  */
00167 
00168 LOCAL(void)
00169 add_huff_table (j_compress_ptr cinfo,
00170                 JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val)
00171 /* Define a Huffman table */
00172 {
00173   int nsymbols, len;
00174 
00175   if (*htblptr == NULL)
00176     *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
00177 
00178   /* Copy the number-of-symbols-of-each-code-length counts */
00179   MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
00180 
00181   /* Validate the counts.  We do this here mainly so we can copy the right
00182    * number of symbols from the val[] array, without risking marching off
00183    * the end of memory.  jchuff.c will do a more thorough test later.
00184    */
00185   nsymbols = 0;
00186   for (len = 1; len <= 16; len++)
00187     nsymbols += bits[len];
00188   if (nsymbols < 1 || nsymbols > 256)
00189     ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
00190 
00191   MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8));
00192 
00193   /* Initialize sent_table FALSE so table will be written to JPEG file. */
00194   (*htblptr)->sent_table = FALSE;
00195 }
00196 
00197 
00198 LOCAL(void)
00199 std_huff_tables (j_compress_ptr cinfo)
00200 /* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
00201 /* IMPORTANT: these are only valid for 8-bit data precision! */
00202 {
00203   static const UINT8 bits_dc_luminance[17] =
00204     { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
00205   static const UINT8 val_dc_luminance[] =
00206     { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
00207   
00208   static const UINT8 bits_dc_chrominance[17] =
00209     { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
00210   static const UINT8 val_dc_chrominance[] =
00211     { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
00212   
00213   static const UINT8 bits_ac_luminance[17] =
00214     { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
00215   static const UINT8 val_ac_luminance[] =
00216     { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
00217       0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
00218       0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
00219       0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
00220       0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
00221       0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
00222       0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
00223       0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
00224       0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
00225       0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
00226       0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
00227       0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
00228       0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
00229       0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
00230       0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
00231       0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
00232       0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
00233       0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
00234       0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
00235       0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
00236       0xf9, 0xfa };
00237   
00238   static const UINT8 bits_ac_chrominance[17] =
00239     { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
00240   static const UINT8 val_ac_chrominance[] =
00241     { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
00242       0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
00243       0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
00244       0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
00245       0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
00246       0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
00247       0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
00248       0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
00249       0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
00250       0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
00251       0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
00252       0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
00253       0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
00254       0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
00255       0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
00256       0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
00257       0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
00258       0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
00259       0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
00260       0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
00261       0xf9, 0xfa };
00262   
00263   add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0],
00264                  bits_dc_luminance, val_dc_luminance);
00265   add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0],
00266                  bits_ac_luminance, val_ac_luminance);
00267   add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1],
00268                  bits_dc_chrominance, val_dc_chrominance);
00269   add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1],
00270                  bits_ac_chrominance, val_ac_chrominance);
00271 }
00272 
00273 
00274 /*
00275  * Default parameter setup for compression.
00276  *
00277  * Applications that don't choose to use this routine must do their
00278  * own setup of all these parameters.  Alternately, you can call this
00279  * to establish defaults and then alter parameters selectively.  This
00280  * is the recommended approach since, if we add any new parameters,
00281  * your code will still work (they'll be set to reasonable defaults).
00282  */
00283 
00284 GLOBAL(void)
00285 jpeg_set_defaults (j_compress_ptr cinfo)
00286 {
00287   int i;
00288 
00289   /* Safety check to ensure start_compress not called yet. */
00290   if (cinfo->global_state != CSTATE_START)
00291     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
00292 
00293   /* Allocate comp_info array large enough for maximum component count.
00294    * Array is made permanent in case application wants to compress
00295    * multiple images at same param settings.
00296    */
00297   if (cinfo->comp_info == NULL)
00298     cinfo->comp_info = (jpeg_component_info *)
00299       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
00300                                   MAX_COMPONENTS * SIZEOF(jpeg_component_info));
00301 
00302   /* Initialize everything not dependent on the color space */
00303 
00304   cinfo->scale_num = 1;         /* 1:1 scaling */
00305   cinfo->scale_denom = 1;
00306   cinfo->data_precision = BITS_IN_JSAMPLE;
00307   /* Set up two quantization tables using default quality of 75 */
00308   jpeg_set_quality(cinfo, 75, TRUE);
00309   /* Set up two Huffman tables */
00310   std_huff_tables(cinfo);
00311 
00312   /* Initialize default arithmetic coding conditioning */
00313   for (i = 0; i < NUM_ARITH_TBLS; i++) {
00314     cinfo->arith_dc_L[i] = 0;
00315     cinfo->arith_dc_U[i] = 1;
00316     cinfo->arith_ac_K[i] = 5;
00317   }
00318 
00319   /* Default is no multiple-scan output */
00320   cinfo->scan_info = NULL;
00321   cinfo->num_scans = 0;
00322 
00323   /* Expect normal source image, not raw downsampled data */
00324   cinfo->raw_data_in = FALSE;
00325 
00326   /* Use Huffman coding, not arithmetic coding, by default */
00327   cinfo->arith_code = FALSE;
00328 
00329   /* By default, don't do extra passes to optimize entropy coding */
00330   cinfo->optimize_coding = FALSE;
00331   /* The standard Huffman tables are only valid for 8-bit data precision.
00332    * If the precision is higher, force optimization on so that usable
00333    * tables will be computed.  This test can be removed if default tables
00334    * are supplied that are valid for the desired precision.
00335    */
00336   if (cinfo->data_precision > 8)
00337     cinfo->optimize_coding = TRUE;
00338 
00339   /* By default, use the simpler non-cosited sampling alignment */
00340   cinfo->CCIR601_sampling = FALSE;
00341 
00342   /* By default, apply fancy downsampling */
00343   cinfo->do_fancy_downsampling = TRUE;
00344 
00345   /* No input smoothing */
00346   cinfo->smoothing_factor = 0;
00347 
00348   /* DCT algorithm preference */
00349   cinfo->dct_method = JDCT_DEFAULT;
00350 
00351   /* No restart markers */
00352   cinfo->restart_interval = 0;
00353   cinfo->restart_in_rows = 0;
00354 
00355   /* Fill in default JFIF marker parameters.  Note that whether the marker
00356    * will actually be written is determined by jpeg_set_colorspace.
00357    *
00358    * By default, the library emits JFIF version code 1.01.
00359    * An application that wants to emit JFIF 1.02 extension markers should set
00360    * JFIF_minor_version to 2.  We could probably get away with just defaulting
00361    * to 1.02, but there may still be some decoders in use that will complain
00362    * about that; saying 1.01 should minimize compatibility problems.
00363    */
00364   cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
00365   cinfo->JFIF_minor_version = 1;
00366   cinfo->density_unit = 0;      /* Pixel size is unknown by default */
00367   cinfo->X_density = 1;         /* Pixel aspect ratio is square by default */
00368   cinfo->Y_density = 1;
00369 
00370   /* Choose JPEG colorspace based on input space, set defaults accordingly */
00371 
00372   jpeg_default_colorspace(cinfo);
00373 }
00374 
00375 
00376 /*
00377  * Select an appropriate JPEG colorspace for in_color_space.
00378  */
00379 
00380 GLOBAL(void)
00381 jpeg_default_colorspace (j_compress_ptr cinfo)
00382 {
00383   switch (cinfo->in_color_space) {
00384   case JCS_GRAYSCALE:
00385     jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
00386     break;
00387   case JCS_RGB:
00388     jpeg_set_colorspace(cinfo, JCS_YCbCr);
00389     break;
00390   case JCS_YCbCr:
00391     jpeg_set_colorspace(cinfo, JCS_YCbCr);
00392     break;
00393   case JCS_CMYK:
00394     jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
00395     break;
00396   case JCS_YCCK:
00397     jpeg_set_colorspace(cinfo, JCS_YCCK);
00398     break;
00399   case JCS_UNKNOWN:
00400     jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
00401     break;
00402   default:
00403     ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
00404   }
00405 }
00406 
00407 
00408 /*
00409  * Set the JPEG colorspace, and choose colorspace-dependent default values.
00410  */
00411 
00412 GLOBAL(void)
00413 jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
00414 {
00415   jpeg_component_info * compptr;
00416   int ci;
00417 
00418 #define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl)  \
00419   (compptr = &cinfo->comp_info[index], \
00420    compptr->component_id = (id), \
00421    compptr->h_samp_factor = (hsamp), \
00422    compptr->v_samp_factor = (vsamp), \
00423    compptr->quant_tbl_no = (quant), \
00424    compptr->dc_tbl_no = (dctbl), \
00425    compptr->ac_tbl_no = (actbl) )
00426 
00427   /* Safety check to ensure start_compress not called yet. */
00428   if (cinfo->global_state != CSTATE_START)
00429     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
00430 
00431   /* For all colorspaces, we use Q and Huff tables 0 for luminance components,
00432    * tables 1 for chrominance components.
00433    */
00434 
00435   cinfo->jpeg_color_space = colorspace;
00436 
00437   cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
00438   cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
00439 
00440   switch (colorspace) {
00441   case JCS_GRAYSCALE:
00442     cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
00443     cinfo->num_components = 1;
00444     /* JFIF specifies component ID 1 */
00445     SET_COMP(0, 1, 1,1, 0, 0,0);
00446     break;
00447   case JCS_RGB:
00448     cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
00449     cinfo->num_components = 3;
00450     SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0);
00451     SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
00452     SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0);
00453     break;
00454   case JCS_YCbCr:
00455     cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
00456     cinfo->num_components = 3;
00457     /* JFIF specifies component IDs 1,2,3 */
00458     /* We default to 2x2 subsamples of chrominance */
00459     SET_COMP(0, 1, 2,2, 0, 0,0);
00460     SET_COMP(1, 2, 1,1, 1, 1,1);
00461     SET_COMP(2, 3, 1,1, 1, 1,1);
00462     break;
00463   case JCS_CMYK:
00464     cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
00465     cinfo->num_components = 4;
00466     SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
00467     SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
00468     SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
00469     SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
00470     break;
00471   case JCS_YCCK:
00472     cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
00473     cinfo->num_components = 4;
00474     SET_COMP(0, 1, 2,2, 0, 0,0);
00475     SET_COMP(1, 2, 1,1, 1, 1,1);
00476     SET_COMP(2, 3, 1,1, 1, 1,1);
00477     SET_COMP(3, 4, 2,2, 0, 0,0);
00478     break;
00479   case JCS_UNKNOWN:
00480     cinfo->num_components = cinfo->input_components;
00481     if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
00482       ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
00483                MAX_COMPONENTS);
00484     for (ci = 0; ci < cinfo->num_components; ci++) {
00485       SET_COMP(ci, ci, 1,1, 0, 0,0);
00486     }
00487     break;
00488   default:
00489     ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
00490   }
00491 }
00492 
00493 
00494 #ifdef C_PROGRESSIVE_SUPPORTED
00495 
00496 LOCAL(jpeg_scan_info *)
00497 fill_a_scan (jpeg_scan_info * scanptr, int ci,
00498              int Ss, int Se, int Ah, int Al)
00499 /* Support routine: generate one scan for specified component */
00500 {
00501   scanptr->comps_in_scan = 1;
00502   scanptr->component_index[0] = ci;
00503   scanptr->Ss = Ss;
00504   scanptr->Se = Se;
00505   scanptr->Ah = Ah;
00506   scanptr->Al = Al;
00507   scanptr++;
00508   return scanptr;
00509 }
00510 
00511 LOCAL(jpeg_scan_info *)
00512 fill_scans (jpeg_scan_info * scanptr, int ncomps,
00513             int Ss, int Se, int Ah, int Al)
00514 /* Support routine: generate one scan for each component */
00515 {
00516   int ci;
00517 
00518   for (ci = 0; ci < ncomps; ci++) {
00519     scanptr->comps_in_scan = 1;
00520     scanptr->component_index[0] = ci;
00521     scanptr->Ss = Ss;
00522     scanptr->Se = Se;
00523     scanptr->Ah = Ah;
00524     scanptr->Al = Al;
00525     scanptr++;
00526   }
00527   return scanptr;
00528 }
00529 
00530 LOCAL(jpeg_scan_info *)
00531 fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al)
00532 /* Support routine: generate interleaved DC scan if possible, else N scans */
00533 {
00534   int ci;
00535 
00536   if (ncomps <= MAX_COMPS_IN_SCAN) {
00537     /* Single interleaved DC scan */
00538     scanptr->comps_in_scan = ncomps;
00539     for (ci = 0; ci < ncomps; ci++)
00540       scanptr->component_index[ci] = ci;
00541     scanptr->Ss = scanptr->Se = 0;
00542     scanptr->Ah = Ah;
00543     scanptr->Al = Al;
00544     scanptr++;
00545   } else {
00546     /* Noninterleaved DC scan for each component */
00547     scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
00548   }
00549   return scanptr;
00550 }
00551 
00552 
00553 /*
00554  * Create a recommended progressive-JPEG script.
00555  * cinfo->num_components and cinfo->jpeg_color_space must be correct.
00556  */
00557 
00558 GLOBAL(void)
00559 jpeg_simple_progression (j_compress_ptr cinfo)
00560 {
00561   int ncomps = cinfo->num_components;
00562   int nscans;
00563   jpeg_scan_info * scanptr;
00564 
00565   /* Safety check to ensure start_compress not called yet. */
00566   if (cinfo->global_state != CSTATE_START)
00567     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
00568 
00569   /* Figure space needed for script.  Calculation must match code below! */
00570   if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
00571     /* Custom script for YCbCr color images. */
00572     nscans = 10;
00573   } else {
00574     /* All-purpose script for other color spaces. */
00575     if (ncomps > MAX_COMPS_IN_SCAN)
00576       nscans = 6 * ncomps;      /* 2 DC + 4 AC scans per component */
00577     else
00578       nscans = 2 + 4 * ncomps;  /* 2 DC scans; 4 AC scans per component */
00579   }
00580 
00581   /* Allocate space for script.
00582    * We need to put it in the permanent pool in case the application performs
00583    * multiple compressions without changing the settings.  To avoid a memory
00584    * leak if jpeg_simple_progression is called repeatedly for the same JPEG
00585    * object, we try to re-use previously allocated space, and we allocate
00586    * enough space to handle YCbCr even if initially asked for grayscale.
00587    */
00588   if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
00589     cinfo->script_space_size = MAX(nscans, 10);
00590     cinfo->script_space = (jpeg_scan_info *)
00591       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
00592                         cinfo->script_space_size * SIZEOF(jpeg_scan_info));
00593   }
00594   scanptr = cinfo->script_space;
00595   cinfo->scan_info = scanptr;
00596   cinfo->num_scans = nscans;
00597 
00598   if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
00599     /* Custom script for YCbCr color images. */
00600     /* Initial DC scan */
00601     scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
00602     /* Initial AC scan: get some luma data out in a hurry */
00603     scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
00604     /* Chroma data is too small to be worth expending many scans on */
00605     scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
00606     scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
00607     /* Complete spectral selection for luma AC */
00608     scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
00609     /* Refine next bit of luma AC */
00610     scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
00611     /* Finish DC successive approximation */
00612     scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
00613     /* Finish AC successive approximation */
00614     scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
00615     scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
00616     /* Luma bottom bit comes last since it's usually largest scan */
00617     scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
00618   } else {
00619     /* All-purpose script for other color spaces. */
00620     /* Successive approximation first pass */
00621     scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
00622     scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
00623     scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
00624     /* Successive approximation second pass */
00625     scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
00626     /* Successive approximation final pass */
00627     scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
00628     scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
00629   }
00630 }
00631 
00632 #endif /* C_PROGRESSIVE_SUPPORTED */

Generated on Tue Jul 5 14:13:28 2011 for ROOT_528-00b_version by  doxygen 1.5.1