Storage Ring Experiments with Exotic Nuclei

Yuri A. Litvinov FRS-User-Meeting 05 November 2007

- Mass Measurements
- Half-Life Measurements
- Summary and Outlook (after Lunch break)

SMS and IMS

SCHOTTKY MASS SPECTROMETRY_

ISOCHRONOUS MASS SPECTROMETRY

SMS: Broad Band Frequency Spectra (E036)

SMS: Accuracy (E077)

Mass Distributions from Single Ions

Identification of New Isotopes (E048+E055)

IMS: Time-of-Flight Spectra (E055)

Nuclei with half-lives as short as 20 μs About 13% in mass-over-charge range

m/q range: 2.4-2.7

IMS: Bp Tagging (E055)

5

Measured Mass Surface

Half-life Measurements

Stochastic + Electron Cooling

D. Boutin, PhD Thesis, JLU Giessen, 2005

Half-life of Fully-Ionized ^{207m}TI⁸¹⁺

D. Boutin, PhD Thesis, JLU Giessen, 2005

T. Ohtsubo et al., Phys. Rev. Lett. 95 (2005) 052501

Bound-State β-decay in ^{206,207}TI

Electron Capture in Hydrogen-like Ions (E078)

Classical EC-theory:

Gamow-Teller allowed transition $1^+ \rightarrow 0^+$ β + to EC branching ratio:

 $\lambda_{\beta+}/\lambda_{EC}$ (neutral atom) \approx 1

W.Bambynek et al., Rev. Mod. Phys 49, 1977 **S-electron density at the nucleus:**

|f_s(0)|² ∝ 1/ n³

 P_{EC} (neutral atom) $\propto 2 \sum 1/n^3 = 2.4$

 P_{κ} (H-like) $\propto 1 * 1/1^3 = 1$

 $\lambda_{\beta+}/\lambda_{K}$ (H-like) ≈ 2.4

Conclusion: H-Like ion should have 41% longer half-life

M. Campbell et al., Nucl. Phys. A283 (1997) 413

λ_{β+}/λ_κ (He-like) ≈ 1.37

 $\lambda_{\beta+}/\lambda_{K}$ (H-like) \approx ? \approx 2.74 ?

Electron Capture in Hydrogen-like Ions

Gamow-Teller transition $1^+ \rightarrow 0^+$

S. Typel and L. Grigorenko

 $\mu = +2.7812\mu_{N}$

Z. Patyk

Probability of EC Decay

Neutral ¹⁴⁰Pr: **P** = 2.381

He-like ¹⁴⁰Pr: P = 2

H-like ¹⁴⁰Pr: **P** = 3

Theory: The H-Like ion should really decay 20% faster than neutral atom!

Single-Particle Decay Spectroscopy (E077)

Sensitivity to single stored ions

Frequency →

F. Bosch et al., Int. J. Mass Spectr. 251 (2006) 212

ILIMA: Towards Isomeric Beams (E051)

1. Pure isomeric beams can be prepared if the half-life of the corresponding ground state is much shorter.

2. For isomers with large excitation energies a spatial separation by means of a fast micrometer scraper is possible. In the first experiment the isobars with a Q-value of 3.388 MeV were successfully separated.

Pure beams of ions in the isomeric or ground state can be prepared alternatively.

ILIMA Collaboration

FRS-ESR Half-Life and Mass Measurements

G.Audi, K.Beckert, F.Bosch, D.Boutin, C.Brandau, T.Bürvenich, L.Chen, I.Cullen, C.Dimopoulou, A.Dolinskii, B.Fabian, T.Faestermann, B.Franzke, H.Geissel, E.Haettner, M.Hausmann, P.Kienle, O.Klepper, R.Knöbel, C.Kozhuharov, J.Kurcewicz, Y.Litvinov, S.Litvinov, Z.Liu, L.Maier, M.Mazzocco, F.Montes, G.Münzenberg, A.Musumarra, S.Nakajima, C.Nociforo, F.Nolden, T.Ohtsubo, A.Ozawa, Z.Patyk, W.Plass, T.Radon, H.Schatz, C.Scheidenberger, M.Shindo, J.Stadlmann, M.Steck, T.Stöhlker, B.Sun, T.Suzuki, P.Walker, H.Weick, N.Winckler, M.Winkler, H.Wollnik, T.Yamaguchi

Collaboration

