planned ESR tests

T. Faestermann

T U München

15 Oct. 2008

EXL Heavy Ion Spectrometer similar for ILIMA, ELISe, AIC

what can be learned at ESR?

on the basis of old proposal for the ESR

Knockout Reactions - example

 $450 \cdot A \text{ MeV } {}^{50}\text{Ca on } {}^{9}\text{Be} => {}^{49}\text{Ca}$ @FRS - R³B type experiment

Maierbeck et al., PLB nearly submitted

huge cross sections 100 mb

from $d\sigma/dP_{//}$ => L-value of knocked-out nucleon

from σ to a specific state $\Rightarrow C^2S(j,n)$

needs:

- shell model calculation
- eikonal reaction theory

to be measured

particle identification, residual nucleus $\delta Z < 1$ $\delta A < 1$

longitudinal momentum $\delta P_{//} \sim 20 \text{ MeV/c}$

 $\begin{bmatrix} gamma \ coincidence \\ \epsilon > 10\% \end{bmatrix} \implies calorimeter$

old Proposal

from H. Weick

Where is a waist?

Tracking Detector in ESR

drives and vacuum pockets are being prepared at KVI

Foil Detector

B-field parallel to E-field: Shapira et al., NIM A 454 (2000) 409

for our application an external field preferred, i.e. Helmholtz etc.)

Restrictions

E < 150 ·A MeV because of limited number of detectors? no problem if dE measurement at end of range sufficient

A > 90 because of momentum acceptance? limited acceptance in high-dispersion mode => e.g ¹¹²Sn

Only n-knockout? no, if outside detector could be used

No gamma coincidences? not high efficiency in ESR, but calorimeter in NESR

Outlook

Annihilation of antiprotons on nuclear surface in NESRcollider

Example

Dispersion: 9m		
Acceptance: $\Delta p / p = \pm 1.5 \cdot 10^{-2}$		
400 A MeV ¹¹² Sn	=>	p = 107 GeV/c
¹¹¹ Sn shift	=>	1/112 · 9 m = 80 mm
$\Delta p = \pm 300 MeV/c$	=>	$\Delta p / p = \pm 2.8 \ 10^{-3} => \Delta x = \pm 25 \ mm$
		α = 2.8 mrad
1mm image	=>	δp /p = 1mm / 9m = 1.1 · 10 ⁻⁴
		$\delta p = 12 \text{ MeV/c}$

What can be tested?

Detector:	Z identification A identification (dE near Bragg peak) passive absorber?		
Momentum r	esolution: spectrometer mode of ESR		
Tracking:	detector in front of 1st dipole could a foil detector serve for tracking?		
1) stable bea	m => 2) abundant fragment		
Simultaneous	s test experiment close to gas target		
Only parasition	c beam is needed		

What would we ask for?

- development time for modified ESR mode some time in 2009
- develop tracking detector for UHV and build ID-telescope in pocket
- real experiment with medium heavy beam together with another EXL test early in 2010