GeneticFitter.h

Go to the documentation of this file.
00001 // @(#)root/tmva $Id: GeneticFitter.h 20882 2007-11-19 11:31:26Z rdm $ 
00002 // Author: Peter Speckmayer
00003 
00004 /**********************************************************************************
00005  * Project: TMVA - a Root-integrated toolkit for multivariate data analysis       *
00006  * Package: TMVA                                                                  *
00007  * Class  : GeneticFitter                                                         *
00008  * Web    : http://tmva.sourceforge.net                                           *
00009  *                                                                                *
00010  * Description:                                                                   *
00011  *       Fitter using a Genetic Algorithm                                         *
00012  *                                                                                *
00013  * Authors (alphabetical):                                                        *
00014  *      Peter Speckmayer <speckmay@mail.cern.ch>  - CERN, Switzerland             *
00015  *                                                                                *
00016  * Copyright (c) 2005:                                                            *
00017  *      CERN, Switzerland                                                         * 
00018  *      MPI-K Heidelberg, Germany                                                 * 
00019  *                                                                                *
00020  * Redistribution and use in source and binary forms, with or without             *
00021  * modification, are permitted according to the terms listed in LICENSE           *
00022  * (http://tmva.sourceforge.net/LICENSE)                                          *
00023  **********************************************************************************/
00024 
00025 #ifndef ROOT_TMVA_GeneticFitter
00026 #define ROOT_TMVA_GeneticFitter
00027 
00028 //////////////////////////////////////////////////////////////////////////
00029 //                                                                      //
00030 // GeneticFitter                                                        //
00031 //                                                                      //
00032 // Fitter using a Genetic Algorithm                                     //
00033 //                                                                      //
00034 //////////////////////////////////////////////////////////////////////////
00035 
00036 #ifndef ROOT_TMVA_FitterBase
00037 #include "TMVA/FitterBase.h"
00038 #endif
00039 
00040 namespace TMVA {
00041 
00042    class IFitterTarget;
00043    class Interval;
00044 
00045    class GeneticFitter : public FitterBase {
00046 
00047    public:
00048 
00049       GeneticFitter( IFitterTarget& target, const TString& name, 
00050                      const std::vector<TMVA::Interval*>& ranges, const TString& theOption );
00051 
00052       virtual ~GeneticFitter() {}
00053 
00054       void SetParameters( Int_t cycles,
00055                           Int_t nsteps,
00056                           Int_t popSize,
00057                           Int_t SC_steps,
00058                           Int_t SC_rate,
00059                           Double_t SC_factor,
00060                           Double_t convCrit );
00061 
00062       Double_t Run( std::vector<Double_t>& pars );
00063 
00064       Double_t NewFitness( Double_t oldF, Double_t newF ) { return oldF + newF; }
00065 
00066    private:
00067 
00068       void DeclareOptions();
00069 
00070       Int_t fCycles;                    // number of (nearly) independent calculation cycles
00071       Int_t fNsteps;                    // convergence criteria: if no improvements > fConvCrit was achieved within the last fNsteps: cycle has "converged"
00072       Int_t fPopSize;                   // number of individuals to start with
00073       Int_t fSC_steps;                  // regulates how strong the mutations for the coordinates are: if within fSC_steps there were more than...
00074       Int_t fSC_rate;                   // ... fSC_rate improvements, than multiply the sigma of the gaussion which defines how the random numbers are generated ...
00075       Double_t fSC_factor;              // ... with fSC_factor; if there were less improvements: divide by that factor; if there were exactly fSC_rate improvements, dont change anything
00076       Double_t fConvCrit;               // improvements bigger than fConvCrit are counted as "improvement"
00077       Int_t fSaveBestFromGeneration;    // store the best individuals from one generation (these are included as "hints" in the last cycle of GA calculation)
00078       Int_t fSaveBestFromCycle;         // store the best individuals from one cycle (these are included as "hints" in the last cycle of GA calculation)
00079       Bool_t fTrim;                     // take care, that the number of individuals is less fPopSize (trimming is done after the fitness of the individuals is assessed)
00080       UInt_t fSeed;                     // Seed for the random generator (0 takes random seeds)
00081       
00082       ClassDef(GeneticFitter,0) // Fitter using a Genetic Algorithm
00083    };
00084 
00085 } // namespace TMVA
00086 
00087 #endif
00088 
00089 

Generated on Tue Jul 5 14:27:29 2011 for ROOT_528-00b_version by  doxygen 1.5.1