//*-- AUTHOR : Ilse Koenig
//*-- Modified : 17/01/2002 by Ilse Koenig
//*-- Modified : 17/02/2000 by J. Kempter
//*-- Modified : 24/08/99 by R. Holzmann
//*-- Modified : 29/07/99 by Ilse Koenig
//_HADES_CLASS_DESCRIPTION
///////////////////////////////////////////////////////////////////////////////
//
// HMdcCalibrater1
//
// This transformation class calculates the drift time information in all fired
// cells using parameters from the parameter containers MdcCalParRaw for the
// calibration parameters and from MdcLookupGeom to map the layer number and
// cell number on Cal1 level to the motherboard number and TDC channel number
// on Raw level.
// The drift times are randomized within one bin of TDC resolution.
//
// The constructor gives different options how to fill HMdcCal1 level:
// HMdcCalibrater1(name,title,option input, otption timecut, option embedding )
// option input = 1 No Start and Cal (default)
// 2 Start and Cal
// 3 No Start and no Cal
// option timecut = 1 time cuts switched on
// 0 time cuts switched off
// option embedding = 0 no embedding
// = 1 embedding
// Start means that the startime from the Startdetector will be used to correct.
// Cal means real calibration with parameters from HMdcCalParRaw
// If no Cal (3)is selected no input from HMdcCalParRaw is needed
// and the TDC slope parameter will be always 1.The offset is set to 2048
// which means that the HMdcCal1 level will be a reversed copy of HMdcRaw.
///////////////////////////////////////////////////////////////////////////////
using namespace std;
#include "hmdccalibrater1.h"
#include "hmdcdef.h"
#include "hdebug.h"
#include "hades.h"
#include "hiterator.h"
#include "hruntimedb.h"
#include "hspectrometer.h"
#include "hdetector.h"
#include "hmdcdetector.h"
#include "hevent.h"
#include "hcategory.h"
#include "hlocation.h"
#include "hmdcraw.h"
#include "hmdccal1.h"
#include "hmdccal1sim.h"
#include "hmdccalparraw.h"
#include "hmdctimecut.h"
#include "hmdccutstat.h"
#include "hmdclookupgeom.h"
#include "hstarthit.h"
#include <iostream>
#include <iomanip>
#include <stdlib.h>
Float_t HMdcCalibrater1::globalOffset[4]={0,0,0,0};
Float_t HMdcCalibrater1::globalSlope=1;
Int_t HMdcCalibrater1::countNrWiresPerMod[6][4]=
{
{0,0,0,0},
{0,0,0,0},
{0,0,0,0},
{0,0,0,0},
{0,0,0,0},
{0,0,0,0}};
Int_t HMdcCalibrater1::countNrWiresPerModCal[6][4]=
{
{0,0,0,0},
{0,0,0,0},
{0,0,0,0},
{0,0,0,0},
{0,0,0,0},
{0,0,0,0}};
ClassImp(HMdcCalibrater1)
HMdcCalibrater1::HMdcCalibrater1(void) {
// Default constructor .
initParameters();
}
HMdcCalibrater1::HMdcCalibrater1(Text_t* name,Text_t* title,Int_t vers,Int_t cut,Int_t merge)
: HReconstructor(name,title) {
// Constructor calls the constructor of class HReconstructor with the name
// and the title as arguments.
initParameters();
switchArguments(vers,cut,merge);
}
HMdcCalibrater1::~HMdcCalibrater1(void) {
// destructor deletes the iterator
if (iter) delete iter;
iter=0;
if (iterstart) delete iterstart;
iterstart=0;
if(cutStat)HMdcCutStat::deleteHMdcCutStat();
}
void HMdcCalibrater1::switchArguments(Int_t vers,Int_t cut,Int_t merge)
{
if(cut==0 || cut==1)
{
if(cut==0) setTimeCut=kFALSE;
if(cut==1) setTimeCut=kTRUE;
}
else
{
Error("HMdcCalibrater1:switchArguments(Int_t vers,Int_t cut,Int_t merge):"
,"n unknown argument cut: use n 0 for no time cuts n 1 for time cuts");
exit(1);
}
if(vers==1 || vers==2 || vers==3)
{
if(vers==1)
{
NoStartandCal=kTRUE;
StartandCal=kFALSE;
NoStartandNoCal=kFALSE;
}
if(vers==2)
{
StartandCal=kTRUE;
NoStartandCal=kFALSE;
NoStartandNoCal=kFALSE;
}
if(vers==3)
{
NoStartandNoCal=kTRUE;
StartandCal=kFALSE;
NoStartandCal=kFALSE;
}
}
else
{
Error("HMdcCalibrater1:switchArguments(Int_t vers,Int_t cut,Int_t merge):"
,"n unknown argument vers: use n 1 for nostartandcal,n 2 for startandcal,n 3 for nostartandnocal,n ");
exit(1);
}
if(merge==0 || merge==1)
{
embedding=merge;
}
else
{
Error("HMdcCalibrater1:switchArguments(Int_t vers,Int_t cut,Int_t merge):"
,"n unknown argument merge: use n 0 for normal mode,n 1 for embedding!n ");
exit(1);
}
}
void HMdcCalibrater1::initParameters()
{
rawCat=0;
calCat=0;
raw=0;
cal=0;
startHitCat=0;
iter=0;
iterstart=0;
calparraw=0;
timecut=0;
cutStat=0;
lookup=0;
NoStartandNoCal=kFALSE;
StartandCal=kFALSE;
NoStartandCal=kTRUE;
setTimeCut=kFALSE;
hasPrinted=kFALSE;
embedding=0;
cutthreshold=100;
useMultCut=kFALSE;
doprint=kFALSE;
}
void HMdcCalibrater1::setParContainers() {
// creates the parameter containers MdcCalParRaw and MdcLookupGeom if they do not
// exist and adds them to the list of parameter containers in the rumtime
// database
lookup=(HMdcLookupGeom*)(((HRuntimeDb*)(gHades->getRuntimeDb()))->getContainer("MdcLookupGeom"));
if(setTimeCut) {
timecut=(HMdcTimeCut*)(((HRuntimeDb*)(gHades->getRuntimeDb()))->getContainer("MdcTimeCut"));
timecut->setIsUsed(kTRUE);
}
if(setTimeCut==kTRUE)
{
cutStat=(HMdcCutStat*)HMdcCutStat::getObject();
if(!cutStat)
{
Error("HMdcCalibrater1:setParContainers()","RETRIEVED 0 POINTER FOR HMDCCUTSTAT!");
exit(1);
}
}
if(StartandCal||NoStartandCal){
calparraw=(HMdcCalParRaw*)(((HRuntimeDb*)(gHades->getRuntimeDb()))->getContainer("MdcCalParRaw"));
}
}
Bool_t HMdcCalibrater1::init(void) {
// creates the MdcRaw and MdcCal1 categories and adds them to the current
// event
// creates an iterator which loops over all fired cells
// calls the function setParContainers()
if(gHades->getEmbeddingMode()>0)
{
if(embedding==0)
{
Warning("HMdcCalibrater1::init()","global embedding mode >0 detected, but local running embedding==0, switch to common mode!");
embedding=1;
}
}
setParContainers();
rawCat=(HCategory*)(((HEvent*)(gHades->getCurrentEvent()))->getCategory(catMdcRaw));
if (!rawCat) {
Error("HMdcCalibrater1:init()","HMdcRaw Category not available!");
exit(1);
}
calCat=(HCategory*)(((HEvent*)(gHades->getCurrentEvent()))->getCategory(catMdcCal1));
if (!calCat) {
if(embedding==0)calCat=(HCategory*)((HMdcDetector*)(((HSpectrometer*)(gHades->getSetup()))->getDetector("Mdc"))->buildCategory(catMdcCal1));
if(embedding==1)
{
HMdcDetector* mymdc=(HMdcDetector*)(((HSpectrometer*)(gHades->getSetup()))->getDetector("Mdc"));
calCat=(HCategory*)(((HMdcDetector*)mymdc)->buildMatrixCategory("HMdcCal1Sim",0.5F));
}
if (!calCat) return kFALSE;
else ((HEvent*)(gHades->getCurrentEvent()))->addCategory(catMdcCal1,calCat,"Mdc");
}
if(StartandCal){
startHitCat=(HCategory*)(((HEvent*)(gHades->getCurrentEvent()))->getCategory(catStartHit));
if (!startHitCat) {
Error("HMdcCalibrater1:init()","StartHit Category not available,n but Option StartAndCal used!");
exit(1);
}
}
iter=(HIterator *)((HCategory*)rawCat)->MakeIterator("native");
loc.set(4,0,0,0,0);
if(StartandCal){
iterstart=(HIterator *)((HCategory*)startHitCat)->MakeIterator("native");
}
if(!hasPrinted)printStatus();
fActive=kTRUE;
return kTRUE;
}
void HMdcCalibrater1::printStatus()
{
Int_t ModeFlagCal1,TimeCutFlagCal1;
ModeFlagCal1=TimeCutFlagCal1=-99;
if(NoStartandCal) ModeFlagCal1 =1;
if(StartandCal) ModeFlagCal1 =2;
if(NoStartandNoCal)ModeFlagCal1 =3;
if(!setTimeCut) TimeCutFlagCal1=0;
if(setTimeCut) TimeCutFlagCal1=1;
// prints the parameters to the screen
SEPERATOR_msg("-",60);
INFO_msg(10,HMessageMgr::DET_MDC,"HMdcCalibrater1Setup:");
gHades->getMsg()->info(10,HMessageMgr::DET_MDC,GetName()
,"ModeFlagCal1 = %i : 1 = NoStartandCal, 2 = StartandCal, 3 = NoStartandNoCal",ModeFlagCal1);
gHades->getMsg()->info(10,HMessageMgr::DET_MDC,GetName()
,"TimeCutFlagCal1 = %i : 0 = noTimeCut , 1 = TimeCut",TimeCutFlagCal1);
gHades->getMsg()->info(10,HMessageMgr::DET_MDC,GetName()
,"Embedding = %i : 0 = noEmbedding , 1 = Embedding",embedding);
gHades->getMsg()->info(10,HMessageMgr::DET_MDC,GetName()
,"MultCut = %i : 0 = noCut , 1 = Cut",(Int_t)useMultCut);
gHades->getMsg()->info(10,HMessageMgr::DET_MDC,GetName()
,"Cut Threshold = %i ",cutthreshold);
SEPERATOR_msg("-",60);
hasPrinted=kTRUE;
}
Float_t HMdcCalibrater1::getstarttime(){
// Need some work for multiple hists in start detector
// Better select multiplicity 1 in start.
Int_t i=0;
Int_t startmod=-1;
HStartHit* starthit=0;
iterstart->Reset();
Float_t starttime=0;
while ((starthit=(HStartHit *)iterstart->Next())!=0) {
startmod=starthit->getModule();
if(startmod==0)
{
i++;
if(starthit->getFlag()) starttime=starthit->getTime();
}
}
if (i>1) Error("getstarttime(int)","Multiplicity in Start > 1");
return starttime;
}
Bool_t HMdcCalibrater1::translateAddress(Int_t* mbo,Int_t* ch)
{
raw->getAddress(loc[0],loc[1],*mbo,*ch);
if (loc[0]<0 || loc[1]<0) return kFALSE;
HMdcLookupChan& chan=(*lookup)[loc[0]][loc[1]][*mbo][*ch];
loc[2]=chan.getNLayer();
loc[3]=chan.getNCell();
return kTRUE;
}
Bool_t HMdcCalibrater1::testTimeCuts(Float_t testTime1,Float_t testTime2){
// tests if the measured time will pass the time cuts
//
if(setTimeCut==kTRUE)
{
if(timecut->cutTime1(loc[0],loc[1],testTime1))
{cuts[0]=0;}else{cuts[0]=1;}
if(timecut->cutTime2(loc[0],loc[1],testTime2))
{cuts[1]=0;}else{cuts[1]=1;}
if(timecut->cutTimesDif(loc[0],loc[1],testTime1,testTime2))
{cuts[2]=0;}else{cuts[2]=1;};
if(countNrWiresPerMod[(Int_t)loc[0]][(Int_t)loc[1]]>3)
{cuts[3]=0;}else{cuts[3]=1;};
cutStat->setCal1StatCut((Int_t)loc[0],(Int_t)loc[1],cuts[0],cuts[1],cuts[2],cuts[3]);
}
if(timecut->cutTime1(loc[0],loc[1],testTime1)&&
timecut->cutTime2(loc[0],loc[1],testTime2)&&
timecut->cutTimesDif(loc[0],loc[1],testTime1,testTime2))
{
return kTRUE;
}
else
{
return kFALSE;
}
}
void HMdcCalibrater1::countWiresPerMod()
{
// counts the number of fired wires per mod
//
raw=0;
iter->Reset();
while ((raw=(HMdcRaw *)iter->Next())!=0)
{
raw->getAddress(loc[0],loc[1],loc[2],loc[3]);
countNrWiresPerMod[(Int_t)loc[0]][(Int_t)loc[1]]++;
}
}
void HMdcCalibrater1::fillCal1(Float_t testTime1,Float_t testTime2,Int_t nHits)
{
// fill time1,time2 and nHits to Cal1
//
if(embedding==0)
{
cal=(HMdcCal1 *)calCat->getSlot(loc);
cal=new(cal) HMdcCal1;
}
else
{
cal=(HMdcCal1Sim *)calCat->getSlot(loc);
cal=new(cal) HMdcCal1Sim;
}
if(cal)
{
cal->setNHits(nHits);
cal->setAddress(loc[0],loc[1],loc[2],loc[3]);
countNrWiresPerModCal[loc[0]][loc[1]]++; // counting per module
if(StartandCal||NoStartandCal)
{
cal->setTime1(testTime1);
cal->setTime2(testTime2);
}
if(NoStartandNoCal)
{
cal->setTime1(testTime1);
if (abs(nHits)>=2)
{
cal->setTime2(testTime2);
}
}
}
else
{
Warning("HMdcCalibrater1::fillCal1()","NO SLOT AVAILABLE IN catMdcCal1 FOR SECTOR %i . n SIZE OF CATEGORY IS %i .",loc[0],calCat->getEntries());
}
}
void HMdcCalibrater1::calcTimes(Float_t* testTime1,Float_t* testTime2,Float_t starttime,Int_t nHits,HMdcCalParTdc* tdc)
{
// calc testtime1,testtime2
//
if(NoStartandCal)
{
*testTime1=(tdc->getOffset() -
(((Float_t)(raw->getTime(1)) + gRandom->Rndm() - 0.5F)
* tdc->getSlope()))-globalOffset[loc[1]];
if (abs(nHits)>=2)
{
*testTime2=(tdc->getOffset() -
(((Float_t)(raw->getTime(2)) + gRandom->Rndm() - 0.5F)
* tdc->getSlope()))-globalOffset[loc[1]];
}
}
if(StartandCal)
{
*testTime1=(tdc->getOffset() -
(((Float_t)(raw->getTime(1)) + gRandom->Rndm() - 0.5F)
* tdc->getSlope())+starttime)-globalOffset[loc[1]];
if (abs(nHits)>=2)
{
*testTime2=(tdc->getOffset() -
(((Float_t)(raw->getTime(2)) + gRandom->Rndm() - 0.5F)
* tdc->getSlope())+starttime)-globalOffset[loc[1]];
}
}
if(NoStartandNoCal)
{
switch (raw->getTime(1)){
case 0: *testTime1=-998.;
break;
case -999: *testTime1=-999.;
break;
default :
*testTime1=(2048 - ((Float_t)(raw->getTime(1)) + gRandom->Rndm() - 0.5F))
*globalSlope - globalOffset[loc[1]];
break;
}
if (abs(nHits)>=2)
{
switch(raw->getTime(2)){
case 0: *testTime2=-998.;
break;
case -999: *testTime2=-999.;
break;
default: *testTime2=(2048- ((Float_t)(raw->getTime(2)) + gRandom->Rndm() - 0.5F))
*globalSlope - globalOffset[loc[1]] ;
break;
}
}
}
}
Int_t HMdcCalibrater1::execute(void) {
// calibrates all fired cells
// For time1 or time2 equal -999 in raw the times in cal1 are set to -999.
// For time1 or time2 equal 0 in raw the times in cal1 are set to -998.
// This differnt value is used to distinguish between not filled times and times equal 0.
// The calibration parameters are taken from HMdcCalParRaw container.The
// Calibration is only performed if Offset and Slope are not 0.
// Only time1 and time2 are calibrated.
Bool_t debug = kFALSE;
//######################### count wires per mod #########################
initCounters(); // set conters to 0
initCountersCal(); // set conters to 0
countWiresPerMod();// check for less than 4 wires per module
//#######################################################################
raw=0;
cal=0;
Float_t testTime1=0;
Float_t testTime2=0;
Float_t starttime=0;
Int_t mbo, ch;
iter->Reset();
if(StartandCal)starttime=getstarttime();
while ((raw=(HMdcRaw *)iter->Next())!=0)
{
if(!translateAddress(&mbo,&ch))continue;
if (loc[3]>=0)
{
const Int_t nHits=raw->getNHits();
HMdcCalParTdc* tdc=0;
if(calparraw)
{
tdc=&(*calparraw)[loc[0]][loc[1]][mbo][ch];
}
calcTimes(&testTime1,&testTime2,starttime,nHits,tdc);
if(setTimeCut)
{ // if time cuts are used
if(testTimeCuts(testTime1,testTime2))
{
fillCal1(testTime1,testTime2,nHits);
}
}
else
{ // if no time cuts are used
fillCal1(testTime1,testTime2,nHits);
}
}
else if (debug)
{
gHades->getMsg()->debug(10,HMessageMgr::DET_MDC,GetName()
,"lookup s=%i m=%i mbo=%2i chan=%2i not connectedn", loc[0],loc[1],mbo,ch);
}
}
if(useMultCut)
{
if(doMultCut())
{
if(doprint)
{
printWires();
}
return kSkipEvent;
}
}
return 0;
}
void HMdcCalibrater1::printWires()
{
cout<<"HMdcCalibrater1-----------------------------"<<endl;
cout<<"MultiplicityCut-----------------------------"<<endl;
cout<<"EVT="<<gHades->getEventCounter()<<endl;
cout<<"Number of wires in Cal1="<<calCat->getEntries()<<endl;
for(Int_t i=0;i<6;i++){
printf("s %i : %i %i %i %in"
,i
,countNrWiresPerModCal[i][0]
,countNrWiresPerModCal[i][1]
,countNrWiresPerModCal[i][2]
,countNrWiresPerModCal[i][3]);
}
cout<<"-------------------------------------------"<<endl;
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.