jdarith.c

Go to the documentation of this file.
00001 /*
00002  * jdarith.c
00003  *
00004  * Developed 1997-2009 by Guido Vollbeding.
00005  * This file is part of the Independent JPEG Group's software.
00006  * For conditions of distribution and use, see the accompanying README file.
00007  *
00008  * This file contains portable arithmetic entropy decoding routines for JPEG
00009  * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
00010  *
00011  * Both sequential and progressive modes are supported in this single module.
00012  *
00013  * Suspension is not currently supported in this module.
00014  */
00015 
00016 #define JPEG_INTERNALS
00017 #include "jinclude.h"
00018 #include "jpeglib.h"
00019 
00020 
00021 /* Expanded entropy decoder object for arithmetic decoding. */
00022 
00023 typedef struct {
00024   struct jpeg_entropy_decoder pub; /* public fields */
00025 
00026   INT32 c;       /* C register, base of coding interval + input bit buffer */
00027   INT32 a;               /* A register, normalized size of coding interval */
00028   int ct;     /* bit shift counter, # of bits left in bit buffer part of C */
00029                                                          /* init: ct = -16 */
00030                                                          /* run: ct = 0..7 */
00031                                                          /* error: ct = -1 */
00032   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
00033   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
00034 
00035   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
00036 
00037   /* Pointers to statistics areas (these workspaces have image lifespan) */
00038   unsigned char * dc_stats[NUM_ARITH_TBLS];
00039   unsigned char * ac_stats[NUM_ARITH_TBLS];
00040 
00041   /* Statistics bin for coding with fixed probability 0.5 */
00042   unsigned char fixed_bin[4];
00043 } arith_entropy_decoder;
00044 
00045 typedef arith_entropy_decoder * arith_entropy_ptr;
00046 
00047 /* The following two definitions specify the allocation chunk size
00048  * for the statistics area.
00049  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
00050  * 49 statistics bins for DC, and 245 statistics bins for AC coding.
00051  *
00052  * We use a compact representation with 1 byte per statistics bin,
00053  * thus the numbers directly represent byte sizes.
00054  * This 1 byte per statistics bin contains the meaning of the MPS
00055  * (more probable symbol) in the highest bit (mask 0x80), and the
00056  * index into the probability estimation state machine table
00057  * in the lower bits (mask 0x7F).
00058  */
00059 
00060 #define DC_STAT_BINS 64
00061 #define AC_STAT_BINS 256
00062 
00063 
00064 LOCAL(int)
00065 get_byte (j_decompress_ptr cinfo)
00066 /* Read next input byte; we do not support suspension in this module. */
00067 {
00068   struct jpeg_source_mgr * src = cinfo->src;
00069 
00070   if (src->bytes_in_buffer == 0)
00071     if (! (*src->fill_input_buffer) (cinfo))
00072       ERREXIT(cinfo, JERR_CANT_SUSPEND);
00073   src->bytes_in_buffer--;
00074   return GETJOCTET(*src->next_input_byte++);
00075 }
00076 
00077 
00078 /*
00079  * The core arithmetic decoding routine (common in JPEG and JBIG).
00080  * This needs to go as fast as possible.
00081  * Machine-dependent optimization facilities
00082  * are not utilized in this portable implementation.
00083  * However, this code should be fairly efficient and
00084  * may be a good base for further optimizations anyway.
00085  *
00086  * Return value is 0 or 1 (binary decision).
00087  *
00088  * Note: I've changed the handling of the code base & bit
00089  * buffer register C compared to other implementations
00090  * based on the standards layout & procedures.
00091  * While it also contains both the actual base of the
00092  * coding interval (16 bits) and the next-bits buffer,
00093  * the cut-point between these two parts is floating
00094  * (instead of fixed) with the bit shift counter CT.
00095  * Thus, we also need only one (variable instead of
00096  * fixed size) shift for the LPS/MPS decision, and
00097  * we can get away with any renormalization update
00098  * of C (except for new data insertion, of course).
00099  *
00100  * I've also introduced a new scheme for accessing
00101  * the probability estimation state machine table,
00102  * derived from Markus Kuhn's JBIG implementation.
00103  */
00104 
00105 LOCAL(int)
00106 arith_decode (j_decompress_ptr cinfo, unsigned char *st)
00107 {
00108   register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
00109   register unsigned char nl, nm;
00110   register INT32 qe, temp;
00111   register int sv, data;
00112 
00113   /* Renormalization & data input per section D.2.6 */
00114   while (e->a < 0x8000L) {
00115     if (--e->ct < 0) {
00116       /* Need to fetch next data byte */
00117       if (cinfo->unread_marker)
00118         data = 0;               /* stuff zero data */
00119       else {
00120         data = get_byte(cinfo); /* read next input byte */
00121         if (data == 0xFF) {     /* zero stuff or marker code */
00122           do data = get_byte(cinfo);
00123           while (data == 0xFF); /* swallow extra 0xFF bytes */
00124           if (data == 0)
00125             data = 0xFF;        /* discard stuffed zero byte */
00126           else {
00127             /* Note: Different from the Huffman decoder, hitting
00128              * a marker while processing the compressed data
00129              * segment is legal in arithmetic coding.
00130              * The convention is to supply zero data
00131              * then until decoding is complete.
00132              */
00133             cinfo->unread_marker = data;
00134             data = 0;
00135           }
00136         }
00137       }
00138       e->c = (e->c << 8) | data; /* insert data into C register */
00139       if ((e->ct += 8) < 0)      /* update bit shift counter */
00140         /* Need more initial bytes */
00141         if (++e->ct == 0)
00142           /* Got 2 initial bytes -> re-init A and exit loop */
00143           e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
00144     }
00145     e->a <<= 1;
00146   }
00147 
00148   /* Fetch values from our compact representation of Table D.2:
00149    * Qe values and probability estimation state machine
00150    */
00151   sv = *st;
00152   qe = jpeg_aritab[sv & 0x7F];  /* => Qe_Value */
00153   nl = qe & 0xFF; qe >>= 8;     /* Next_Index_LPS + Switch_MPS */
00154   nm = qe & 0xFF; qe >>= 8;     /* Next_Index_MPS */
00155 
00156   /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
00157   temp = e->a - qe;
00158   e->a = temp;
00159   temp <<= e->ct;
00160   if (e->c >= temp) {
00161     e->c -= temp;
00162     /* Conditional LPS (less probable symbol) exchange */
00163     if (e->a < qe) {
00164       e->a = qe;
00165       *st = (sv & 0x80) ^ nm;   /* Estimate_after_MPS */
00166     } else {
00167       e->a = qe;
00168       *st = (sv & 0x80) ^ nl;   /* Estimate_after_LPS */
00169       sv ^= 0x80;               /* Exchange LPS/MPS */
00170     }
00171   } else if (e->a < 0x8000L) {
00172     /* Conditional MPS (more probable symbol) exchange */
00173     if (e->a < qe) {
00174       *st = (sv & 0x80) ^ nl;   /* Estimate_after_LPS */
00175       sv ^= 0x80;               /* Exchange LPS/MPS */
00176     } else {
00177       *st = (sv & 0x80) ^ nm;   /* Estimate_after_MPS */
00178     }
00179   }
00180 
00181   return sv >> 7;
00182 }
00183 
00184 
00185 /*
00186  * Check for a restart marker & resynchronize decoder.
00187  */
00188 
00189 LOCAL(void)
00190 process_restart (j_decompress_ptr cinfo)
00191 {
00192   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
00193   int ci;
00194   jpeg_component_info * compptr;
00195 
00196   /* Advance past the RSTn marker */
00197   if (! (*cinfo->marker->read_restart_marker) (cinfo))
00198     ERREXIT(cinfo, JERR_CANT_SUSPEND);
00199 
00200   /* Re-initialize statistics areas */
00201   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
00202     compptr = cinfo->cur_comp_info[ci];
00203     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
00204       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
00205       /* Reset DC predictions to 0 */
00206       entropy->last_dc_val[ci] = 0;
00207       entropy->dc_context[ci] = 0;
00208     }
00209     if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
00210         (cinfo->progressive_mode && cinfo->Ss)) {
00211       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
00212     }
00213   }
00214 
00215   /* Reset arithmetic decoding variables */
00216   entropy->c = 0;
00217   entropy->a = 0;
00218   entropy->ct = -16;    /* force reading 2 initial bytes to fill C */
00219 
00220   /* Reset restart counter */
00221   entropy->restarts_to_go = cinfo->restart_interval;
00222 }
00223 
00224 
00225 /*
00226  * Arithmetic MCU decoding.
00227  * Each of these routines decodes and returns one MCU's worth of
00228  * arithmetic-compressed coefficients.
00229  * The coefficients are reordered from zigzag order into natural array order,
00230  * but are not dequantized.
00231  *
00232  * The i'th block of the MCU is stored into the block pointed to by
00233  * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
00234  */
00235 
00236 /*
00237  * MCU decoding for DC initial scan (either spectral selection,
00238  * or first pass of successive approximation).
00239  */
00240 
00241 METHODDEF(boolean)
00242 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
00243 {
00244   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
00245   JBLOCKROW block;
00246   unsigned char *st;
00247   int blkn, ci, tbl, sign;
00248   int v, m;
00249 
00250   /* Process restart marker if needed */
00251   if (cinfo->restart_interval) {
00252     if (entropy->restarts_to_go == 0)
00253       process_restart(cinfo);
00254     entropy->restarts_to_go--;
00255   }
00256 
00257   if (entropy->ct == -1) return TRUE;   /* if error do nothing */
00258 
00259   /* Outer loop handles each block in the MCU */
00260 
00261   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
00262     block = MCU_data[blkn];
00263     ci = cinfo->MCU_membership[blkn];
00264     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
00265 
00266     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
00267 
00268     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
00269     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
00270 
00271     /* Figure F.19: Decode_DC_DIFF */
00272     if (arith_decode(cinfo, st) == 0)
00273       entropy->dc_context[ci] = 0;
00274     else {
00275       /* Figure F.21: Decoding nonzero value v */
00276       /* Figure F.22: Decoding the sign of v */
00277       sign = arith_decode(cinfo, st + 1);
00278       st += 2; st += sign;
00279       /* Figure F.23: Decoding the magnitude category of v */
00280       if ((m = arith_decode(cinfo, st)) != 0) {
00281         st = entropy->dc_stats[tbl] + 20;       /* Table F.4: X1 = 20 */
00282         while (arith_decode(cinfo, st)) {
00283           if ((m <<= 1) == 0x8000) {
00284             WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
00285             entropy->ct = -1;                   /* magnitude overflow */
00286             return TRUE;
00287           }
00288           st += 1;
00289         }
00290       }
00291       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
00292       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
00293         entropy->dc_context[ci] = 0;               /* zero diff category */
00294       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
00295         entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
00296       else
00297         entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
00298       v = m;
00299       /* Figure F.24: Decoding the magnitude bit pattern of v */
00300       st += 14;
00301       while (m >>= 1)
00302         if (arith_decode(cinfo, st)) v |= m;
00303       v += 1; if (sign) v = -v;
00304       entropy->last_dc_val[ci] += v;
00305     }
00306 
00307     /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
00308     (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
00309   }
00310 
00311   return TRUE;
00312 }
00313 
00314 
00315 /*
00316  * MCU decoding for AC initial scan (either spectral selection,
00317  * or first pass of successive approximation).
00318  */
00319 
00320 METHODDEF(boolean)
00321 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
00322 {
00323   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
00324   JBLOCKROW block;
00325   unsigned char *st;
00326   int tbl, sign, k;
00327   int v, m;
00328   const int * natural_order;
00329 
00330   /* Process restart marker if needed */
00331   if (cinfo->restart_interval) {
00332     if (entropy->restarts_to_go == 0)
00333       process_restart(cinfo);
00334     entropy->restarts_to_go--;
00335   }
00336 
00337   if (entropy->ct == -1) return TRUE;   /* if error do nothing */
00338 
00339   natural_order = cinfo->natural_order;
00340 
00341   /* There is always only one block per MCU */
00342   block = MCU_data[0];
00343   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
00344 
00345   /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
00346 
00347   /* Figure F.20: Decode_AC_coefficients */
00348   for (k = cinfo->Ss; k <= cinfo->Se; k++) {
00349     st = entropy->ac_stats[tbl] + 3 * (k - 1);
00350     if (arith_decode(cinfo, st)) break;         /* EOB flag */
00351     while (arith_decode(cinfo, st + 1) == 0) {
00352       st += 3; k++;
00353       if (k > cinfo->Se) {
00354         WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
00355         entropy->ct = -1;                       /* spectral overflow */
00356         return TRUE;
00357       }
00358     }
00359     /* Figure F.21: Decoding nonzero value v */
00360     /* Figure F.22: Decoding the sign of v */
00361     sign = arith_decode(cinfo, entropy->fixed_bin);
00362     st += 2;
00363     /* Figure F.23: Decoding the magnitude category of v */
00364     if ((m = arith_decode(cinfo, st)) != 0) {
00365       if (arith_decode(cinfo, st)) {
00366         m <<= 1;
00367         st = entropy->ac_stats[tbl] +
00368              (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
00369         while (arith_decode(cinfo, st)) {
00370           if ((m <<= 1) == 0x8000) {
00371             WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
00372             entropy->ct = -1;                   /* magnitude overflow */
00373             return TRUE;
00374           }
00375           st += 1;
00376         }
00377       }
00378     }
00379     v = m;
00380     /* Figure F.24: Decoding the magnitude bit pattern of v */
00381     st += 14;
00382     while (m >>= 1)
00383       if (arith_decode(cinfo, st)) v |= m;
00384     v += 1; if (sign) v = -v;
00385     /* Scale and output coefficient in natural (dezigzagged) order */
00386     (*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al);
00387   }
00388 
00389   return TRUE;
00390 }
00391 
00392 
00393 /*
00394  * MCU decoding for DC successive approximation refinement scan.
00395  */
00396 
00397 METHODDEF(boolean)
00398 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
00399 {
00400   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
00401   unsigned char *st;
00402   int p1, blkn;
00403 
00404   /* Process restart marker if needed */
00405   if (cinfo->restart_interval) {
00406     if (entropy->restarts_to_go == 0)
00407       process_restart(cinfo);
00408     entropy->restarts_to_go--;
00409   }
00410 
00411   st = entropy->fixed_bin;      /* use fixed probability estimation */
00412   p1 = 1 << cinfo->Al;          /* 1 in the bit position being coded */
00413 
00414   /* Outer loop handles each block in the MCU */
00415 
00416   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
00417     /* Encoded data is simply the next bit of the two's-complement DC value */
00418     if (arith_decode(cinfo, st))
00419       MCU_data[blkn][0][0] |= p1;
00420   }
00421 
00422   return TRUE;
00423 }
00424 
00425 
00426 /*
00427  * MCU decoding for AC successive approximation refinement scan.
00428  */
00429 
00430 METHODDEF(boolean)
00431 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
00432 {
00433   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
00434   JBLOCKROW block;
00435   JCOEFPTR thiscoef;
00436   unsigned char *st;
00437   int tbl, k, kex;
00438   int p1, m1;
00439   const int * natural_order;
00440 
00441   /* Process restart marker if needed */
00442   if (cinfo->restart_interval) {
00443     if (entropy->restarts_to_go == 0)
00444       process_restart(cinfo);
00445     entropy->restarts_to_go--;
00446   }
00447 
00448   if (entropy->ct == -1) return TRUE;   /* if error do nothing */
00449 
00450   natural_order = cinfo->natural_order;
00451 
00452   /* There is always only one block per MCU */
00453   block = MCU_data[0];
00454   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
00455 
00456   p1 = 1 << cinfo->Al;          /* 1 in the bit position being coded */
00457   m1 = (-1) << cinfo->Al;       /* -1 in the bit position being coded */
00458 
00459   /* Establish EOBx (previous stage end-of-block) index */
00460   for (kex = cinfo->Se; kex > 0; kex--)
00461     if ((*block)[natural_order[kex]]) break;
00462 
00463   for (k = cinfo->Ss; k <= cinfo->Se; k++) {
00464     st = entropy->ac_stats[tbl] + 3 * (k - 1);
00465     if (k > kex)
00466       if (arith_decode(cinfo, st)) break;       /* EOB flag */
00467     for (;;) {
00468       thiscoef = *block + natural_order[k];
00469       if (*thiscoef) {                          /* previously nonzero coef */
00470         if (arith_decode(cinfo, st + 2)) {
00471           if (*thiscoef < 0)
00472             *thiscoef += m1;
00473           else
00474             *thiscoef += p1;
00475         }
00476         break;
00477       }
00478       if (arith_decode(cinfo, st + 1)) {        /* newly nonzero coef */
00479         if (arith_decode(cinfo, entropy->fixed_bin))
00480           *thiscoef = m1;
00481         else
00482           *thiscoef = p1;
00483         break;
00484       }
00485       st += 3; k++;
00486       if (k > cinfo->Se) {
00487         WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
00488         entropy->ct = -1;                       /* spectral overflow */
00489         return TRUE;
00490       }
00491     }
00492   }
00493 
00494   return TRUE;
00495 }
00496 
00497 
00498 /*
00499  * Decode one MCU's worth of arithmetic-compressed coefficients.
00500  */
00501 
00502 METHODDEF(boolean)
00503 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
00504 {
00505   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
00506   jpeg_component_info * compptr;
00507   JBLOCKROW block;
00508   unsigned char *st;
00509   int blkn, ci, tbl, sign, k;
00510   int v, m;
00511   const int * natural_order;
00512 
00513   /* Process restart marker if needed */
00514   if (cinfo->restart_interval) {
00515     if (entropy->restarts_to_go == 0)
00516       process_restart(cinfo);
00517     entropy->restarts_to_go--;
00518   }
00519 
00520   if (entropy->ct == -1) return TRUE;   /* if error do nothing */
00521 
00522   natural_order = cinfo->natural_order;
00523 
00524   /* Outer loop handles each block in the MCU */
00525 
00526   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
00527     block = MCU_data[blkn];
00528     ci = cinfo->MCU_membership[blkn];
00529     compptr = cinfo->cur_comp_info[ci];
00530 
00531     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
00532 
00533     tbl = compptr->dc_tbl_no;
00534 
00535     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
00536     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
00537 
00538     /* Figure F.19: Decode_DC_DIFF */
00539     if (arith_decode(cinfo, st) == 0)
00540       entropy->dc_context[ci] = 0;
00541     else {
00542       /* Figure F.21: Decoding nonzero value v */
00543       /* Figure F.22: Decoding the sign of v */
00544       sign = arith_decode(cinfo, st + 1);
00545       st += 2; st += sign;
00546       /* Figure F.23: Decoding the magnitude category of v */
00547       if ((m = arith_decode(cinfo, st)) != 0) {
00548         st = entropy->dc_stats[tbl] + 20;       /* Table F.4: X1 = 20 */
00549         while (arith_decode(cinfo, st)) {
00550           if ((m <<= 1) == 0x8000) {
00551             WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
00552             entropy->ct = -1;                   /* magnitude overflow */
00553             return TRUE;
00554           }
00555           st += 1;
00556         }
00557       }
00558       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
00559       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
00560         entropy->dc_context[ci] = 0;               /* zero diff category */
00561       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
00562         entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
00563       else
00564         entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
00565       v = m;
00566       /* Figure F.24: Decoding the magnitude bit pattern of v */
00567       st += 14;
00568       while (m >>= 1)
00569         if (arith_decode(cinfo, st)) v |= m;
00570       v += 1; if (sign) v = -v;
00571       entropy->last_dc_val[ci] += v;
00572     }
00573 
00574     (*block)[0] = (JCOEF) entropy->last_dc_val[ci];
00575 
00576     /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
00577 
00578     tbl = compptr->ac_tbl_no;
00579 
00580     /* Figure F.20: Decode_AC_coefficients */
00581     for (k = 1; k <= cinfo->lim_Se; k++) {
00582       st = entropy->ac_stats[tbl] + 3 * (k - 1);
00583       if (arith_decode(cinfo, st)) break;       /* EOB flag */
00584       while (arith_decode(cinfo, st + 1) == 0) {
00585         st += 3; k++;
00586         if (k > cinfo->lim_Se) {
00587           WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
00588           entropy->ct = -1;                     /* spectral overflow */
00589           return TRUE;
00590         }
00591       }
00592       /* Figure F.21: Decoding nonzero value v */
00593       /* Figure F.22: Decoding the sign of v */
00594       sign = arith_decode(cinfo, entropy->fixed_bin);
00595       st += 2;
00596       /* Figure F.23: Decoding the magnitude category of v */
00597       if ((m = arith_decode(cinfo, st)) != 0) {
00598         if (arith_decode(cinfo, st)) {
00599           m <<= 1;
00600           st = entropy->ac_stats[tbl] +
00601                (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
00602           while (arith_decode(cinfo, st)) {
00603             if ((m <<= 1) == 0x8000) {
00604               WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
00605               entropy->ct = -1;                 /* magnitude overflow */
00606               return TRUE;
00607             }
00608             st += 1;
00609           }
00610         }
00611       }
00612       v = m;
00613       /* Figure F.24: Decoding the magnitude bit pattern of v */
00614       st += 14;
00615       while (m >>= 1)
00616         if (arith_decode(cinfo, st)) v |= m;
00617       v += 1; if (sign) v = -v;
00618       (*block)[natural_order[k]] = (JCOEF) v;
00619     }
00620   }
00621 
00622   return TRUE;
00623 }
00624 
00625 
00626 /*
00627  * Initialize for an arithmetic-compressed scan.
00628  */
00629 
00630 METHODDEF(void)
00631 start_pass (j_decompress_ptr cinfo)
00632 {
00633   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
00634   int ci, tbl;
00635   jpeg_component_info * compptr;
00636 
00637   if (cinfo->progressive_mode) {
00638     /* Validate progressive scan parameters */
00639     if (cinfo->Ss == 0) {
00640       if (cinfo->Se != 0)
00641         goto bad;
00642     } else {
00643       /* need not check Ss/Se < 0 since they came from unsigned bytes */
00644       if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
00645         goto bad;
00646       /* AC scans may have only one component */
00647       if (cinfo->comps_in_scan != 1)
00648         goto bad;
00649     }
00650     if (cinfo->Ah != 0) {
00651       /* Successive approximation refinement scan: must have Al = Ah-1. */
00652       if (cinfo->Ah-1 != cinfo->Al)
00653         goto bad;
00654     }
00655     if (cinfo->Al > 13) {       /* need not check for < 0 */
00656       bad:
00657       ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
00658                cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
00659     }
00660     /* Update progression status, and verify that scan order is legal.
00661      * Note that inter-scan inconsistencies are treated as warnings
00662      * not fatal errors ... not clear if this is right way to behave.
00663      */
00664     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
00665       int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
00666       int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
00667       if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
00668         WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
00669       for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
00670         int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
00671         if (cinfo->Ah != expected)
00672           WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
00673         coef_bit_ptr[coefi] = cinfo->Al;
00674       }
00675     }
00676     /* Select MCU decoding routine */
00677     if (cinfo->Ah == 0) {
00678       if (cinfo->Ss == 0)
00679         entropy->pub.decode_mcu = decode_mcu_DC_first;
00680       else
00681         entropy->pub.decode_mcu = decode_mcu_AC_first;
00682     } else {
00683       if (cinfo->Ss == 0)
00684         entropy->pub.decode_mcu = decode_mcu_DC_refine;
00685       else
00686         entropy->pub.decode_mcu = decode_mcu_AC_refine;
00687     }
00688   } else {
00689     /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
00690      * This ought to be an error condition, but we make it a warning.
00691      */
00692     if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
00693         (cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se))
00694       WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
00695     /* Select MCU decoding routine */
00696     entropy->pub.decode_mcu = decode_mcu;
00697   }
00698 
00699   /* Allocate & initialize requested statistics areas */
00700   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
00701     compptr = cinfo->cur_comp_info[ci];
00702     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
00703       tbl = compptr->dc_tbl_no;
00704       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
00705         ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
00706       if (entropy->dc_stats[tbl] == NULL)
00707         entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
00708           ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
00709       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
00710       /* Initialize DC predictions to 0 */
00711       entropy->last_dc_val[ci] = 0;
00712       entropy->dc_context[ci] = 0;
00713     }
00714     if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
00715         (cinfo->progressive_mode && cinfo->Ss)) {
00716       tbl = compptr->ac_tbl_no;
00717       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
00718         ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
00719       if (entropy->ac_stats[tbl] == NULL)
00720         entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
00721           ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
00722       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
00723     }
00724   }
00725 
00726   /* Initialize arithmetic decoding variables */
00727   entropy->c = 0;
00728   entropy->a = 0;
00729   entropy->ct = -16;    /* force reading 2 initial bytes to fill C */
00730 
00731   /* Initialize restart counter */
00732   entropy->restarts_to_go = cinfo->restart_interval;
00733 }
00734 
00735 
00736 /*
00737  * Module initialization routine for arithmetic entropy decoding.
00738  */
00739 
00740 GLOBAL(void)
00741 jinit_arith_decoder (j_decompress_ptr cinfo)
00742 {
00743   arith_entropy_ptr entropy;
00744   int i;
00745 
00746   entropy = (arith_entropy_ptr)
00747     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
00748                                 SIZEOF(arith_entropy_decoder));
00749   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
00750   entropy->pub.start_pass = start_pass;
00751 
00752   /* Mark tables unallocated */
00753   for (i = 0; i < NUM_ARITH_TBLS; i++) {
00754     entropy->dc_stats[i] = NULL;
00755     entropy->ac_stats[i] = NULL;
00756   }
00757 
00758   /* Initialize index for fixed probability estimation */
00759   entropy->fixed_bin[0] = 113;
00760 
00761   if (cinfo->progressive_mode) {
00762     /* Create progression status table */
00763     int *coef_bit_ptr, ci;
00764     cinfo->coef_bits = (int (*)[DCTSIZE2])
00765       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
00766                                   cinfo->num_components*DCTSIZE2*SIZEOF(int));
00767     coef_bit_ptr = & cinfo->coef_bits[0][0];
00768     for (ci = 0; ci < cinfo->num_components; ci++) 
00769       for (i = 0; i < DCTSIZE2; i++)
00770         *coef_bit_ptr++ = -1;
00771   }
00772 }

Generated on Tue Jul 5 14:13:28 2011 for ROOT_528-00b_version by  doxygen 1.5.1