jdhuff.c

Go to the documentation of this file.
00001 /*
00002  * jdhuff.c
00003  *
00004  * Copyright (C) 1991-1997, Thomas G. Lane.
00005  * Modified 2006-2009 by Guido Vollbeding.
00006  * This file is part of the Independent JPEG Group's software.
00007  * For conditions of distribution and use, see the accompanying README file.
00008  *
00009  * This file contains Huffman entropy decoding routines.
00010  * Both sequential and progressive modes are supported in this single module.
00011  *
00012  * Much of the complexity here has to do with supporting input suspension.
00013  * If the data source module demands suspension, we want to be able to back
00014  * up to the start of the current MCU.  To do this, we copy state variables
00015  * into local working storage, and update them back to the permanent
00016  * storage only upon successful completion of an MCU.
00017  */
00018 
00019 #define JPEG_INTERNALS
00020 #include "jinclude.h"
00021 #include "jpeglib.h"
00022 
00023 
00024 /* Derived data constructed for each Huffman table */
00025 
00026 #define HUFF_LOOKAHEAD  8       /* # of bits of lookahead */
00027 
00028 typedef struct {
00029   /* Basic tables: (element [0] of each array is unused) */
00030   INT32 maxcode[18];            /* largest code of length k (-1 if none) */
00031   /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
00032   INT32 valoffset[17];          /* huffval[] offset for codes of length k */
00033   /* valoffset[k] = huffval[] index of 1st symbol of code length k, less
00034    * the smallest code of length k; so given a code of length k, the
00035    * corresponding symbol is huffval[code + valoffset[k]]
00036    */
00037 
00038   /* Link to public Huffman table (needed only in jpeg_huff_decode) */
00039   JHUFF_TBL *pub;
00040 
00041   /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
00042    * the input data stream.  If the next Huffman code is no more
00043    * than HUFF_LOOKAHEAD bits long, we can obtain its length and
00044    * the corresponding symbol directly from these tables.
00045    */
00046   int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
00047   UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
00048 } d_derived_tbl;
00049 
00050 
00051 /*
00052  * Fetching the next N bits from the input stream is a time-critical operation
00053  * for the Huffman decoders.  We implement it with a combination of inline
00054  * macros and out-of-line subroutines.  Note that N (the number of bits
00055  * demanded at one time) never exceeds 15 for JPEG use.
00056  *
00057  * We read source bytes into get_buffer and dole out bits as needed.
00058  * If get_buffer already contains enough bits, they are fetched in-line
00059  * by the macros CHECK_BIT_BUFFER and GET_BITS.  When there aren't enough
00060  * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
00061  * as full as possible (not just to the number of bits needed; this
00062  * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
00063  * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
00064  * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
00065  * at least the requested number of bits --- dummy zeroes are inserted if
00066  * necessary.
00067  */
00068 
00069 typedef INT32 bit_buf_type;     /* type of bit-extraction buffer */
00070 #define BIT_BUF_SIZE  32        /* size of buffer in bits */
00071 
00072 /* If long is > 32 bits on your machine, and shifting/masking longs is
00073  * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
00074  * appropriately should be a win.  Unfortunately we can't define the size
00075  * with something like  #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
00076  * because not all machines measure sizeof in 8-bit bytes.
00077  */
00078 
00079 typedef struct {                /* Bitreading state saved across MCUs */
00080   bit_buf_type get_buffer;      /* current bit-extraction buffer */
00081   int bits_left;                /* # of unused bits in it */
00082 } bitread_perm_state;
00083 
00084 typedef struct {                /* Bitreading working state within an MCU */
00085   /* Current data source location */
00086   /* We need a copy, rather than munging the original, in case of suspension */
00087   const JOCTET * next_input_byte; /* => next byte to read from source */
00088   size_t bytes_in_buffer;       /* # of bytes remaining in source buffer */
00089   /* Bit input buffer --- note these values are kept in register variables,
00090    * not in this struct, inside the inner loops.
00091    */
00092   bit_buf_type get_buffer;      /* current bit-extraction buffer */
00093   int bits_left;                /* # of unused bits in it */
00094   /* Pointer needed by jpeg_fill_bit_buffer. */
00095   j_decompress_ptr cinfo;       /* back link to decompress master record */
00096 } bitread_working_state;
00097 
00098 /* Macros to declare and load/save bitread local variables. */
00099 #define BITREAD_STATE_VARS  \
00100         register bit_buf_type get_buffer;  \
00101         register int bits_left;  \
00102         bitread_working_state br_state
00103 
00104 #define BITREAD_LOAD_STATE(cinfop,permstate)  \
00105         br_state.cinfo = cinfop; \
00106         br_state.next_input_byte = cinfop->src->next_input_byte; \
00107         br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
00108         get_buffer = permstate.get_buffer; \
00109         bits_left = permstate.bits_left;
00110 
00111 #define BITREAD_SAVE_STATE(cinfop,permstate)  \
00112         cinfop->src->next_input_byte = br_state.next_input_byte; \
00113         cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
00114         permstate.get_buffer = get_buffer; \
00115         permstate.bits_left = bits_left
00116 
00117 /*
00118  * These macros provide the in-line portion of bit fetching.
00119  * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
00120  * before using GET_BITS, PEEK_BITS, or DROP_BITS.
00121  * The variables get_buffer and bits_left are assumed to be locals,
00122  * but the state struct might not be (jpeg_huff_decode needs this).
00123  *      CHECK_BIT_BUFFER(state,n,action);
00124  *              Ensure there are N bits in get_buffer; if suspend, take action.
00125  *      val = GET_BITS(n);
00126  *              Fetch next N bits.
00127  *      val = PEEK_BITS(n);
00128  *              Fetch next N bits without removing them from the buffer.
00129  *      DROP_BITS(n);
00130  *              Discard next N bits.
00131  * The value N should be a simple variable, not an expression, because it
00132  * is evaluated multiple times.
00133  */
00134 
00135 #define CHECK_BIT_BUFFER(state,nbits,action) \
00136         { if (bits_left < (nbits)) {  \
00137             if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits))  \
00138               { action; }  \
00139             get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
00140 
00141 #define GET_BITS(nbits) \
00142         (((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits))
00143 
00144 #define PEEK_BITS(nbits) \
00145         (((int) (get_buffer >> (bits_left -  (nbits)))) & BIT_MASK(nbits))
00146 
00147 #define DROP_BITS(nbits) \
00148         (bits_left -= (nbits))
00149 
00150 
00151 /*
00152  * Code for extracting next Huffman-coded symbol from input bit stream.
00153  * Again, this is time-critical and we make the main paths be macros.
00154  *
00155  * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
00156  * without looping.  Usually, more than 95% of the Huffman codes will be 8
00157  * or fewer bits long.  The few overlength codes are handled with a loop,
00158  * which need not be inline code.
00159  *
00160  * Notes about the HUFF_DECODE macro:
00161  * 1. Near the end of the data segment, we may fail to get enough bits
00162  *    for a lookahead.  In that case, we do it the hard way.
00163  * 2. If the lookahead table contains no entry, the next code must be
00164  *    more than HUFF_LOOKAHEAD bits long.
00165  * 3. jpeg_huff_decode returns -1 if forced to suspend.
00166  */
00167 
00168 #define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
00169 { register int nb, look; \
00170   if (bits_left < HUFF_LOOKAHEAD) { \
00171     if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
00172     get_buffer = state.get_buffer; bits_left = state.bits_left; \
00173     if (bits_left < HUFF_LOOKAHEAD) { \
00174       nb = 1; goto slowlabel; \
00175     } \
00176   } \
00177   look = PEEK_BITS(HUFF_LOOKAHEAD); \
00178   if ((nb = htbl->look_nbits[look]) != 0) { \
00179     DROP_BITS(nb); \
00180     result = htbl->look_sym[look]; \
00181   } else { \
00182     nb = HUFF_LOOKAHEAD+1; \
00183 slowlabel: \
00184     if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
00185         { failaction; } \
00186     get_buffer = state.get_buffer; bits_left = state.bits_left; \
00187   } \
00188 }
00189 
00190 
00191 /*
00192  * Expanded entropy decoder object for Huffman decoding.
00193  *
00194  * The savable_state subrecord contains fields that change within an MCU,
00195  * but must not be updated permanently until we complete the MCU.
00196  */
00197 
00198 typedef struct {
00199   unsigned int EOBRUN;                  /* remaining EOBs in EOBRUN */
00200   int last_dc_val[MAX_COMPS_IN_SCAN];   /* last DC coef for each component */
00201 } savable_state;
00202 
00203 /* This macro is to work around compilers with missing or broken
00204  * structure assignment.  You'll need to fix this code if you have
00205  * such a compiler and you change MAX_COMPS_IN_SCAN.
00206  */
00207 
00208 #ifndef NO_STRUCT_ASSIGN
00209 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
00210 #else
00211 #if MAX_COMPS_IN_SCAN == 4
00212 #define ASSIGN_STATE(dest,src)  \
00213         ((dest).EOBRUN = (src).EOBRUN, \
00214          (dest).last_dc_val[0] = (src).last_dc_val[0], \
00215          (dest).last_dc_val[1] = (src).last_dc_val[1], \
00216          (dest).last_dc_val[2] = (src).last_dc_val[2], \
00217          (dest).last_dc_val[3] = (src).last_dc_val[3])
00218 #endif
00219 #endif
00220 
00221 
00222 typedef struct {
00223   struct jpeg_entropy_decoder pub; /* public fields */
00224 
00225   /* These fields are loaded into local variables at start of each MCU.
00226    * In case of suspension, we exit WITHOUT updating them.
00227    */
00228   bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
00229   savable_state saved;          /* Other state at start of MCU */
00230 
00231   /* These fields are NOT loaded into local working state. */
00232   boolean insufficient_data;    /* set TRUE after emitting warning */
00233   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
00234 
00235   /* Following two fields used only in progressive mode */
00236 
00237   /* Pointers to derived tables (these workspaces have image lifespan) */
00238   d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
00239 
00240   d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
00241 
00242   /* Following fields used only in sequential mode */
00243 
00244   /* Pointers to derived tables (these workspaces have image lifespan) */
00245   d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
00246   d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
00247 
00248   /* Precalculated info set up by start_pass for use in decode_mcu: */
00249 
00250   /* Pointers to derived tables to be used for each block within an MCU */
00251   d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
00252   d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
00253   /* Whether we care about the DC and AC coefficient values for each block */
00254   int coef_limit[D_MAX_BLOCKS_IN_MCU];
00255 } huff_entropy_decoder;
00256 
00257 typedef huff_entropy_decoder * huff_entropy_ptr;
00258 
00259 
00260 static const int jpeg_zigzag_order[8][8] = {
00261   {  0,  1,  5,  6, 14, 15, 27, 28 },
00262   {  2,  4,  7, 13, 16, 26, 29, 42 },
00263   {  3,  8, 12, 17, 25, 30, 41, 43 },
00264   {  9, 11, 18, 24, 31, 40, 44, 53 },
00265   { 10, 19, 23, 32, 39, 45, 52, 54 },
00266   { 20, 22, 33, 38, 46, 51, 55, 60 },
00267   { 21, 34, 37, 47, 50, 56, 59, 61 },
00268   { 35, 36, 48, 49, 57, 58, 62, 63 }
00269 };
00270 
00271 static const int jpeg_zigzag_order7[7][7] = {
00272   {  0,  1,  5,  6, 14, 15, 27 },
00273   {  2,  4,  7, 13, 16, 26, 28 },
00274   {  3,  8, 12, 17, 25, 29, 38 },
00275   {  9, 11, 18, 24, 30, 37, 39 },
00276   { 10, 19, 23, 31, 36, 40, 45 },
00277   { 20, 22, 32, 35, 41, 44, 46 },
00278   { 21, 33, 34, 42, 43, 47, 48 }
00279 };
00280 
00281 static const int jpeg_zigzag_order6[6][6] = {
00282   {  0,  1,  5,  6, 14, 15 },
00283   {  2,  4,  7, 13, 16, 25 },
00284   {  3,  8, 12, 17, 24, 26 },
00285   {  9, 11, 18, 23, 27, 32 },
00286   { 10, 19, 22, 28, 31, 33 },
00287   { 20, 21, 29, 30, 34, 35 }
00288 };
00289 
00290 static const int jpeg_zigzag_order5[5][5] = {
00291   {  0,  1,  5,  6, 14 },
00292   {  2,  4,  7, 13, 15 },
00293   {  3,  8, 12, 16, 21 },
00294   {  9, 11, 17, 20, 22 },
00295   { 10, 18, 19, 23, 24 }
00296 };
00297 
00298 static const int jpeg_zigzag_order4[4][4] = {
00299   { 0,  1,  5,  6 },
00300   { 2,  4,  7, 12 },
00301   { 3,  8, 11, 13 },
00302   { 9, 10, 14, 15 }
00303 };
00304 
00305 static const int jpeg_zigzag_order3[3][3] = {
00306   { 0, 1, 5 },
00307   { 2, 4, 6 },
00308   { 3, 7, 8 }
00309 };
00310 
00311 static const int jpeg_zigzag_order2[2][2] = {
00312   { 0, 1 },
00313   { 2, 3 }
00314 };
00315 
00316 
00317 /*
00318  * Compute the derived values for a Huffman table.
00319  * This routine also performs some validation checks on the table.
00320  */
00321 
00322 LOCAL(void)
00323 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
00324                          d_derived_tbl ** pdtbl)
00325 {
00326   JHUFF_TBL *htbl;
00327   d_derived_tbl *dtbl;
00328   int p, i, l, si, numsymbols;
00329   int lookbits, ctr;
00330   char huffsize[257];
00331   unsigned int huffcode[257];
00332   unsigned int code;
00333 
00334   /* Note that huffsize[] and huffcode[] are filled in code-length order,
00335    * paralleling the order of the symbols themselves in htbl->huffval[].
00336    */
00337 
00338   /* Find the input Huffman table */
00339   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
00340     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
00341   htbl =
00342     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
00343   if (htbl == NULL)
00344     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
00345 
00346   /* Allocate a workspace if we haven't already done so. */
00347   if (*pdtbl == NULL)
00348     *pdtbl = (d_derived_tbl *)
00349       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
00350                                   SIZEOF(d_derived_tbl));
00351   dtbl = *pdtbl;
00352   dtbl->pub = htbl;             /* fill in back link */
00353   
00354   /* Figure C.1: make table of Huffman code length for each symbol */
00355 
00356   p = 0;
00357   for (l = 1; l <= 16; l++) {
00358     i = (int) htbl->bits[l];
00359     if (i < 0 || p + i > 256)   /* protect against table overrun */
00360       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
00361     while (i--)
00362       huffsize[p++] = (char) l;
00363   }
00364   huffsize[p] = 0;
00365   numsymbols = p;
00366   
00367   /* Figure C.2: generate the codes themselves */
00368   /* We also validate that the counts represent a legal Huffman code tree. */
00369   
00370   code = 0;
00371   si = huffsize[0];
00372   p = 0;
00373   while (huffsize[p]) {
00374     while (((int) huffsize[p]) == si) {
00375       huffcode[p++] = code;
00376       code++;
00377     }
00378     /* code is now 1 more than the last code used for codelength si; but
00379      * it must still fit in si bits, since no code is allowed to be all ones.
00380      */
00381     if (((INT32) code) >= (((INT32) 1) << si))
00382       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
00383     code <<= 1;
00384     si++;
00385   }
00386 
00387   /* Figure F.15: generate decoding tables for bit-sequential decoding */
00388 
00389   p = 0;
00390   for (l = 1; l <= 16; l++) {
00391     if (htbl->bits[l]) {
00392       /* valoffset[l] = huffval[] index of 1st symbol of code length l,
00393        * minus the minimum code of length l
00394        */
00395       dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
00396       p += htbl->bits[l];
00397       dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
00398     } else {
00399       dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
00400     }
00401   }
00402   dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
00403 
00404   /* Compute lookahead tables to speed up decoding.
00405    * First we set all the table entries to 0, indicating "too long";
00406    * then we iterate through the Huffman codes that are short enough and
00407    * fill in all the entries that correspond to bit sequences starting
00408    * with that code.
00409    */
00410 
00411   MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
00412 
00413   p = 0;
00414   for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
00415     for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
00416       /* l = current code's length, p = its index in huffcode[] & huffval[]. */
00417       /* Generate left-justified code followed by all possible bit sequences */
00418       lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
00419       for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
00420         dtbl->look_nbits[lookbits] = l;
00421         dtbl->look_sym[lookbits] = htbl->huffval[p];
00422         lookbits++;
00423       }
00424     }
00425   }
00426 
00427   /* Validate symbols as being reasonable.
00428    * For AC tables, we make no check, but accept all byte values 0..255.
00429    * For DC tables, we require the symbols to be in range 0..15.
00430    * (Tighter bounds could be applied depending on the data depth and mode,
00431    * but this is sufficient to ensure safe decoding.)
00432    */
00433   if (isDC) {
00434     for (i = 0; i < numsymbols; i++) {
00435       int sym = htbl->huffval[i];
00436       if (sym < 0 || sym > 15)
00437         ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
00438     }
00439   }
00440 }
00441 
00442 
00443 /*
00444  * Out-of-line code for bit fetching.
00445  * Note: current values of get_buffer and bits_left are passed as parameters,
00446  * but are returned in the corresponding fields of the state struct.
00447  *
00448  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
00449  * of get_buffer to be used.  (On machines with wider words, an even larger
00450  * buffer could be used.)  However, on some machines 32-bit shifts are
00451  * quite slow and take time proportional to the number of places shifted.
00452  * (This is true with most PC compilers, for instance.)  In this case it may
00453  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
00454  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
00455  */
00456 
00457 #ifdef SLOW_SHIFT_32
00458 #define MIN_GET_BITS  15        /* minimum allowable value */
00459 #else
00460 #define MIN_GET_BITS  (BIT_BUF_SIZE-7)
00461 #endif
00462 
00463 
00464 LOCAL(boolean)
00465 jpeg_fill_bit_buffer (bitread_working_state * state,
00466                       register bit_buf_type get_buffer, register int bits_left,
00467                       int nbits)
00468 /* Load up the bit buffer to a depth of at least nbits */
00469 {
00470   /* Copy heavily used state fields into locals (hopefully registers) */
00471   register const JOCTET * next_input_byte = state->next_input_byte;
00472   register size_t bytes_in_buffer = state->bytes_in_buffer;
00473   j_decompress_ptr cinfo = state->cinfo;
00474 
00475   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
00476   /* (It is assumed that no request will be for more than that many bits.) */
00477   /* We fail to do so only if we hit a marker or are forced to suspend. */
00478 
00479   if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
00480     while (bits_left < MIN_GET_BITS) {
00481       register int c;
00482 
00483       /* Attempt to read a byte */
00484       if (bytes_in_buffer == 0) {
00485         if (! (*cinfo->src->fill_input_buffer) (cinfo))
00486           return FALSE;
00487         next_input_byte = cinfo->src->next_input_byte;
00488         bytes_in_buffer = cinfo->src->bytes_in_buffer;
00489       }
00490       bytes_in_buffer--;
00491       c = GETJOCTET(*next_input_byte++);
00492 
00493       /* If it's 0xFF, check and discard stuffed zero byte */
00494       if (c == 0xFF) {
00495         /* Loop here to discard any padding FF's on terminating marker,
00496          * so that we can save a valid unread_marker value.  NOTE: we will
00497          * accept multiple FF's followed by a 0 as meaning a single FF data
00498          * byte.  This data pattern is not valid according to the standard.
00499          */
00500         do {
00501           if (bytes_in_buffer == 0) {
00502             if (! (*cinfo->src->fill_input_buffer) (cinfo))
00503               return FALSE;
00504             next_input_byte = cinfo->src->next_input_byte;
00505             bytes_in_buffer = cinfo->src->bytes_in_buffer;
00506           }
00507           bytes_in_buffer--;
00508           c = GETJOCTET(*next_input_byte++);
00509         } while (c == 0xFF);
00510 
00511         if (c == 0) {
00512           /* Found FF/00, which represents an FF data byte */
00513           c = 0xFF;
00514         } else {
00515           /* Oops, it's actually a marker indicating end of compressed data.
00516            * Save the marker code for later use.
00517            * Fine point: it might appear that we should save the marker into
00518            * bitread working state, not straight into permanent state.  But
00519            * once we have hit a marker, we cannot need to suspend within the
00520            * current MCU, because we will read no more bytes from the data
00521            * source.  So it is OK to update permanent state right away.
00522            */
00523           cinfo->unread_marker = c;
00524           /* See if we need to insert some fake zero bits. */
00525           goto no_more_bytes;
00526         }
00527       }
00528 
00529       /* OK, load c into get_buffer */
00530       get_buffer = (get_buffer << 8) | c;
00531       bits_left += 8;
00532     } /* end while */
00533   } else {
00534   no_more_bytes:
00535     /* We get here if we've read the marker that terminates the compressed
00536      * data segment.  There should be enough bits in the buffer register
00537      * to satisfy the request; if so, no problem.
00538      */
00539     if (nbits > bits_left) {
00540       /* Uh-oh.  Report corrupted data to user and stuff zeroes into
00541        * the data stream, so that we can produce some kind of image.
00542        * We use a nonvolatile flag to ensure that only one warning message
00543        * appears per data segment.
00544        */
00545       if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) {
00546         WARNMS(cinfo, JWRN_HIT_MARKER);
00547         ((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE;
00548       }
00549       /* Fill the buffer with zero bits */
00550       get_buffer <<= MIN_GET_BITS - bits_left;
00551       bits_left = MIN_GET_BITS;
00552     }
00553   }
00554 
00555   /* Unload the local registers */
00556   state->next_input_byte = next_input_byte;
00557   state->bytes_in_buffer = bytes_in_buffer;
00558   state->get_buffer = get_buffer;
00559   state->bits_left = bits_left;
00560 
00561   return TRUE;
00562 }
00563 
00564 
00565 /*
00566  * Figure F.12: extend sign bit.
00567  * On some machines, a shift and sub will be faster than a table lookup.
00568  */
00569 
00570 #ifdef AVOID_TABLES
00571 
00572 #define BIT_MASK(nbits)   ((1<<(nbits))-1)
00573 #define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x))
00574 
00575 #else
00576 
00577 #define BIT_MASK(nbits)   bmask[nbits]
00578 #define HUFF_EXTEND(x,s)  ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x))
00579 
00580 static const int bmask[16] =    /* bmask[n] is mask for n rightmost bits */
00581   { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
00582     0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF };
00583 
00584 #endif /* AVOID_TABLES */
00585 
00586 
00587 /*
00588  * Out-of-line code for Huffman code decoding.
00589  */
00590 
00591 LOCAL(int)
00592 jpeg_huff_decode (bitread_working_state * state,
00593                   register bit_buf_type get_buffer, register int bits_left,
00594                   d_derived_tbl * htbl, int min_bits)
00595 {
00596   register int l = min_bits;
00597   register INT32 code;
00598 
00599   /* HUFF_DECODE has determined that the code is at least min_bits */
00600   /* bits long, so fetch that many bits in one swoop. */
00601 
00602   CHECK_BIT_BUFFER(*state, l, return -1);
00603   code = GET_BITS(l);
00604 
00605   /* Collect the rest of the Huffman code one bit at a time. */
00606   /* This is per Figure F.16 in the JPEG spec. */
00607 
00608   while (code > htbl->maxcode[l]) {
00609     code <<= 1;
00610     CHECK_BIT_BUFFER(*state, 1, return -1);
00611     code |= GET_BITS(1);
00612     l++;
00613   }
00614 
00615   /* Unload the local registers */
00616   state->get_buffer = get_buffer;
00617   state->bits_left = bits_left;
00618 
00619   /* With garbage input we may reach the sentinel value l = 17. */
00620 
00621   if (l > 16) {
00622     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
00623     return 0;                   /* fake a zero as the safest result */
00624   }
00625 
00626   return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
00627 }
00628 
00629 
00630 /*
00631  * Check for a restart marker & resynchronize decoder.
00632  * Returns FALSE if must suspend.
00633  */
00634 
00635 LOCAL(boolean)
00636 process_restart (j_decompress_ptr cinfo)
00637 {
00638   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
00639   int ci;
00640 
00641   /* Throw away any unused bits remaining in bit buffer; */
00642   /* include any full bytes in next_marker's count of discarded bytes */
00643   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
00644   entropy->bitstate.bits_left = 0;
00645 
00646   /* Advance past the RSTn marker */
00647   if (! (*cinfo->marker->read_restart_marker) (cinfo))
00648     return FALSE;
00649 
00650   /* Re-initialize DC predictions to 0 */
00651   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
00652     entropy->saved.last_dc_val[ci] = 0;
00653   /* Re-init EOB run count, too */
00654   entropy->saved.EOBRUN = 0;
00655 
00656   /* Reset restart counter */
00657   entropy->restarts_to_go = cinfo->restart_interval;
00658 
00659   /* Reset out-of-data flag, unless read_restart_marker left us smack up
00660    * against a marker.  In that case we will end up treating the next data
00661    * segment as empty, and we can avoid producing bogus output pixels by
00662    * leaving the flag set.
00663    */
00664   if (cinfo->unread_marker == 0)
00665     entropy->insufficient_data = FALSE;
00666 
00667   return TRUE;
00668 }
00669 
00670 
00671 /*
00672  * Huffman MCU decoding.
00673  * Each of these routines decodes and returns one MCU's worth of
00674  * Huffman-compressed coefficients. 
00675  * The coefficients are reordered from zigzag order into natural array order,
00676  * but are not dequantized.
00677  *
00678  * The i'th block of the MCU is stored into the block pointed to by
00679  * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
00680  * (Wholesale zeroing is usually a little faster than retail...)
00681  *
00682  * We return FALSE if data source requested suspension.  In that case no
00683  * changes have been made to permanent state.  (Exception: some output
00684  * coefficients may already have been assigned.  This is harmless for
00685  * spectral selection, since we'll just re-assign them on the next call.
00686  * Successive approximation AC refinement has to be more careful, however.)
00687  */
00688 
00689 /*
00690  * MCU decoding for DC initial scan (either spectral selection,
00691  * or first pass of successive approximation).
00692  */
00693 
00694 METHODDEF(boolean)
00695 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
00696 {   
00697   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
00698   int Al = cinfo->Al;
00699   register int s, r;
00700   int blkn, ci;
00701   JBLOCKROW block;
00702   BITREAD_STATE_VARS;
00703   savable_state state;
00704   d_derived_tbl * tbl;
00705   jpeg_component_info * compptr;
00706 
00707   /* Process restart marker if needed; may have to suspend */
00708   if (cinfo->restart_interval) {
00709     if (entropy->restarts_to_go == 0)
00710       if (! process_restart(cinfo))
00711         return FALSE;
00712   }
00713 
00714   /* If we've run out of data, just leave the MCU set to zeroes.
00715    * This way, we return uniform gray for the remainder of the segment.
00716    */
00717   if (! entropy->insufficient_data) {
00718 
00719     /* Load up working state */
00720     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
00721     ASSIGN_STATE(state, entropy->saved);
00722 
00723     /* Outer loop handles each block in the MCU */
00724 
00725     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
00726       block = MCU_data[blkn];
00727       ci = cinfo->MCU_membership[blkn];
00728       compptr = cinfo->cur_comp_info[ci];
00729       tbl = entropy->derived_tbls[compptr->dc_tbl_no];
00730 
00731       /* Decode a single block's worth of coefficients */
00732 
00733       /* Section F.2.2.1: decode the DC coefficient difference */
00734       HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
00735       if (s) {
00736         CHECK_BIT_BUFFER(br_state, s, return FALSE);
00737         r = GET_BITS(s);
00738         s = HUFF_EXTEND(r, s);
00739       }
00740 
00741       /* Convert DC difference to actual value, update last_dc_val */
00742       s += state.last_dc_val[ci];
00743       state.last_dc_val[ci] = s;
00744       /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
00745       (*block)[0] = (JCOEF) (s << Al);
00746     }
00747 
00748     /* Completed MCU, so update state */
00749     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
00750     ASSIGN_STATE(entropy->saved, state);
00751   }
00752 
00753   /* Account for restart interval (no-op if not using restarts) */
00754   entropy->restarts_to_go--;
00755 
00756   return TRUE;
00757 }
00758 
00759 
00760 /*
00761  * MCU decoding for AC initial scan (either spectral selection,
00762  * or first pass of successive approximation).
00763  */
00764 
00765 METHODDEF(boolean)
00766 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
00767 {   
00768   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
00769   register int s, k, r;
00770   unsigned int EOBRUN;
00771   int Se, Al;
00772   const int * natural_order;
00773   JBLOCKROW block;
00774   BITREAD_STATE_VARS;
00775   d_derived_tbl * tbl;
00776 
00777   /* Process restart marker if needed; may have to suspend */
00778   if (cinfo->restart_interval) {
00779     if (entropy->restarts_to_go == 0)
00780       if (! process_restart(cinfo))
00781         return FALSE;
00782   }
00783 
00784   /* If we've run out of data, just leave the MCU set to zeroes.
00785    * This way, we return uniform gray for the remainder of the segment.
00786    */
00787   if (! entropy->insufficient_data) {
00788 
00789     Se = cinfo->Se;
00790     Al = cinfo->Al;
00791     natural_order = cinfo->natural_order;
00792 
00793     /* Load up working state.
00794      * We can avoid loading/saving bitread state if in an EOB run.
00795      */
00796     EOBRUN = entropy->saved.EOBRUN;     /* only part of saved state we need */
00797 
00798     /* There is always only one block per MCU */
00799 
00800     if (EOBRUN > 0)             /* if it's a band of zeroes... */
00801       EOBRUN--;                 /* ...process it now (we do nothing) */
00802     else {
00803       BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
00804       block = MCU_data[0];
00805       tbl = entropy->ac_derived_tbl;
00806 
00807       for (k = cinfo->Ss; k <= Se; k++) {
00808         HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
00809         r = s >> 4;
00810         s &= 15;
00811         if (s) {
00812           k += r;
00813           CHECK_BIT_BUFFER(br_state, s, return FALSE);
00814           r = GET_BITS(s);
00815           s = HUFF_EXTEND(r, s);
00816           /* Scale and output coefficient in natural (dezigzagged) order */
00817           (*block)[natural_order[k]] = (JCOEF) (s << Al);
00818         } else {
00819           if (r == 15) {        /* ZRL */
00820             k += 15;            /* skip 15 zeroes in band */
00821           } else {              /* EOBr, run length is 2^r + appended bits */
00822             EOBRUN = 1 << r;
00823             if (r) {            /* EOBr, r > 0 */
00824               CHECK_BIT_BUFFER(br_state, r, return FALSE);
00825               r = GET_BITS(r);
00826               EOBRUN += r;
00827             }
00828             EOBRUN--;           /* this band is processed at this moment */
00829             break;              /* force end-of-band */
00830           }
00831         }
00832       }
00833 
00834       BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
00835     }
00836 
00837     /* Completed MCU, so update state */
00838     entropy->saved.EOBRUN = EOBRUN;     /* only part of saved state we need */
00839   }
00840 
00841   /* Account for restart interval (no-op if not using restarts) */
00842   entropy->restarts_to_go--;
00843 
00844   return TRUE;
00845 }
00846 
00847 
00848 /*
00849  * MCU decoding for DC successive approximation refinement scan.
00850  * Note: we assume such scans can be multi-component, although the spec
00851  * is not very clear on the point.
00852  */
00853 
00854 METHODDEF(boolean)
00855 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
00856 {   
00857   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
00858   int p1 = 1 << cinfo->Al;      /* 1 in the bit position being coded */
00859   int blkn;
00860   JBLOCKROW block;
00861   BITREAD_STATE_VARS;
00862 
00863   /* Process restart marker if needed; may have to suspend */
00864   if (cinfo->restart_interval) {
00865     if (entropy->restarts_to_go == 0)
00866       if (! process_restart(cinfo))
00867         return FALSE;
00868   }
00869 
00870   /* Not worth the cycles to check insufficient_data here,
00871    * since we will not change the data anyway if we read zeroes.
00872    */
00873 
00874   /* Load up working state */
00875   BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
00876 
00877   /* Outer loop handles each block in the MCU */
00878 
00879   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
00880     block = MCU_data[blkn];
00881 
00882     /* Encoded data is simply the next bit of the two's-complement DC value */
00883     CHECK_BIT_BUFFER(br_state, 1, return FALSE);
00884     if (GET_BITS(1))
00885       (*block)[0] |= p1;
00886     /* Note: since we use |=, repeating the assignment later is safe */
00887   }
00888 
00889   /* Completed MCU, so update state */
00890   BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
00891 
00892   /* Account for restart interval (no-op if not using restarts) */
00893   entropy->restarts_to_go--;
00894 
00895   return TRUE;
00896 }
00897 
00898 
00899 /*
00900  * MCU decoding for AC successive approximation refinement scan.
00901  */
00902 
00903 METHODDEF(boolean)
00904 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
00905 {   
00906   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
00907   register int s, k, r;
00908   unsigned int EOBRUN;
00909   int Se, p1, m1;
00910   const int * natural_order;
00911   JBLOCKROW block;
00912   JCOEFPTR thiscoef;
00913   BITREAD_STATE_VARS;
00914   d_derived_tbl * tbl;
00915   int num_newnz;
00916   int newnz_pos[DCTSIZE2];
00917 
00918   /* Process restart marker if needed; may have to suspend */
00919   if (cinfo->restart_interval) {
00920     if (entropy->restarts_to_go == 0)
00921       if (! process_restart(cinfo))
00922         return FALSE;
00923   }
00924 
00925   /* If we've run out of data, don't modify the MCU.
00926    */
00927   if (! entropy->insufficient_data) {
00928 
00929     Se = cinfo->Se;
00930     p1 = 1 << cinfo->Al;        /* 1 in the bit position being coded */
00931     m1 = (-1) << cinfo->Al;     /* -1 in the bit position being coded */
00932     natural_order = cinfo->natural_order;
00933 
00934     /* Load up working state */
00935     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
00936     EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
00937 
00938     /* There is always only one block per MCU */
00939     block = MCU_data[0];
00940     tbl = entropy->ac_derived_tbl;
00941 
00942     /* If we are forced to suspend, we must undo the assignments to any newly
00943      * nonzero coefficients in the block, because otherwise we'd get confused
00944      * next time about which coefficients were already nonzero.
00945      * But we need not undo addition of bits to already-nonzero coefficients;
00946      * instead, we can test the current bit to see if we already did it.
00947      */
00948     num_newnz = 0;
00949 
00950     /* initialize coefficient loop counter to start of band */
00951     k = cinfo->Ss;
00952 
00953     if (EOBRUN == 0) {
00954       for (; k <= Se; k++) {
00955         HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
00956         r = s >> 4;
00957         s &= 15;
00958         if (s) {
00959           if (s != 1)           /* size of new coef should always be 1 */
00960             WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
00961           CHECK_BIT_BUFFER(br_state, 1, goto undoit);
00962           if (GET_BITS(1))
00963             s = p1;             /* newly nonzero coef is positive */
00964           else
00965             s = m1;             /* newly nonzero coef is negative */
00966         } else {
00967           if (r != 15) {
00968             EOBRUN = 1 << r;    /* EOBr, run length is 2^r + appended bits */
00969             if (r) {
00970               CHECK_BIT_BUFFER(br_state, r, goto undoit);
00971               r = GET_BITS(r);
00972               EOBRUN += r;
00973             }
00974             break;              /* rest of block is handled by EOB logic */
00975           }
00976           /* note s = 0 for processing ZRL */
00977         }
00978         /* Advance over already-nonzero coefs and r still-zero coefs,
00979          * appending correction bits to the nonzeroes.  A correction bit is 1
00980          * if the absolute value of the coefficient must be increased.
00981          */
00982         do {
00983           thiscoef = *block + natural_order[k];
00984           if (*thiscoef != 0) {
00985             CHECK_BIT_BUFFER(br_state, 1, goto undoit);
00986             if (GET_BITS(1)) {
00987               if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
00988                 if (*thiscoef >= 0)
00989                   *thiscoef += p1;
00990                 else
00991                   *thiscoef += m1;
00992               }
00993             }
00994           } else {
00995             if (--r < 0)
00996               break;            /* reached target zero coefficient */
00997           }
00998           k++;
00999         } while (k <= Se);
01000         if (s) {
01001           int pos = natural_order[k];
01002           /* Output newly nonzero coefficient */
01003           (*block)[pos] = (JCOEF) s;
01004           /* Remember its position in case we have to suspend */
01005           newnz_pos[num_newnz++] = pos;
01006         }
01007       }
01008     }
01009 
01010     if (EOBRUN > 0) {
01011       /* Scan any remaining coefficient positions after the end-of-band
01012        * (the last newly nonzero coefficient, if any).  Append a correction
01013        * bit to each already-nonzero coefficient.  A correction bit is 1
01014        * if the absolute value of the coefficient must be increased.
01015        */
01016       for (; k <= Se; k++) {
01017         thiscoef = *block + natural_order[k];
01018         if (*thiscoef != 0) {
01019           CHECK_BIT_BUFFER(br_state, 1, goto undoit);
01020           if (GET_BITS(1)) {
01021             if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
01022               if (*thiscoef >= 0)
01023                 *thiscoef += p1;
01024               else
01025                 *thiscoef += m1;
01026             }
01027           }
01028         }
01029       }
01030       /* Count one block completed in EOB run */
01031       EOBRUN--;
01032     }
01033 
01034     /* Completed MCU, so update state */
01035     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
01036     entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
01037   }
01038 
01039   /* Account for restart interval (no-op if not using restarts) */
01040   entropy->restarts_to_go--;
01041 
01042   return TRUE;
01043 
01044 undoit:
01045   /* Re-zero any output coefficients that we made newly nonzero */
01046   while (num_newnz > 0)
01047     (*block)[newnz_pos[--num_newnz]] = 0;
01048 
01049   return FALSE;
01050 }
01051 
01052 
01053 /*
01054  * Decode one MCU's worth of Huffman-compressed coefficients,
01055  * partial blocks.
01056  */
01057 
01058 METHODDEF(boolean)
01059 decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
01060 {
01061   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
01062   const int * natural_order;
01063   int Se, blkn;
01064   BITREAD_STATE_VARS;
01065   savable_state state;
01066 
01067   /* Process restart marker if needed; may have to suspend */
01068   if (cinfo->restart_interval) {
01069     if (entropy->restarts_to_go == 0)
01070       if (! process_restart(cinfo))
01071         return FALSE;
01072   }
01073 
01074   /* If we've run out of data, just leave the MCU set to zeroes.
01075    * This way, we return uniform gray for the remainder of the segment.
01076    */
01077   if (! entropy->insufficient_data) {
01078 
01079     natural_order = cinfo->natural_order;
01080     Se = cinfo->lim_Se;
01081 
01082     /* Load up working state */
01083     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
01084     ASSIGN_STATE(state, entropy->saved);
01085 
01086     /* Outer loop handles each block in the MCU */
01087 
01088     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
01089       JBLOCKROW block = MCU_data[blkn];
01090       d_derived_tbl * htbl;
01091       register int s, k, r;
01092       int coef_limit, ci;
01093 
01094       /* Decode a single block's worth of coefficients */
01095 
01096       /* Section F.2.2.1: decode the DC coefficient difference */
01097       htbl = entropy->dc_cur_tbls[blkn];
01098       HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
01099 
01100       htbl = entropy->ac_cur_tbls[blkn];
01101       k = 1;
01102       coef_limit = entropy->coef_limit[blkn];
01103       if (coef_limit) {
01104         /* Convert DC difference to actual value, update last_dc_val */
01105         if (s) {
01106           CHECK_BIT_BUFFER(br_state, s, return FALSE);
01107           r = GET_BITS(s);
01108           s = HUFF_EXTEND(r, s);
01109         }
01110         ci = cinfo->MCU_membership[blkn];
01111         s += state.last_dc_val[ci];
01112         state.last_dc_val[ci] = s;
01113         /* Output the DC coefficient */
01114         (*block)[0] = (JCOEF) s;
01115 
01116         /* Section F.2.2.2: decode the AC coefficients */
01117         /* Since zeroes are skipped, output area must be cleared beforehand */
01118         for (; k < coef_limit; k++) {
01119           HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
01120 
01121           r = s >> 4;
01122           s &= 15;
01123 
01124           if (s) {
01125             k += r;
01126             CHECK_BIT_BUFFER(br_state, s, return FALSE);
01127             r = GET_BITS(s);
01128             s = HUFF_EXTEND(r, s);
01129             /* Output coefficient in natural (dezigzagged) order.
01130              * Note: the extra entries in natural_order[] will save us
01131              * if k > Se, which could happen if the data is corrupted.
01132              */
01133             (*block)[natural_order[k]] = (JCOEF) s;
01134           } else {
01135             if (r != 15)
01136               goto EndOfBlock;
01137             k += 15;
01138           }
01139         }
01140       } else {
01141         if (s) {
01142           CHECK_BIT_BUFFER(br_state, s, return FALSE);
01143           DROP_BITS(s);
01144         }
01145       }
01146 
01147       /* Section F.2.2.2: decode the AC coefficients */
01148       /* In this path we just discard the values */
01149       for (; k <= Se; k++) {
01150         HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
01151 
01152         r = s >> 4;
01153         s &= 15;
01154 
01155         if (s) {
01156           k += r;
01157           CHECK_BIT_BUFFER(br_state, s, return FALSE);
01158           DROP_BITS(s);
01159         } else {
01160           if (r != 15)
01161             break;
01162           k += 15;
01163         }
01164       }
01165 
01166       EndOfBlock: ;
01167     }
01168 
01169     /* Completed MCU, so update state */
01170     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
01171     ASSIGN_STATE(entropy->saved, state);
01172   }
01173 
01174   /* Account for restart interval (no-op if not using restarts) */
01175   entropy->restarts_to_go--;
01176 
01177   return TRUE;
01178 }
01179 
01180 
01181 /*
01182  * Decode one MCU's worth of Huffman-compressed coefficients,
01183  * full-size blocks.
01184  */
01185 
01186 METHODDEF(boolean)
01187 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
01188 {
01189   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
01190   int blkn;
01191   BITREAD_STATE_VARS;
01192   savable_state state;
01193 
01194   /* Process restart marker if needed; may have to suspend */
01195   if (cinfo->restart_interval) {
01196     if (entropy->restarts_to_go == 0)
01197       if (! process_restart(cinfo))
01198         return FALSE;
01199   }
01200 
01201   /* If we've run out of data, just leave the MCU set to zeroes.
01202    * This way, we return uniform gray for the remainder of the segment.
01203    */
01204   if (! entropy->insufficient_data) {
01205 
01206     /* Load up working state */
01207     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
01208     ASSIGN_STATE(state, entropy->saved);
01209 
01210     /* Outer loop handles each block in the MCU */
01211 
01212     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
01213       JBLOCKROW block = MCU_data[blkn];
01214       d_derived_tbl * htbl;
01215       register int s, k, r;
01216       int coef_limit, ci;
01217 
01218       /* Decode a single block's worth of coefficients */
01219 
01220       /* Section F.2.2.1: decode the DC coefficient difference */
01221       htbl = entropy->dc_cur_tbls[blkn];
01222       HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
01223 
01224       htbl = entropy->ac_cur_tbls[blkn];
01225       k = 1;
01226       coef_limit = entropy->coef_limit[blkn];
01227       if (coef_limit) {
01228         /* Convert DC difference to actual value, update last_dc_val */
01229         if (s) {
01230           CHECK_BIT_BUFFER(br_state, s, return FALSE);
01231           r = GET_BITS(s);
01232           s = HUFF_EXTEND(r, s);
01233         }
01234         ci = cinfo->MCU_membership[blkn];
01235         s += state.last_dc_val[ci];
01236         state.last_dc_val[ci] = s;
01237         /* Output the DC coefficient */
01238         (*block)[0] = (JCOEF) s;
01239 
01240         /* Section F.2.2.2: decode the AC coefficients */
01241         /* Since zeroes are skipped, output area must be cleared beforehand */
01242         for (; k < coef_limit; k++) {
01243           HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
01244 
01245           r = s >> 4;
01246           s &= 15;
01247 
01248           if (s) {
01249             k += r;
01250             CHECK_BIT_BUFFER(br_state, s, return FALSE);
01251             r = GET_BITS(s);
01252             s = HUFF_EXTEND(r, s);
01253             /* Output coefficient in natural (dezigzagged) order.
01254              * Note: the extra entries in jpeg_natural_order[] will save us
01255              * if k >= DCTSIZE2, which could happen if the data is corrupted.
01256              */
01257             (*block)[jpeg_natural_order[k]] = (JCOEF) s;
01258           } else {
01259             if (r != 15)
01260               goto EndOfBlock;
01261             k += 15;
01262           }
01263         }
01264       } else {
01265         if (s) {
01266           CHECK_BIT_BUFFER(br_state, s, return FALSE);
01267           DROP_BITS(s);
01268         }
01269       }
01270 
01271       /* Section F.2.2.2: decode the AC coefficients */
01272       /* In this path we just discard the values */
01273       for (; k < DCTSIZE2; k++) {
01274         HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
01275 
01276         r = s >> 4;
01277         s &= 15;
01278 
01279         if (s) {
01280           k += r;
01281           CHECK_BIT_BUFFER(br_state, s, return FALSE);
01282           DROP_BITS(s);
01283         } else {
01284           if (r != 15)
01285             break;
01286           k += 15;
01287         }
01288       }
01289 
01290       EndOfBlock: ;
01291     }
01292 
01293     /* Completed MCU, so update state */
01294     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
01295     ASSIGN_STATE(entropy->saved, state);
01296   }
01297 
01298   /* Account for restart interval (no-op if not using restarts) */
01299   entropy->restarts_to_go--;
01300 
01301   return TRUE;
01302 }
01303 
01304 
01305 /*
01306  * Initialize for a Huffman-compressed scan.
01307  */
01308 
01309 METHODDEF(void)
01310 start_pass_huff_decoder (j_decompress_ptr cinfo)
01311 {
01312   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
01313   int ci, blkn, tbl, i;
01314   jpeg_component_info * compptr;
01315 
01316   if (cinfo->progressive_mode) {
01317     /* Validate progressive scan parameters */
01318     if (cinfo->Ss == 0) {
01319       if (cinfo->Se != 0)
01320         goto bad;
01321     } else {
01322       /* need not check Ss/Se < 0 since they came from unsigned bytes */
01323       if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
01324         goto bad;
01325       /* AC scans may have only one component */
01326       if (cinfo->comps_in_scan != 1)
01327         goto bad;
01328     }
01329     if (cinfo->Ah != 0) {
01330       /* Successive approximation refinement scan: must have Al = Ah-1. */
01331       if (cinfo->Ah-1 != cinfo->Al)
01332         goto bad;
01333     }
01334     if (cinfo->Al > 13) {       /* need not check for < 0 */
01335       /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
01336        * but the spec doesn't say so, and we try to be liberal about what we
01337        * accept.  Note: large Al values could result in out-of-range DC
01338        * coefficients during early scans, leading to bizarre displays due to
01339        * overflows in the IDCT math.  But we won't crash.
01340        */
01341       bad:
01342       ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
01343                cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
01344     }
01345     /* Update progression status, and verify that scan order is legal.
01346      * Note that inter-scan inconsistencies are treated as warnings
01347      * not fatal errors ... not clear if this is right way to behave.
01348      */
01349     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
01350       int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
01351       int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
01352       if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
01353         WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
01354       for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
01355         int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
01356         if (cinfo->Ah != expected)
01357           WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
01358         coef_bit_ptr[coefi] = cinfo->Al;
01359       }
01360     }
01361 
01362     /* Select MCU decoding routine */
01363     if (cinfo->Ah == 0) {
01364       if (cinfo->Ss == 0)
01365         entropy->pub.decode_mcu = decode_mcu_DC_first;
01366       else
01367         entropy->pub.decode_mcu = decode_mcu_AC_first;
01368     } else {
01369       if (cinfo->Ss == 0)
01370         entropy->pub.decode_mcu = decode_mcu_DC_refine;
01371       else
01372         entropy->pub.decode_mcu = decode_mcu_AC_refine;
01373     }
01374 
01375     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
01376       compptr = cinfo->cur_comp_info[ci];
01377       /* Make sure requested tables are present, and compute derived tables.
01378        * We may build same derived table more than once, but it's not expensive.
01379        */
01380       if (cinfo->Ss == 0) {
01381         if (cinfo->Ah == 0) {   /* DC refinement needs no table */
01382           tbl = compptr->dc_tbl_no;
01383           jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
01384                                   & entropy->derived_tbls[tbl]);
01385         }
01386       } else {
01387         tbl = compptr->ac_tbl_no;
01388         jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
01389                                 & entropy->derived_tbls[tbl]);
01390         /* remember the single active table */
01391         entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
01392       }
01393       /* Initialize DC predictions to 0 */
01394       entropy->saved.last_dc_val[ci] = 0;
01395     }
01396 
01397     /* Initialize private state variables */
01398     entropy->saved.EOBRUN = 0;
01399   } else {
01400     /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
01401      * This ought to be an error condition, but we make it a warning because
01402      * there are some baseline files out there with all zeroes in these bytes.
01403      */
01404     if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
01405         ((cinfo->is_baseline || cinfo->Se < DCTSIZE2) &&
01406         cinfo->Se != cinfo->lim_Se))
01407       WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
01408 
01409     /* Select MCU decoding routine */
01410     /* We retain the hard-coded case for full-size blocks.
01411      * This is not necessary, but it appears that this version is slightly
01412      * more performant in the given implementation.
01413      * With an improved implementation we would prefer a single optimized
01414      * function.
01415      */
01416     if (cinfo->lim_Se != DCTSIZE2-1)
01417       entropy->pub.decode_mcu = decode_mcu_sub;
01418     else
01419       entropy->pub.decode_mcu = decode_mcu;
01420 
01421     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
01422       compptr = cinfo->cur_comp_info[ci];
01423       /* Compute derived values for Huffman tables */
01424       /* We may do this more than once for a table, but it's not expensive */
01425       tbl = compptr->dc_tbl_no;
01426       jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
01427                               & entropy->dc_derived_tbls[tbl]);
01428       if (cinfo->lim_Se) {      /* AC needs no table when not present */
01429         tbl = compptr->ac_tbl_no;
01430         jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
01431                                 & entropy->ac_derived_tbls[tbl]);
01432       }
01433       /* Initialize DC predictions to 0 */
01434       entropy->saved.last_dc_val[ci] = 0;
01435     }
01436 
01437     /* Precalculate decoding info for each block in an MCU of this scan */
01438     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
01439       ci = cinfo->MCU_membership[blkn];
01440       compptr = cinfo->cur_comp_info[ci];
01441       /* Precalculate which table to use for each block */
01442       entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
01443       entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
01444       /* Decide whether we really care about the coefficient values */
01445       if (compptr->component_needed) {
01446         ci = compptr->DCT_v_scaled_size;
01447         i = compptr->DCT_h_scaled_size;
01448         switch (cinfo->lim_Se) {
01449         case (1*1-1):
01450           entropy->coef_limit[blkn] = 1;
01451           break;
01452         case (2*2-1):
01453           if (ci <= 0 || ci > 2) ci = 2;
01454           if (i <= 0 || i > 2) i = 2;
01455           entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1];
01456           break;
01457         case (3*3-1):
01458           if (ci <= 0 || ci > 3) ci = 3;
01459           if (i <= 0 || i > 3) i = 3;
01460           entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1];
01461           break;
01462         case (4*4-1):
01463           if (ci <= 0 || ci > 4) ci = 4;
01464           if (i <= 0 || i > 4) i = 4;
01465           entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1];
01466           break;
01467         case (5*5-1):
01468           if (ci <= 0 || ci > 5) ci = 5;
01469           if (i <= 0 || i > 5) i = 5;
01470           entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1];
01471           break;
01472         case (6*6-1):
01473           if (ci <= 0 || ci > 6) ci = 6;
01474           if (i <= 0 || i > 6) i = 6;
01475           entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1];
01476           break;
01477         case (7*7-1):
01478           if (ci <= 0 || ci > 7) ci = 7;
01479           if (i <= 0 || i > 7) i = 7;
01480           entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1];
01481           break;
01482         default:
01483           if (ci <= 0 || ci > 8) ci = 8;
01484           if (i <= 0 || i > 8) i = 8;
01485           entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1];
01486           break;
01487         }
01488       } else {
01489         entropy->coef_limit[blkn] = 0;
01490       }
01491     }
01492   }
01493 
01494   /* Initialize bitread state variables */
01495   entropy->bitstate.bits_left = 0;
01496   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
01497   entropy->insufficient_data = FALSE;
01498 
01499   /* Initialize restart counter */
01500   entropy->restarts_to_go = cinfo->restart_interval;
01501 }
01502 
01503 
01504 /*
01505  * Module initialization routine for Huffman entropy decoding.
01506  */
01507 
01508 GLOBAL(void)
01509 jinit_huff_decoder (j_decompress_ptr cinfo)
01510 {
01511   huff_entropy_ptr entropy;
01512   int i;
01513 
01514   entropy = (huff_entropy_ptr)
01515     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
01516                                 SIZEOF(huff_entropy_decoder));
01517   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
01518   entropy->pub.start_pass = start_pass_huff_decoder;
01519 
01520   if (cinfo->progressive_mode) {
01521     /* Create progression status table */
01522     int *coef_bit_ptr, ci;
01523     cinfo->coef_bits = (int (*)[DCTSIZE2])
01524       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
01525                                   cinfo->num_components*DCTSIZE2*SIZEOF(int));
01526     coef_bit_ptr = & cinfo->coef_bits[0][0];
01527     for (ci = 0; ci < cinfo->num_components; ci++)
01528       for (i = 0; i < DCTSIZE2; i++)
01529         *coef_bit_ptr++ = -1;
01530 
01531     /* Mark derived tables unallocated */
01532     for (i = 0; i < NUM_HUFF_TBLS; i++) {
01533       entropy->derived_tbls[i] = NULL;
01534     }
01535   } else {
01536     /* Mark tables unallocated */
01537     for (i = 0; i < NUM_HUFF_TBLS; i++) {
01538       entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
01539     }
01540   }
01541 }

Generated on Tue Jul 5 14:13:29 2011 for ROOT_528-00b_version by  doxygen 1.5.1