Experimental Proposal S341

- Title: Neutron Knockout Reactions from Proton-rich Carbon Isotopes
- Spokesperson: Joachim Enders, TU Darmstadt
- GSI Contact Person: Helmut Weick, GSI Darmstadt (presenting)
- Year of Approval: 2007 (A)
- Shifts: 7 approved (6 main + 1 parasitic)
 0 used (main + parasitic)
 7 left (6 main + 1 parasitic)

Spectroscopic Factors

Experimental spectroscopic factors

- smaller than predicted within the shell model
- short-range repulsion in deeplybound states?
- dependence on binding energy?

• Knockout from ¹⁰C / ¹¹C

- learn about evolution of spectroscopic factors in the deeply-bound 0p_{3/2} neutron shell
- Cross Spectroscop. Occupation Section Factor Probability

Physics Motivation

- Evolution of spectroscopic factors in the deeply-bound 0p_{3/2} neutron shell
 - One-neutron knockout from ¹⁰C
 - Robust data analysis for fast beams
- Quenching of spectroscopic strength in deeply bound orbitals?
 - Short-range correlations?
 - "Physics beyond the standard (nuclear physics effective shell) model"
 - No experimental data in p shell!
 - Accessible by ab-initio calculations
- Do we understand two-nucleon knockout processes?
 - No precise data in p shell
 - No data connecting odd-mass nuclei: ${}^{11}C \rightarrow {}^{9}C$
 - Probing reaction and structure models: Stripping vs. diffraction
 - Accessible by ab-initio calculations

Setup

• FRS focal planes equipment: Option 1

Setup

• FRS focal planes equipment: Option 2

Setup

- Is the setup ready?
 - Option 1:
 - TPC: collaboration
 - setup and takedown time: > 2 days each, calibrations
 - Option 2:
 - setup ready, (TPCs can be in pockets before S2 or only behind target)
- Is there any new or non-standard equipment required?
 - TPCs and MUSIC at FRS mid-plane for Option 1
- Is there a modification or a new DAQ required?
 - No (like S277, S245 or S322 without gammas)
- What is the requested primary beam and intensity? $-^{12}C^{6+}$, E > 400 A MeV (up to 1.9 AGeV), 10⁹ /spill
- How many shifts are requested for 2008?
 - 7 Shifts: 6 main user + 1 parasitic

Other Aspects

- Acceptance of FRS
 - too small for 100% transmission
 - Use tracking detectors behind target and evaluate only small angles behind breakup target.
 - Momentum acceptance still too low -> measure in two settings.
 - Better higher energy than the original 400 AMeV.
 Also thicker targets.
 - Maybe use only S2->S3.

- ΔE for Z identification
 - MUSIC not really required. We can use scintillator.

Count Rates / Accuracy

⁹Be(¹⁰C,⁹C)X

- Cross section estimate
 - example: ${}^{32}Ar \rightarrow {}^{31}Ar$
 - cross sec. 10 mb
 - spectroscopic factor 4.1
 - quenching factor 0.24
 - our case: ${}^{10}C \rightarrow {}^{9}C$
 - spectroscopic factor >1
 - quenching factor ~ 0.25
 - cross section > 1 mb
- Count rate:
 - incident rate (LISE++): 700/s for therapy beam with maximum intensity
 - 650 events per shift
 - statistical accuracy ~ 4%

⁹Be(¹¹C,⁹C)X

- Cross section estimate
 - example: ${}^{34}Ar \rightarrow {}^{32}Ar$
 - cross sec. 0.4 mb
 - nucleons in shell 2
 - quenching factor ~ 0.5
 - our case: $^{11}\text{C} \rightarrow ^9\text{C}$
 - nucleons in shell 3
 - quenching factor > 0.25
 - cross section > 0.1 mb
- Count rate:
 - incident rate (LISE++):
 9000/s for therapy beam with maximum intensity
 - 750 events per shift
 - momentum distribution