S272: Density distribution of ^{58, 72} Ni and ⁷²Ge from proton elastic scattering

- Spokesperson: Isao Tanihata, Rituparna Kanungo
- GSI contact: Chiara Nociforo?
- Approved in ~2001 with 60 shifts
- Would like to run the experiment either at the end of 2008 or the first half of 2009.
- Primary Beams: ⁸⁶Kr (500A MeV) 10¹⁰ /pulse

⁵⁸Ni (300A MeV) 10⁵ /pulse

⁷²Ge (300A MeV) 10⁵/pulse

- Secondary Beam: ⁷²Ni (300A MeV)
- Detector system will be set up at S4 after FRS.

Density Distribution and EOS

- The saturation density of nuclear matter is reflected to the density of nucleus.
- -> Saturation density of nuclear matter can be determined from density distributions.
- -> EOS of asymmetric matter can be studied from density distribution of neutron rich nuclei.

Difference of EOS between models

• Saturation density behaves differently between two typical models. (Skyrme and Relativistic Mean Field)

Sensitivity of EOS

- The effect of the EOS difference is seen in radii, central density, and neutron skin thicknesses.
- The difference of radii is not very large.
- Densities provide sensitive means to distinguish EOSs.
- Skin thicknesses also give very sensitive test (if someone else measures the charge radii).

Measurement to be done

Differential cross section of elastic scattering

Experimental System

We use two targets, one for ~90° proton (small CM angle scattering) and the other for smaller proton angles.

Experimental System (tested at NIRS@Chiba)

Just photos

 $\emptyset = 35 \text{ mm}$

d = 1 - 5 mm

Solid hydrogen target (SHT)

冷凍機	4K 2段式 Gifford McMahon 冷凍機
標的セル	無酸素銅製
セル窓	9 µm Aramid foil (STYCAST1266で接着)
輻射シールド	無酸素銅製
温度計	Pt-Co抵抗温度計

Ist stage 2nd stage Cell $\rho d = 8.8 \text{ - } 44 \text{ mg/cm}^2$

⁹C preliminary data at Chiba

Summary

- The detector system is ready but we have to transport it to GSI and have to set it up.
- It would take two months just for shipping and take several months to set up the system at the location.
- We do not have enough electric circuits to keep at GSI for a long time. We would like to borrow standard NIM and CAMAC circuits from GSI as much as possible.

The Collaboration:

Osaka U., Miyazaki U. Tohoku U, Tsukuba U, RIKEN, St. Mary U, GSI, U of Bratislava, TU München, KVI

S272: Scheme of S4 setup

Distances and beam sizes [cm]

Beam Size The ends of a gaussian distribution which are almost zero (Xmin, Ymin Xmax, Ymax)