GiniIndex.h

Go to the documentation of this file.
00001 // @(#)root/tmva $Id: GiniIndex.h 29122 2009-06-22 06:51:30Z brun $ 
00002 // Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss 
00003 
00004 /**********************************************************************************
00005  * Project: TMVA - a Root-integrated toolkit for multivariate data analysis       *
00006  * Package: TMVA                                                                  *
00007  * Class  : GiniIndex                                                             *
00008  * Web    : http://tmva.sourceforge.net                                           *
00009  *                                                                                *
00010  * Description: Implementation of the GiniIndex as separation criterion           *
00011  *              Large Gini Indices (maximum 0.5) mean , that the sample is well   *
00012  *              mixed (same amount of signal and bkg)                             *
00013  *              bkg. Small Indices mean, well separated.                          *
00014  *              general defniniton:                                               *     
00015  *              Gini(Sample M) = 1 - (c(1)/N)^2 - (c(2)/N)^2 .... - (c(k)/N)^2    * 
00016  *              Where: M is a smaple of whatever N elements (events)              *
00017  *                     that belong to K different classes                         *
00018  *                     c(k) is the number of elements that belong to class k      *
00019  *              for just Signal and Background classes this boils down to:        *
00020  *              Gini(Sample) = 2s*b/(s+b)^2                                       *
00021  *                                                                                *
00022  *                                                                                *
00023  * Authors (alphabetical):                                                        *
00024  *      Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland              *
00025  *      Helge Voss      <Helge.Voss@cern.ch>     - MPI-K Heidelberg, Germany      *
00026  *      Kai Voss        <Kai.Voss@cern.ch>       - U. of Victoria, Canada         *
00027  *                                                                                *
00028  * Copyright (c) 2005:                                                            *
00029  *      CERN, Switzerland                                                         * 
00030  *      U. of Victoria, Canada                                                    * 
00031  *      Heidelberg U., Germany                                                    * 
00032  *                                                                                *
00033  * Redistribution and use in source and binary forms, with or without             *
00034  * modification, are permitted according to the terms listed in LICENSE           *
00035  * (http://ttmva.sourceforge.net/LICENSE)                                         *
00036  **********************************************************************************/
00037 
00038 #ifndef ROOT_TMVA_GiniIndex
00039 #define ROOT_TMVA_GiniIndex
00040 
00041 //////////////////////////////////////////////////////////////////////////
00042 //                                                                      //
00043 // GiniIndex                                                            //
00044 //                                                                      //
00045 // Implementation of the GiniIndex as separation criterion              //
00046 //                                                                      //
00047 //     Large Gini Indices (maximum 0.5) mean , that the sample is well  //
00048 //     mixed (same amount of signal and bkg)                            //
00049 //     bkg. Small Indices mean, well separated.                         //
00050 //     general defniniton:                                              //     
00051 //     Gini(Sample M) = 1 - (c(1)/N)^2 - (c(2)/N)^2 .... - (c(k)/N)^2   // 
00052 //     Where: M is a smaple of whatever N elements (events)             //
00053 //            that belong to K different classes                        //
00054 //            c(k) is the number of elements that belong to class k     //
00055 //     for just Signal and Background classes this boils down to:       //
00056 //     Gini(Sample) = 2s*b/(s+b)^2                                      //  
00057 //////////////////////////////////////////////////////////////////////////
00058 
00059 #ifndef ROOT_TMVA_SeparationBase
00060 #include "TMVA/SeparationBase.h"
00061 #endif
00062 
00063 namespace TMVA {
00064 
00065    class GiniIndex : public SeparationBase {
00066       
00067    public:
00068       
00069       // construtor for the GiniIndex
00070       GiniIndex() { fName="Gini"; }
00071 
00072       // copy constructor
00073       GiniIndex( const GiniIndex& g): SeparationBase(g) {}
00074 
00075       //destructor
00076       virtual ~GiniIndex(){}
00077       
00078       // Return the separation index (a measure for "purity" of the sample")
00079       virtual Double_t GetSeparationIndex( const Double_t &s, const Double_t &b );
00080 
00081    protected:
00082       
00083       ClassDef(GiniIndex,0) // Implementation of the GiniIndex as separation criterion
00084    };  
00085 
00086 } // namespace TMVA
00087 
00088 #endif
00089 

Generated on Tue Jul 5 14:27:29 2011 for ROOT_528-00b_version by  doxygen 1.5.1